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Abstract

For the nth order differential equation, y(n) = f(t, y, y′, . . . , y(n−1)), where f(t, r1, r2,
. . . , rn) is Lipschitz continuous in terms of ri, 1 ≤ i ≤ n, we obtain optimal bounds on
the length of intervals on which solutions are unique for certain nonlocal three point
boundary value problems. These bounds are obtained through an application of the
Pontryagin Maximum Principle from the theory of optimal control.
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1 Introduction

In this paper, we shall be concerned with the nth order differential equation,

y(n) = f(t, y, y′, . . . , y(n−1)), a < t < b, (1.1)

for which the assumptions in the following hypothesis hold throughout.

Hypothesis. f(t, r1, . . . , rn) : (a, b) × Rn → R is continuous, and for nonnegative con-
stants ki, 1 ≤ i ≤ n, satisfies the Lipschitz condition,

|f(t, r1, . . . , rn) − f(t, s1, . . . , sn)| ≤
n∑

i=1

ki|ri − si|, (1.2)

for each (t, r1, . . . , rn), (t, s1, . . . , sn) ∈ (a, b) × Rn
.

We characterize optimal length for subintervals of (a, b), in terms of the Lipschitz coeffi-
cients ki, 1 ≤ i ≤ n, on which solutions are unique for problems involving (1.1) and satisfying
the nonlocal three point boundary conditions,

y(i−1)(t1) = yi, 1 ≤ i ≤ n − 1, y(n−2)(t2) − y(n−2)(t3) = yn, (1.3)

where a < t1 < t2 < t3 < b, and y1, . . . , yn ∈ R.
More precisely, we characterize optimal length for subintervals of (a, b) on which solutions

of (1.1), (1.3) are unique. Such uniqueness results are of interest, because in many cases,
uniqueness of solutions implies existence of solutions for boundary value problems; see, for
example, the papers [5, 7, 9, 18, 19, 22, 24, 32] and the references therein.

There is a close connection between the boundary value problem (1.1), (1.3) and certain
right focal boundary value problems for (1.1). Because of this relationship, we will eventually
establish that it suffices for us to characterize optimal length subintervals of (a, b) on which
solutions are unique for (1.1) satisfying the right focal boundary conditions,

y(i−1)(t1) = yi, 1 ≤ i ≤ n − 1, y(n−1)(t2) = yn, (1.4)

where a < t1 < t2 < b, and y1, . . . , yn ∈ R. The connection between this characterization and
the characterization for our three point nonlocal problems is through a simple application
of the Mean Value Theorem.

Theorem 1.1 If solutions for (1.1), (1.4) are unique, when they exist on (a, b), then solu-
tions for (1.1), (1.3) are unique, when they exist on (a, b).

Thus, in view of Theorem 1.1, conditions sufficient to provide uniqueness of solutions,
when they exist on (a, b), for two point right focal boundary value problems (1.1), (1.4),
are sufficient to provide uniqueness of solutions, when they exist on (a, b) for three point
nonlocal boundary value problems (1.1), (1.3).

Our process will involve development of a scenario in which the Pontryagin Maximum
Principle can be applied. We follow a pattern that has an extensive history, with first
motivation found in the papers by Melentsova [36] and Melentsova and Mil’shtein [37, 38].
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Those papers were subsequently adapted to the context of several types of boundary value
problems by Jackson [28, 29], Eloe and Henderson [8], Hankerson and Henderson [17] and
Henderson et al. [6, 20, 21, 23, 25].

Interest in nonlocal boundary value problems also has a long history, both in application
and theory, as can be seen in this list of papers and the references therein: [1] -[4], [10, 11],
[13] - [16], [23], [26, 27], [30, 31], [34, 35], [39] - [47].

2 Optimal Intervals for Uniqueness of Solutions

In this section, we apply the Pontryagin Maximum Principle to obtain a characterization, in
terms of the Lipschitz constants ki, 1 ≤ i ≤ n, for the optimal length of subintervals of (a, b)
on which solutions are unique, when they exist for the right focal boundary value problem
(1.1), (1.4). This length, it will be argued later, is optimal for uniqueness of solutions for
the three point nonlocal boundary value problem (1.1), (1.3).

We first introduce a set of vector-valued control functions

U := {v(t) = (v1(t), . . . , vn(t))T ∈ Rn | vi(t) are Lebesgue
measurable and |vi(t)| ≤ ki on (a, b), i = 1, . . . , n}.

We will be concerned with boundary value problems associated with linear differential equa-
tions of the form

x(n) =
n∑

i=1

ui(t)x(i−1), (2.1)

where u(t) = (u1(t), . . . , un(t))T ∈ U . We immediately make a connection of these linear
differential equations with solutions of (1.1), (1.4). Much of our analysis will be based upon
our choosing, if they exist, distinct solutions y(t) and z(t) of (1.1), (1.4).

If y(t) and z(t) are distinct solutions of (1.1), (1.4), then their difference x(t) := y(t)−z(t)
satisfies

x(i−1)(t1) = x(n−1)(t2) = 0, 1 ≤ i ≤ n − 1, (2.2)

for some a < t1 < t2 < b, and if for 1 ≤ i ≤ n,

ui(t) :=





f(t,z(t),...,z(i−2) (t),y(i−1)(t),...,y(n−1)(t))−f(t,z(t),...,z(i−1) (t),y(i)(t),...,y(n−1) (t))

y(i−1)(t)−z(i−1)(t)
,

y(i−1)(t) 6= z(i−1)(t),

0, y(i−1)(t) = z(i−1)(t),

then ui(t) is Lebesgue measurable, and |ui(t)| ≤ ki, i = 1, . . . , n, so that u(t) = (u1(t), . . . ,
un(t))T ∈ U , and x(t) is a nontrivial solution of the boundary value problem (2.1), (2.2).
It follows from optimal control theory (cf. Gamkrelidze [12, p. 147] and Lee and Markus
[33, p. 259]), there is a boundary value problem in the class (2.1), (2.2), which has a
nontrivial time optimal solution; that is, there exists at least one nontrivial u∗ ∈ U and
points t1 ≤ c < d ≤ t2 such that

x(n) =
n∑

i=1

u∗
i (t)x

(i−1), (2.3)
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x(i−1)(c) = x(n−1)(d) = 0, 1 ≤ i ≤ n, (2.4)

has a nontrivial solution, x0(t), and d − c is a minimum over all such solutions. For this
time optimal solution, x0(t), set x0(t) = (x0(t), . . . , x

(n−1)
0 (t))T . Then x0(t) is a solution of

a first order system,
r′ = A[u∗(t)]r.

By the Pontryagin Maximum Principle, the adjoint system, whose form is given by

x′ = −AT [u∗(t)]x, a < t < b, (2.5)

has a nontrivial solution, x∗(t) = (x∗
1(t), . . . , x

∗
n(t))T such that, for a. e. t ∈ [c, d],

(i)
∑n

i=1 x
(i)
0 (t)x∗

i (t) = 〈x′
0(t),x∗(t)〉 = maxu∈U{〈A[u(t)]x0(t),x∗(t)〉},

(ii) 〈x′
0(t),x∗(t)〉 is a nonnegative constant,

(iii) x∗
n(c) = x∗

1(d) = · · · = x∗
n−1(d) = 0.

The maximum condition in (i) can be rewritten as

x∗
n(t)

n∑

i=1

u∗
i (t)x

(i−1)
0 (t) = max

u∈U

{
x∗

n(t)
n∑

i=1

ui(t)x
(i−1)
0 (t)

}
, (2.6)

for a. e. t ∈ [c, d].
By its time optimality and repeated applications of Rolle’s Theorem, x0(t) 6= 0, t ∈ (c, d].

In fact, for each 1 ≤ i ≤ n, x
(i−1)
0 (t) 6= 0 on (c, d). We may assume without loss of generality

that x0(t) > 0 on (c, d]. If x∗
n(t) has no zeros on (c, d), then we can use (2.6) to determine

an optimal control u∗(t), for a. e. t ∈ [c, d]. We now examine the sign of x∗
n(t) on (c, d).

In that direction, if u ∈ U is such that the boundary value problem given by (2.1) and
(2.2), for some a < t1 < t2 < b, has a nontrivial solution, then the adjoint system

α′ = −AT [u(t)]α, t ∈ (a, b), (2.7)

αn(t1) = α1(t2) = · · · = αn−1(t2) = 0, (2.8)

also has a nontrivial solution, and conversely. That is, the Pontryagin Maximum Principle
associates with a time optimal solution of boundary value problem (2.1), (2.2) a time optimal
solution of boundary value problem (2.7), (2.8), and conversely. Hence, it follows by its own
time optimality that x∗

n(t) does not vanish on (c, d).
Now, x0(t) > 0 on (c, d], and so we have from (2.6) that, if x∗

n(t) < 0 on (c, d), then the
time optimal solution x0(t) is a solution of

x(n) = −k1x −
n∑

i=2

ki|x(i−1)| (2.9)

on [c, d], while if x∗
n(t) > 0 on (c, d), then the time optimal solution x0(t) is a solution of

x(n) = k1x +
n∑

i=2

ki|x(i−1)| (2.10)
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on [c, d]. Since n − (n − 1) = 1 is odd, the result by Jackson [29, Theorem 2] yields that
x∗

n(t) < 0 on (c, d), so that that x0(t) is a solution of (2.9) on [c, d]. Moreover, from the
assumed positivity of x0(t) and the nature of the boundary conditions (2.4), along with the
fact that x

(i−1)
0 (t) 6= 0 on (c, d), 1 ≤ i ≤ n, it follows that x

(i−1)
0 (t) > 0 on (c, d), 1 ≤ i ≤ n.

As a consequence, not only is x0(t) is a solution of (2.9), but also where (2.9) takes the form

x(n) = −
n∑

i=1

kix
(i−1). (2.11)

Recall that our discussion is based on (1.1) having distinct solutions whose difference
satisfies (2.2). In addition, if sufficient sign conditions are satisfied by the optimal solution
x0(t) of the boundary value problem (2.1), (2.2) and by the component x∗

n(t) of the solution
of the associated adjoint system (2.5), then optimal intervals can be determined on which
only trivial solutions exist for boundary value problems (2.9), (2.2) or (2.10), (2.2). Ulti-
mately, a more detailed sign analysis led to determination of optimal intervals on which only
trivial solutions exist for only the boundary value problem (2.11), (2.2). As a consequence,
solutions of the boundary value problem (1.1), (1.4) will be unique on such subintervals.

Theorem 2.1 If there is a vector-valued u(t) ∈ U for all a < t < b, for which the boundary
value problem (2.1), (2.2) has a nontrivial solution for some a < t1 < t2 < b, and if x0(t) is
a time optimal solution satisfing (2.4), where d − c is a minimum, then x0(t) is a solution
of (2.11) on [c, d].

Theorem 2.2 Let ` = `(k1, . . . , kn) > 0 be the smallest positive number such that there
exists a solution x(t) of the boundary value problem for (2.11) satisfying

x(i−1)(0) = 0, 1 ≤ i ≤ n − 1, x(n−1)(`) = 0, (2.12)

with x(t) > 0 on (0, `], or ` = ∞ if no such solution exists. If y(t) and z(t) are solutions
of the boundary value problem (1.1), (1.4), for some a < t1 < t2 < b, and if t2 − t1 < `,
it follows that y(t) ≡ z(t) on [t1, t2], and this is best possible for the class of all differential
equations satisfying the Lipschitz condition (1.2).

Proof: Since equation (2.11) is autonomous, translations of solutions are again solutions of
(2.11). Hence, it suffices to apply Theorem 2.1 with respect to the boundary conditions at
0 and `.

Now, if y(t) and z(t) are distinct solutions of (1.1) whose difference w(t) := y(t) −
z(t) satisfies (2.2), where t2 − t1 < `, then w(t) is a nontrivial solution of the boundary
value problem (2.1), (2.2), for appropriately defined u ∈ U . Then, from the discussion and
Theorem 2.1, equation (2.11) has a nontrivial solution on a subinterval of length less than
`. But, by the minimality of `, such a boundary value problem can have only the trivial
solution; this is a contradiction. Therefore, solutions of the boundary value problem (1.1),
(1.4) are unique, whenever t2 − t1 < `.

That this is best possible from the fact that (2.11) satisfies the Lipschitz condition (1.2),
and if ` 6= ∞, then x(t) is a nontrivial solution of (2.11) and (2.2) on [0, `]. The boundary
value problem also has the trivial solution. 2



94 Paul W. Eloe and Johnny Henderson

Remark 2.1 Since (2.11) is a linear equation, we observe that, if x(t) is the solution, of
the initial value problem for (2.11), satisfying,

x(i−1)(0) = 0, 1 ≤ i ≤ n − 1, x(n−1)(0) = 1,

and if η > 0 is the first positive number such that x(n−1)(η) = 0, then η = `(k1, . . . , kn) of
Theorem 2.2.

Because of the uniqueness relationships stated in Theorem 1.1, we can apply Theorem
2.2 to obtain optimal intervals for uniqueness of solutions of the boundary value problem
(1.1), (1.3).

Theorem 2.3 Let ` be as in Theorem 2.2. If y(t) and z(t) are solutions of the boundary
value problem (1.1), (1.3), for some a < t1 < t2 < t3 < b, and if t3 − t1 ≤ `, it follows
that y(t) ≡ z(t) on [t1, t3], and this is best possible for the class of all differential equations
satisfying the Lipschitz condition (1.2).

Proof: In view of Theorem 1.1 and Theorem 2.2, solutions of the boundary value problem
(1.1), (1.3) are unique, when t3 − t1 ≤ `. To see again that this is best possible, consider the
nontrivial solution x(t) of (2.11) and (2.12) in Theorem 2.2.

Let ε > 0 be sufficiently small that x(t) is a solution of (2.11) on [0, `+ε]. Now, x(n)(t) < 0
on [0, `+ ε]. From (2.12), x(n−1)(`) = 0, and since x(n)(`) < 0, we have that x(n−2)(t) has a
positive maximum at `. So, there exist 0 < τ1 < ` < τ2 < ` + ε such that x(t) is a nontrivial
solution of (2.11) satisfying x(i−1)(0) = 0, 1 ≤ i ≤ n − 1, and x(n−2)(τ1) − x(n−2)(τ2) = 0.
This boundary value problem also has the trivial solution. Since ε > 0 was arbitrary, the
“best possible” statement follows for uniqueness of solutions of the boundary value problem
(1.1), (1.3). 2

3 Optimal Intervals of Existence for Linear Equations

In the case of boundary value problem (1.1), (1.3), we do not have a “uniqueness implies
existence” theorem to appeal to, since this is an open question for this type of boundary
value problem. However, uniqueness does imply existence for linear differential equations,
and so the following corollary can be stated.

Corollary 3.1 Let ` be as in Theorem 2.2. Assume pi(t), 1 ≤ i ≤ n, and q(t) are continuous
on (a, b) and that |pi(t)| ≤ ki on (a, b), 1 ≤ i ≤ n. If a < t1 < t2 < t3 < b and t3 − t1 < `,
then the boundary value problem,

y(n) =
n∑

i=1

pi(t)y(i−1) + q(t),

y(i−1)(t1) = yi, 1 ≤ i ≤ n − 1, y(n−2)(t2) − y(n−2)(t3) = yn,

has a solution for any assignment of values of yi ∈ R, 1 ≤ i ≤ n.
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