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UPPER AND LOWER SOLUTIONS FOR REGIME-SWITCHING
DIFFUSIONS WITH APPLICATIONS IN FINANCIAL

MATHEMATICS∗

P. ELOE† AND R. H. LIU†

Abstract. This paper develops a method of upper and lower solutions for a general system
of second-order ordinary differential equations with two-point boundary conditions. Our motivation
of study stems from a class of financial mathematics problems under regime-switching diffusion
models. Two examples are double barrier option valuation and optimal selling rules in asset trading.
We establish the existence of a unique C2 solution of the two-point boundary value problem. We
construct monotone sequences of upper and lower solutions that are shown to converge to the unique
solution of the boundary value problem. This construction provides a feasible numerical method
to compute approximate solutions. An important feature of the proposed numerical method is
that the unique solution is bracketed by the upper and lower approximate solutions, which provide
an interval estimate of the unique solution function. We apply the general results to a regime-
switching mean-reverting model and improve related results already reported in the literature. For
the mean-reverting model, explicit upper and lower solutions are obtained and numerical integration
methods are employed. In another case (Example 3 in section 5) a different regime-switching model
is considered, where the general results apply, but only the upper solution is explicitly obtained. In
that example, only the sequence of upper solutions is numerically constructed using finite difference
methods. Numerical results are reported.

Key words. regime-switching diffusion, upper and lower solutions, boundary value problem,
mean-reverting process, double barrier option, selling rule
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DOI. 10.1137/100799691

1. Introduction. Regime-switching models have drawn considerable attention
in recent decades in a variety of application fields, due to their capability of modeling
complex systems with uncertainty. A common setup of a regime-switching model is to
use a number of continuous stochastic differential equations, each for a specific regime,
together with a Markov chain for the random switching among regimes. Consequently,
both continuous dynamics and discrete events are present in the switching model
formulation, providing realistic models in applications. We refer the reader to Yin
and Zhu [29] on the recent studies of regime-switching systems.

One area of applications of regime-switching models with growing interest is fi-
nancial mathematics. Aiming to include the influence of macroeconomic factors on
the individual asset price behavior, regime-switching models have been introduced
for describing asset price changes. In this setting, asset prices are dictated by a
number of stochastic differential equations coupled by a finite-state Markov chain,
which represents various randomly changing economical factors. Model parameters
(drift and volatility coefficients) are assumed to depend on the Markov chain. Regime-
switching models have been used in various studies in financial mathematics, including
equity options [3, 13, 14, 26, 21, 17, 9, 20], interest rate derivatives and bond prices
[1, 19], energy and commodity derivatives [4, 22], portfolio selection [32], trading rules
[30, 27, 31, 28, 10, 15], and others.
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UPPER-LOWER SOLUTIONS FOR REGIME-SWITCHING DIFFUSIONS 1355

In this paper we study a system of second-order ordinary differential equations
with two-point boundary conditions. The primary motivation stems from a class of
financial mathematics problems using regime-switching diffusion models. Two exam-
ples are double barrier option valuation and selling rules in asset trading. See the
next section for descriptions of these two problems and their connections with the
general problem formulation. We establish the existence of a unique C2 solution of
the two-point boundary value problem. For existence, the method of upper and lower
solutions is employed. Monotone sequences of upper and lower solutions are shown
to converge to C2 solutions of the boundary value problem. The uniqueness of the
solution can be obtained by an application of the Dynkin’s formula. Moreover, this
proof by construction provides a feasible numerical method to compute approximate
solutions. An important feature of the proposed numerical method is that the unique
solution is bracketed by the upper and lower approximate solutions, which provide
an interval estimate of the unique solution. We next apply the general results to a
regime-switching mean-reverting model. Mean-reverting diffusion processes have been
used in modeling financial variables such as stochastic volatilities, stochastic interest
rates, energy and commodity prices. A closed-form initial lower solution in terms of
Weber’s functions is obtained, and an explicit expression of the Green’s function is
constructed. This Green’s function is then used in constructing the sequences of upper
and lower approximations of the value functions. A closed-form initial upper solution
is also obtained. Two numerical examples are provided for this model in which the
sequences of upper and lower solutions are obtained with numerical integration meth-
ods. Moreover, a different regime-switching model is considered in another example
(Example 3 in section 5) for which only the upper solution is explicitly obtained. The
general results still apply, but only the sequence of upper solutions is constructed and
finite difference methods are employed.

The main contributions of this paper are twofold. First, we develop the method of
upper and lower solutions for a fairly general stochastic diffusion model that includes
as special cases a number of commonly used models in financial mathematics (for
examples, geometric Brownian motion for equities, and mean-reverting diffusion for
interest rates and commodities). The results presented in this paper generalize our
results in [10] and [9], and can be applied to a broad class of models. Second, for the
regime-switching mean-reverting model, the application of the general results enables
us to remove an assumption on model parameters that was made in our previous
works ([10, Assumption 3.4] and [9, Assumption 1]). Hence, the upper and lower
solutions developed in this paper for the mean-reverting diffusion processes permit
much more freedom in choosing model parameters, providing more chances for model
calibration in practical applications.

The paper is organized as follows. Section 2 presents the general problem formu-
lation with two application examples in financial mathematics. Section 3 presents the
general results for the method of upper and lower solutions. We establish the exis-
tence of a C2 solution of the two-point boundary value problem by using the method
of upper and lower solutions. We construct sequences of upper and lower approximate
solutions that converge monotonically to C2 solutions in an appropriate Banach space.
The uniqueness of the C2 solution follows by applying Dynkin’s formula. Section 4 is
concerned with a regime-switching mean-reverting model. Closed-form initial upper
and lower solutions are exhibited and an explicit Green’s function is constructed. The
Green’s function is used in constructing the sequences of upper and lower approxima-
tion solutions. Numerical results are reported in section 5. Section 6 provides further
remarks and concludes the paper.
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1356 P. ELOE AND R. H. LIU

2. Problem formulation and motivation examples.

2.1. Problem formulation. Let (Ω,F ,P) be the underlying probability space,
upon which all stochastic processes are defined. Let αt be a continuous-time Markov
chain taking values inM := {1, . . . ,m}, a finite state space. The states of αt represent
general market trends and other economic factors (also known as state of the world
or regime) and are labeled by integers 1 to m where m is the total number of states
considered for the economy. For example, with m = 2, αt = 1 may stand for an up
market (a bullish market) and αt = 2 a down market (a bearish market). Let Bt be
a real-valued standard Brownian motion. Assume αt is independent of Bt.

We consider the following one-dimensional stochastic differential equation modu-
lated by the Markov chain αt,

(2.1) dZt = μ(Zt, αt)dt+ σ(Zt, αt)dBt, t ≥ 0, Z0 = z0,

where μ(·, ·) : R×M → R and σ(·, ·) : R×M → R are appropriate functions satisfying
the Lipschitz condition

(2.2) |μ(z1, i)− μ(z2, i)| ≤ K|z1 − z2|, |σ(z1, i)− σ(z2, i)| ≤ K|z1 − z2|,

and the linear growth condition,

(2.3) |μ(z, i)| ≤ K(1 + |z|), |σ(z, i)| ≤ K(1 + |z|),

for all z, z1, z2 ∈ R and for each i ∈ M, whereK is a positive constant. The conditions
(2.2) and (2.3) ensure the existence of a unique solution to (2.1) (see Yin and Zhu
[29]). In addition, we assume σ(z, i) �= 0 for all z ∈ R and for each i ∈ M.

Given two numbers z1 and z2 satisfying −∞ < z1 ≤ z2 < ∞, define a stopping
time τ by

(2.4) τ = inf{t ≥ 0 : Zt �∈ (z1, z2)}.

τ is the first time that the process Zt hits either the upper bound z2 or the lower
bound z1. We consider the value functions v(z, i), i = 1, . . . ,m, defined by

(2.5) v(z, i) = E
{
exp(−ρτ)Φ(Zτ , ατ )

∣∣∣Z0 = z, α0 = i
}
,

where Φ(·, ·) : R ×M → R is a prespecified utility function and ρ > 0 is a discount
factor.

Let matrix Q = (qij)m×m denote the generator of αt. Then its entries qij satisfy:
(I) qij ≥ 0 if i �= j; (II) qii ≤ 0 and qii = −∑j �=i qij for each i = 1, . . . ,m. The value
functions v(z, i), i = 1, . . . ,m satisfy a system of second order differential equations:

(2.6)
σ2(z, i)

2

d2v(z, i)

dz2
+ μ(z, i)

dv(z, i)

dz
− ρv(z, i) +

∑
j �=i

qij [v(z, j)− v(z, i)] = 0,

for z ∈ (z1, z2). The associated boundary conditions are given by

(2.7) v(z1, i) = Φ(z1, i), v(z2, i) = Φ(z2, i).

If the boundary value problem (2.6), (2.7) has a smooth solution v(z, i), i = 1, . . . ,m,
then using Dynkin’s formula, we can show that the solution must be given by (2.5),
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UPPER-LOWER SOLUTIONS FOR REGIME-SWITCHING DIFFUSIONS 1357

which implies the uniqueness of the solution. In the next section, we shall establish
the existence of a C2 solution to (2.6) and (2.7) via the method of upper and lower
solutions.

The motivation for studying this general problem stems from a number of ap-
plication problems in financial mathematics. We next present two examples: one in
double barrier option valuation and another in selling rules for trading assets.

Double barrier option. Barrier options have attracted increasing attention
in derivative markets due to the fact that they are usually cheaper than standard
options and can serve the same hedging purposes in risk management. Barrier options
have been treated in a number of articles (see [23, 12, 18, 11, 25, 24, 9], among
others). We consider double barrier options under the general regime-switching model
(2.1). Let St be the risk-neutral price of a traded asset at time t ≥ 0. Assume that
St = ϕ(Zt), where Zt follows the regime-switching diffusion (2.1), and ϕ(·) : R → R

+

is a continuous and strictly increasing function. Consider a perpetual double barrier
knockout option written on the asset St that pays a rebate at the time when either
one of the two barriers is hit. Let SU and SL denote the up and down barriers for
St that are specified in the option contract and satisfy 0 < SL ≤ S0 ≤ SU < ∞. In
terms of the process Zt, we introduce

(2.8) z1 = ϕ−1(SL) , z2 = ϕ−1(SU ).

Then −∞ < z1 ≤ z ≤ z2 < ∞. Define the hitting time τ as in (2.4), or equivalently,

(2.9) τ = inf{t > 0 : St �∈ (SL, SU )}.
τ is the knockout time for the option. Let Φ(z, i) be the rebate payment function; that
is, upon knocking out of the option, the option holder will receive a rebate determined
by Φ(Zτ , ατ ). In particular, a cash rebate option is given by Φ(z, i) = K1 if z = z1 and
Φ(z, i) = K2 if z = z2, where K1 and K2 are the cash rebate amounts corresponding
to the upper and lower barriers, respectively.

Let v(z, i) denote the barrier option value function when Z0 = z and α0 = i. Let
ρ > 0 be the risk-free interest rate. Then by the risk-neutral valuation principle we
have

(2.10) v(z, i) = E
{
exp(−ρτ)Φ(Zτ , ατ )

∣∣∣Z0 = z, α0 = i
}
.

By solving the two-point boundary value problem (2.6), (2.7), we calculate the option
price v(z, i).

Remark 1. In connection with the boundary value ODE problem (2.6), (2.7)
studied in this paper, we focus on a perpetual double barrier knockout option (infinite
maturity) in this example. We note that double barrier options with finite maturity
(either with or without rebate at hitting time) have been introduced and studied
extensively in the literature (e.g., Geman and Yor [11] and Sepp [25]), among others).
Options with finite maturity in regime-switching models would lead to a system of
second-order partial differential equations (PDE) with boundary value conditions.
Developing upper and lower approximation solutions for such boundary value PDE
problems is an interesting topic for future work.

Optimal selling rules in asset trading. Selling decisions in asset trading are
very important for successful investment. Optimal selling rules using regime-switching
diffusion models are studied in a number of papers (see [30, 27, 31, 28, 10, 15]). In
these works, a selling rule is specified by two threshold levels: an upper level (greater
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1358 P. ELOE AND R. H. LIU

than the purchase price) for profit target and a lower level (less than the purchase
price) for stop-loss limit. The asset is sold once its price hits either level. In this case,
z1 and z2 denote the two thresholds, and τ is the selling time. An investor sells the
asset at time τ for the price Sτ , either to take a profit (if z2 is reached) or to prevent
from further loss (if z1 is reached). The optimal selling rule problem is to find a pair
of numbers (z∗1 , z

∗
2) that maximize an objective function V (z1, z2) defined by

(2.11) V (z1, z2) = E {exp(−ρτ)Φ(Zτ , ατ )} ,
where Φ(z, i), i = 1, . . . ,m are prespecified utility functions and ρ > 0 is a discount
factor.

For given real numbers z1, z2, and z ∈ [z1, z2], consider the solution Zt of (2.1)
with the initial value Z0 = z. For each z ∈ [z1, z2], define a stopping time:

τ(z) = inf{t > 0 : Zt �∈ (z1, z2)}.
Note that we use τ(z) to indicate the z dependence of the stopping time. Let

(2.12) v(z, i) = E
{
exp(−ρτ(z))Φ(Zτ(z), ατ(z))

∣∣∣Z0 = z, α0 = i
}
.

Then v(z, i), i = 1, . . . ,m, satisfy the boundary value problem (2.6), (2.7). The
objective function (2.11) can be written in terms of v(z, i) as

(2.13) V (z1, z2) =
m∑
i=1

piv(z0, i),

where pi = P{α0 = i}, i = 1, . . . ,m, assumed given, is the initial probability distri-
bution of the Markov chain αt. An optimization technique can be employed to find
the optimal thresholds z∗1 and z∗2 .

Remark 2. We note that the selling rules specified by (2.11) are of threshold
type. In other words, we are seeking the optimal selling rules within the class of
threshold type rules. A closely related and more general problem is the optimal
stopping problem defined by

(2.14) v(z, i) = max
τ

E
{
exp(−ρτ)Φ(Zτ , ατ )

∣∣∣Z0 = z, α0 = i
}
,

over all stopping times τ . These two problems may not be equivalent, depending on
the form of the utility functions Φ(z, i), the discount factor ρ, as well as the asset model
(2.1) for Zt. In some cases, the optimal selling rules are, in fact, of threshold type (see
Guo and Zhang [15] for results obtained for a regime-switching geometric Brownian
motion model with two regimes). However, for the general regime-switching model
(2.1), to our best knowledge, there are no clear results in the literature on the structure
of the optimal selling rules, which remains as an interesting open problem. Our
contribution in this paper is the development of the upper and lower approximation
solutions that can be used to calculate the suboptimal selling rules for a fairly general
asset model with regime switching.

3. General results. For the sake of self-containment, we present in this section
an abridged development of the method of upper and lower solutions coupled with
monotone methods for boundary value problems for ordinary differential equations.
This theory can be developed in the context of systems and partial orders on R

m

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

31
.2

38
.1

08
.3

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UPPER-LOWER SOLUTIONS FOR REGIME-SWITCHING DIFFUSIONS 1359

and is done so, very nicely in [6, Chapter 3]. For our purposes, since the differential
operator in (2.6) is decoupled, the corresponding coefficient matrix in the differential
system is diagonal. Hence, we shall present a scalar version with details of the method
of upper and lower solutions coupled with monotone methods; we shall then state the
corresponding results for vector-valued functions.

Consider the following two-point boundary value problem:

Ly = g(z)y′′(z) + f(z)y′(z)− ry(z) = 0, for z ∈ (a, b),(3.1)

y(a) = y1, y(b) = y2,(3.2)

where f, g ∈ C[a, b], r > 0 is a constant, and −∞ < a < b < ∞.
Lemma 1. Suppose that g(z) > 0 for z ∈ [a, b], and then (3.1) is disconjugate on

[a, b]; that is, if y is a solution of (3.1) and y has two roots counting multiplicity in
[a, b], then y(z) ≡ 0 for z ∈ [a, b].

Proof. Uniqueness of solutions of initial value problems implies that if y has
repeated roots, then y(z) ≡ 0. If y is a solution of (3.1) and y(z1) = y(z2) = 0 for
some a ≤ z1 < z2 ≤ b, then y has an extreme point at some z0 ∈ (z1, z2). Since,
y′(z0) = 0, g(z0) > 0 and r > 0, it follows from (3.1) that y′′(z0)y(z0) > 0, which is a
contradiction.

Lemma 2. If (3.1) is disconjugate on [a, b], and y1, y2 > 0, then there is a positive
solution B(z) of the boundary value problem, (3.1), (3.2).

Proof. Let u, v denote linearly independent solutions of (3.1). Lemma 1 implies
that if

A =

(
u(a) v(a)
u(b) v(b)

)
,

then detA �= 0. Hence, the solution y of the boundary value problem, (3.1), (3.2),
exists. Since y1 and y2 are positive, Lemma 1 also implies that y > 0 on [a, b].

Lemma 3. If (3.1) is disconjugate on [a, b], then there exists a corresponding
Green’s function, G(z, s), defined on [a, b] × [a, b] such that if h ∈ C[a, b], then the
unique solution of the boundary value problem,

Ly = h, a < z < b,

satisfying the boundary conditions, (3.2), is

y(z) = B(z) +

∫ b

a

G(z, s)h(s)ds, a ≤ z ≤ b.

Moreover, G(z, s) < 0 on (a, b)× (a, b).
Remark 3. Constructions for G(z, s) are given in Coppel [7], in Coddington and

Levinson [5], and in (4.17) and (4.18). An important feature in this article is that
the existence of G is important and the sign property of G is important; however,
we shall be successful to proceed theoretically and numerically without an explicit
representation of G(z, s). In section 5 we shall numerically study two models, one for
which the Green’s function is explicitly constructed and one for which the Green’s
function is not explicitly constructed.

The introduction of the Green’s function introduces applications of fixed point
theory as methods to analyze existence of solutions of nonlinear problems. Let h :
[a, b] × R → R be a continuous map. Consider a nonlinear boundary value problem
of the form,

(3.3) Ly(z) = h(z, y(z)), a < z < b,

with boundary conditions, (3.2).
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1360 P. ELOE AND R. H. LIU

Corollary 1. y ∈ C2[a, b] is a solution of the boundary value problem, (3.3),
(3.2), if, and only if, y ∈ C[a, b] and

y(z) = B(z) +

∫ b

a

G(z, s)h(s, y(s))ds, a ≤ z ≤ b.

A function v0 ∈ C2[a, b] is called a lower solution of the boundary value problem,
(3.3), (3.2), if

Lv0(z) ≥ h(z, v0(z)), a < z < b, v0(a) ≤ y1, v0(b) ≤ y2.

A function u0 ∈ C2[a, b] is called an upper solution of the boundary value problem,
(3.3), (3.2), if

Lu0(z) ≤ h(z, u0(z)), a < z < b, u0(a) ≥ y1, u0(b) ≥ y2.

In Lemma 3 we point out that the kernel, G(z, s) < 0 on (a, b)× (a, b). Assume,
in addition, the function h(s, y) is monotone decreasing in y. Define an operator
T : C[a, b] → C[a, b] by

(3.4) Ty(z) = B(z) +

∫ b

a

G(z, s)h(s, y(s))ds, a ≤ z ≤ b.

Then T is monotone on C[a, b]; that is, if y, w ∈ C[a, b], y(z) ≤ w(z), a ≤ z ≤ b, then
Ty(z) ≤ Tw(z), a ≤ z ≤ b.

Finally, assume the lower and upper solutions satisfy

v0(z) ≤ u0(z), a ≤ z ≤ b.

Note that Lemma 3 implies

v0(z) ≤ Tv0(z), T u0(z) ≤ u0(z), a ≤ z ≤ b.

To see this, let Bv0 denote the solution of

Ly = 0, a ≤ z ≤ b,

y(a) = v0(a), y(b) = v0(b).

By Lemma 3,

v0(z) = Bv0(z) +

∫ b

a

G(z, s)Lv0(s)ds, a < z < b.

By Lemma 1, Bv0(z) ≤ B(z), a ≤ z ≤ b, and it follows by the definition of lower
solution and the sign of the Green’s function that

v0(z) = Bv0(z) +

∫ b

a

G(z, s)Lv0(s)ds ≤ B(z) +

∫ b

a

G(z, s)h(s, v0(s))ds ≤ Tv0(s),

for a < z < b. Employ that T is monotone, and we obtain the inequality

(3.5) v0(z) ≤ Tv0(z) ≤ Tu0(z) ≤ u0(z), a ≤ z ≤ b.
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At this point, a straightforward application of the Schauder fixed point theorem
(see Jackson [16]) implies the existence of a solution y of the boundary value problem,
(3.3), (3.2), satisfying

v0(z) ≤ y(z) ≤ u0(z), a ≤ z ≤ b.

Moreover, define recursively, sequences {vn(z)} and {un(z)} by

(3.6) vn+1(z) = Tvn(z), un+1(z) = Tun(z).

Then, it follows inductively from (3.5) that for each n,

vn(z) ≤ vn+1(z) ≤ un+1(z) ≤ un(z);

vn converges monotonically and uniformly to a solution v of the boundary value
problem, (3.3), (3.2), and un converges monotonically and uniformly to a solution u
of the boundary value problem, (3.3), (3.2), where

v(z) ≤ u(z), a ≤ z ≤ b.

Also note that by Corollary 1, vn+1 can be constructed as the solution of the
boundary value problem,

(3.7) Ly = h(z, vn(z)), a < z < b,

satisfying the boundary conditions (3.2). The sequence {un+1} can be constructed
analogously. In particular, if the Green’s function is explicitly constructed, we prefer
to employ quadrature methods and (3.6) to compute numerical solutions. If the
Green’s function is not explicitly constructed, we can employ numerical methods for
ordinary differential equations on boundary value problems of the form, (3.7), (3.2).

The application of differential inequalities developed above readily generalizes to
systems of m equations. Define a Banach space Cm[z1, z2] by

Cm[z1, z2] =
{
U = (u1, . . . , um)′ : [z1, z2] → R

m, ui ∈ C[z1, z2], i = 1, . . . ,m
}

with norm ‖ U ‖= max1≤i≤m{‖ ui ‖0}, where ‖ · ‖0 denotes the usual supremum
norm, and C[z1, z2] denotes the space of continuous functions from [z1, z2] to R.
Consider the partial order on R

m:

W ≤ Y ⇐⇒ wi ≤ yi, i = 1, . . . ,m,

where W = (w1, . . . , wm)′ ∈ R
m, Y = (y1, . . . , ym)′ ∈ R

m. Define a partial order on
Cm[z1, z2]:

V ≤ U ⇐⇒ V (z) ≤ U(z), z ∈ [z1, z2], where U, V ∈ Cm.

Assume T : Cm[z1, z2] → Cm[z1, z2] is a continuous map that maps closed convex
sets into relatively compact sets. Assume there exist V0, U0 ∈ Cm[z1, z2] satisfying

V0 ≤ TV0 ≤ TU0 ≤ U0,

with respect to the partial order on Cm[z1, z2]. Then the application of the Schauder
fixed point theorem and the monotone methods described above readily adapt to the
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1362 P. ELOE AND R. H. LIU

operator T ; a sequence Vn+1 = TVn converges to a fixed point V ∈ Cm[z1, z2] of T
from below and a sequence Un+1 = TUn converges to a fixed point U ∈ Cm[z1, z2] of
T from above.

We now show how this theory applies to the boundary value problem for the
system of equations (2.6), (2.7). For each i = 1, . . . ,m, write

Liv(z, i) =
σ2(z, i)

2

d2v(z, i)

dz2
+ μ(z, i)

dv(z, i)

dz
− (ρ− qii)v(z, i).

In view of qii = −∑j �=i qij , we can rewrite (2.6) as

Liv(z, i) = −
∑
j �=i

qijv(z, j), z ∈ (z1, z2), i = 1, . . . ,m,(3.8)

v(z1, i) = Φ(z1, i), v(z2, i) = Φ(z2, i), i = 1, . . . ,m.(3.9)

Write the boundary value problem (3.8), (3.9) in matrix form,

LV (z) = Q0V (z), z1 < z < z2,(3.10)

V (z1) = Φ(z1), V (z2) = Φ(z2),(3.11)

where

V (z) = (v(z, 1), . . . , v(z,m))′,
LV (z) = diag (L1v(z, 1), . . . , Lmv(z,m)) ,

Φ(z) = (Φ(z, 1), . . . ,Φ(z,m))′,

and

(3.12) Q0 =

⎛⎜⎜⎜⎝
0 −q12 · · · −q1m

−q21 0 · · · −q2m
...

... · · · ...
−qm1 −qm2 · · · 0

⎞⎟⎟⎟⎠ .

The boundary value problem, (3.10), (3.11), is now equivalent to a fixed point problem

(3.13) V (z) = TV (z) = B(z) +

∫ z2

z1

G(z, s)Q0V (s)ds,

where B(z) = (b(z, 1), b(z, 2), . . . , b(z,m))′, b(z, i) is the solution of the scalar bound-
ary value problem

Liv(z) = 0, z1 < z < z2, v(z1) = Φ(z1, i), v(z2) = Φ(z2, i),

and G(z, s) = diag{Gii(z, s)}, where Gii(z, s) = G(z, s, i) denotes the scalar Green’s
function for the boundary value problem,

Liy(z) = 0, z1 < z < z2, y(z1) = 0, y(z2) = 0.

Note that σ2(z,i)
2 > 0, r = ρ− qii > 0, for each i = 1, . . . ,m; it follows from Lemma 2

that B(z) > 0 on [z1, z2]. For the purposes of introducing upper and lower solutions,
we shall relabel

B(z) = V0(z),

where b(z, i) = v0(z, i), i = 1, . . . ,m.
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Let K be a constant satisfying

(3.14) K ≥ max
i=1,...,m

{||v0(z, i)||} .

Let u0(z, i) = K, z1 ≤ z ≤ z2, i = 1, . . . ,m, and denote

(3.15) U0(z) = (u0(z, 1), u0(z, 2), . . . , u0(z,m))′.

Thus,

V0(z) ≤ U0(z), z1 ≤ z ≤ z2.

Note that 0 = LV0 ≥ Q0V0. It follows that V0 is a lower solution and if V1 is defined
as V1 = TV0, where T is defined in (3.13), then

V0(z) ≤ V1(z), z1 ≤ z ≤ z2.

To see that U0 serves as an appropriate upper solution, note that U0 is a constant
vector and recall that qii = −∑j �=i qij . So, for each i = 1, . . . ,m,

Liu0(z, i) = −(ρ− qii)u0(z, i) ≤ −
∑
j �=i

qiju0(z, j).

In particular, LU0 ≤ Q0U0. U0 satisfies appropriate boundary conditions so that U0

is an upper solution. Define U1 by U1 = TU0, and then

U1(z) ≤ U0(z), z1 ≤ z ≤ z2.

In summary, we have shown

V0(z) ≤ V1(z) ≤ U1(z) ≤ U0(z), z1 ≤ z ≤ z2.

Define inductively

Vn+1(z) = TVn(z), Un+1(z) ≤ TUn(z),

and it follows from the monotonicity of T that

Vn(z) ≤ Vn+1(z) ≤ Un+1(z) ≤ Un(z), z1 ≤ z ≤ z2.

In addition to the construction of a numerical algorithm, we have proved the
following existence and uniqueness of solution result.

Theorem 1. Assume for each i = 1, . . . ,m, σ(z, i) and μ(z, i) are continuous
on [z1, z2] and assume σ(z, i) �= 0, z ∈ [z1, z2]. Assume ρ > 0. Assume the matrix
Q = (qij)m×m denotes the generator of αt; in particular, its entries qij satisfy: (I)
qij ≥ 0 if i �= j; (II) qii ≤ 0 and qii = −∑j �=i qij for each i = 1, . . . ,m. Then there
exists a unique solution, V (z) = (v(z, 1), . . . , v(z,m))′ of the boundary value problem
for the system of ordinary differential equations (2.6), (2.7). Moreover, each value
function v(z, i) ∈ C2[z1, z2].
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4. Upper and lower solutions for a regime-switching mean-reverting
model. In this section we deal with a regime-switching mean-reverting diffusion
model for the underlying stochastic process. This model was considered in Eloe,
Liu, and Sun [9] for pricing double barrier options and in Eloe et al. [10] for optimal
selling rules. However, an assumption on model parameters was made ([9, Assump-
tion 1], [10, Assumption 3.4]). In this section we obtain closed-form lower and upper
solutions without making the assumption. Thus, the results presented in this sec-
tion generalize our previous work. The upper and lower solutions are then used to
approximate the unique solution of the boundary value problem.

Let μ(z, i) = κ(i)[b(i) − z], σ(z, i) = σ(i) in (2.1). Then we have the following
regime-switching mean-reverting process for Zt:

(4.1) dZt = κ(αt)[b(αt)− Zt]dt+ σ(αt)dBt, Z0 = z,

where b(αt) denotes the mean reverting level, κ(αt) denotes the rate at which Zt is
pulled back to the level b(αt), and σ(αt) is the volatility. Note that the parameters
b(·), κ(·), and σ(·) in (4.1) depend on αt, indicating that they can take different values
for different regimes. We assume that κ(i) > 0 and σ(i) > 0 for i = 1, . . . ,m. In this
case, the system (2.6), (2.7) becomes
(4.2)
σ2(i)

2

d2v(z, i)

dz2
+κ(i)[b(i)−z]

dv(z, i)

dz
−(ρ−qii)v(z, i) = −

∑
j �=i

qijv(z, j), i = 1, . . . ,m,

for z ∈ (z1, z2), and,

(4.3) v(z1, i) = Φ(z1, i), v(z2, i) = Φ(z2, i), i = 1, . . . ,m.

To find a lower solution of (4.2), (4.3), consider the following one-dimensional
differential equation:

(4.4)
σ2

2
Vzz(z) + κ(b− z)Vz(z)− rV (z) = 0, for z ∈ (z1, z2),

where κ, b, r, σ are constants with σ > 0, κ > 0, and r > 0. Set x =
√
2κ
σ (z − b) and

let Ṽ (x) = V (z). Then (4.4) is transformed to

(4.5) Ṽxx(x)− xṼx(x) − λṼ (x) = 0, for x ∈ (x̄1, x̄2),

where λ := r
κ , x̄1 =

√
2κ
σ (z1 − b), and x̄2 =

√
2κ
σ (z2 − b). To solve (4.5), we employ the

following transform:

Ṽ (x) = exp

(
x2

4

)
D(x).

Then D(x) satisfies

(4.6) Dxx(x) +

[
1

2
− x2

4
− λ

]
D(x) = 0.

Equation (4.6) is known as Weber’s equation, and its two independent solutions are
given by (see [2, 8]) D(x) and D(−x), where

D(x) =
1

Γ(λ)
exp

(
−x2

4

)∫ ∞

0

tλ−1 exp

(
− t2

2
− xt

)
dt,
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where Γ(·) is the Gamma function. Consequently, the general solution to (4.5) is

(4.7) Ṽ (x) = C1

∫ ∞

0

tλ−1 exp

(
− t2

2
− xt

)
dt+ C2

∫ ∞

0

tλ−1 exp

(
− t2

2
+ xt

)
dt,

where C1 and C2 are constants. It then follows that the general solution of (4.4) is
given by

(4.8)

V (z) := V (z;κ, b, σ, r) = Ṽ

(√
2κ

σ
(z − b)

)

= C1

∫ ∞

0

t
r
κ−1 exp

(
− t2

2
−

√
2κ

σ
(z − b)t

)
dt

+ C2

∫ ∞

0

t
r
κ−1 exp

(
− t2

2
+

√
2κ

σ
(z − b)t

)
dt.

For (4.2), i = 1, . . . ,m, consider the homogeneous equation

(4.9)
σ2(i)

2

d2v(z, i)

dz2
+ κ(i)[b(i)− z]

dv(z, i)

dz
− (ρ− qii)v(z, i) = 0,

for z ∈ (z1, z2) and the boundary value conditions

(4.10) v(z1, i) = Φ(z1, i), v(z2, i) = Φ(z2, i).

Its solution is given by

(4.11) v0(z, i) = V (z;κ(i), b(i), σ(i), (ρ− qii)),

in which the two constants C1 and C2 are determined uniquely by the boundary
conditions (4.10). A closed-form lower solution for (4.2), (4.3) is then given by

(4.12) V0(z) = (v0(z, 1), v0(z, 2), . . . , v0(z,m))′.

On the other hand, let K be a constant given by

(4.13) K = max {Φ(z1, i),Φ(z2, i), i = 1, . . . ,m} .
Let u0(z, i) = K, i = 1, . . . ,m, and denote

(4.14) U0(z) = (u0(z, 1), u0(z, 2), . . . , u0(z,m))′.

Then it can be seen that U0 is an upper solution of (4.2), (4.3).
Next we construct an explicit Green’s function G(z, s) for (4.2), (4.3). Let

(4.15) D1(z) := D1(z;κ, b, σ, r) =

∫ ∞

0

t
r
κ−1 exp

(
− t2

2
−

√
2κ

σ
(z − b)t

)
dt

and

(4.16) D2(z) := D2(z;κ, b, σ, r) =

∫ ∞

0

t
r
κ−1 exp

(
− t2

2
+

√
2κ

σ
(z − b)t

)
dt
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1366 P. ELOE AND R. H. LIU

denote the two independent solutions of (4.4). The Green’s function G is given as
follows:

(4.17) G(z, s;κ, b, σ, r) =

{
π1(s)D1(z) + π2(s)D2(z), z1 ≤ s < z ≤ z2,
π3(s)D1(z) + π4(s)D2(z), z1 ≤ z < s ≤ z2,

where π1(s), π2(s), π3(s), and π4(s) satisfy [5]

(4.18)

⎛⎜⎜⎝
0 0 D1(z1) D2(z1)

D1(z2) D2(z2) 0 0
D1(s) D2(s) −D1(s) −D2(s)
D1,z(s) D2,z(s) −D1,z(s) −D2,z(s)

⎞⎟⎟⎠
⎛⎜⎜⎝

π1(s)
π2(s)
π3(s)
π4(s)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
2
σ2

⎞⎟⎟⎠ ,

where D1,z and D2,z denote the derivatives of D1 and D2 with respect to z. It follows
that the Green’s function for (4.2), (4.3) is given as G(z, s) = diag{Gii(z, s)}, where

Gii(z, s) := G(z, s;κ(i), b(i), σ(i), (ρ− qii))

is the scalar Green’s function for the ith equation in (4.2). This Green’s function G
is used in the next section in numerically constructing sequences of upper and lower
solutions.

5. Numerical examples. In this section we provide three numerical examples
to validate the upper and lower solutions developed in this paper. The computa-
tions were performed using MATLAB on a notebook PC with the following system
specifications: Intel(R) Core(TM)2 CPU T7400 2.16 GHz 1GB RAM. The iterative
process stops when the difference between two successive upper (respectively, lower)
approximation solutions is within a prespecified error tolerance ε > 0.

Example 1. We price perpetual double barrier options in a regime-switching
mean-reverting diffusion model. Let St be the price of the underlying asset at time
t ≥ 0 with initial price S0 > 0. Let St = exp(Zt), where Zt follows (4.1) and
Z0 = lnS0.

Case 1. We consider the case of two regimes, i.e.,m = 2. The following parameter
values are used. For the regime-switching model (4.1),

κ(1) = 3, κ(2) = 2, σ(1) = 0.6, σ(2) = 0.8, b(1) = 0.05, b(2) = 0.08.

The risk-free interest rate is ρ = 0.07. The jump rates between the two regimes are
specified by the following generator matrix:

Q = (qij) =

( −2 2
3 −3

)
.

The two barriers are chosen as z1 = ln(0.5), z2 = ln(2); that is, if the initial asset price
S0 = 1, then the option would be knocked out whenever the asset price is doubled or
halved. We assume that upon the knocking out time, the option holder receives a cash
rebate equal to 2 units of currency (dollar, for example), i.e., Φ(z1, i) = Φ(z2, i) = 2,
i = 1, 2. Figure 1 plots the initial upper and lower solutions corresponding to the two
regimes, constructed using (4.14) and (4.12), respectively. Figure 2 plots a number
of selected upper and lower approximation solutions of the option price functions
v(z, 1) and v(z, 2). These approximation solutions are obtained by using the Green’s
function (4.17) and numerical integration methods. Figure 2 clearly suggests that the
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v_0(z,1)
v_0(z,2)
u_0(z,1)=u_0(z,2)

Fig. 1. Initial upper and lower solutions—two regimes.
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)

Fig. 2. Approximation sequences and convergence for V (z). The dotted lines represent the
upper approximation sequences, and the solid lines represent the lower approximation sequences.
The left graph is for v(z, 1) (regime 1) and the right graph is for v(z, 2) (regime 2).

upper and lower approximation sequences converge to a common solution, which is
the unique solution to the boundary value system.

For comparison, we directly approximate the expectation in (2.10) by implement-
ing a Monte Carlo (MC) simulation algorithm for the double barrier options considered
in this example. To this end, a time step h is used to discretize the continuous-time
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Table 1

Approximate prices of double barrier options computed by upper and lower solutions and by
MC simulations (two regimes).

z −0.5545 −0.4159 −0.2773 −0.1386 0 0.1386 0.2773 0.4159 0.5545
S = ez 0.5743 0.6598 0.7579 0.8706 1.0000 1.1487 1.3195 1.5157 1.7411

LP (α0 = 1) 1.7429 1.6800 1.6592 1.6525 1.6530 1.6595 1.6739 1.7030 1.7727
UP (α0 = 1) 1.7431 1.6802 1.6595 1.6528 1.6533 1.6598 1.6741 1.7033 1.7729
MC (α0 = 1) 1.7417 1.6790 1.6583 1.6516 1.6517 1.6584 1.6734 1.7039 1.7721

st. dev 0.0025 0.0024 0.0025 0.0026 0.0024 0.0023 0.0026 0.0025 0.0025
LP (α0 = 2) 1.8240 1.7396 1.6998 1.6834 1.6817 1.6923 1.7172 1.7636 1.8474
UP (α0 = 2) 1.8241 1.7398 1.7000 1.6837 1.6820 1.6926 1.7174 1.7637 1.8475
MC (α0 = 2) 1.8234 1.7382 1.6994 1.6839 1.6810 1.6906 1.7162 1.7629 1.8461

st. dev 0.0024 0.0027 0.0026 0.0025 0.0026 0.0025 0.0026 0.0025 0.0024

process (4.1). The resultant discrete process is

(5.1) Zn+1 = Zn + κ(αn)[b(αn)− Zn]h+ σ(αn)
√
h ξn,

where for n = 0, 1, 2, . . . , Zn = Znh, αn = αnh, {ξn} is a sequence of independent
normal random variables with mean 0 and variance 1. The MC algorithm proceeds as
follows: Generate a sample path of the random sequence (Zn, αn), n = 1, 2, . . . .
Find the stopping time τ = inf{n ≥ 0 : Zn �∈ (z1, z2)}. Calculate the payoff
exp(−ρτ)Φ(Zτ , ατ ) for the sample path. Repeat the process for N times and compute
the average of the N payoff values.

Table 1 reports the upper approximate prices (labeled as UP), the lower approx-
imate prices (labeled as LP), and the Monte Carlo approximations (labeled as MC)
for a range of asset prices. The first and second rows list the z values and the cor-
responding asset prices S, respectively; the third to fifth rows list the approximate
option prices for regime α0 = 1; the sixth to eighth rows list the results for α0 = 2.
For the specified precision ε = 0.0005, it took 45 iterations for the lower solution and
54 iterations for the upper solution. For the MC simulations, h = 0.00001 was used.
The standard deviation was computed based on 100 approximations, each being done
using 10000 sample paths. The MC simulations are very time consuming (hours were
spent to complete the process). In contrast, the upper and lower solutions were done
within 10 seconds.

Case 2. We report the results of using the upper and lower solutions approxima-
tion method for the case of four regimes, i.e., m = 4. The following parameter values
are used. For the regime-switching model (4.1),

κ(1) = 3, κ(2) = 2.5, κ(3) = 2, κ(4) = 1.5,
σ(1) = 0.4, σ(2) = 0.5, σ(3) = 0.6, σ(4) = 0.7,
b(1) = 0.05, b(2) = 0.07, b(3) = 0.08, b(4) = 0.09.

The generator of the Markov chain αt is

Q =

⎛⎜⎜⎝
−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

⎞⎟⎟⎠ .

The other parameters for the barrier options are the same as in Case 1.
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Fig. 3. Initial upper and lower solutions—four regimes.
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Fig. 4. Approximation sequences and convergence for V (z). The dotted lines represent the
upper approximation sequences, and the solid lines represent the lower approximation sequences.

Figure 3 plots the initial upper and lower solutions corresponding to the four
regimes. Figure 4 plots a number of selected upper and lower approximation solutions
of the option price functions v(z, 1), v(z, 2), v(z, 3), and v(z, 4). We see again that both
the upper and lower approximate solutions converge to the solution of the boundary
value system satisfied by the option value functions.

Table 2 reports the upper approximation prices and the lower approximation
prices for a range of asset prices, for the four regimes. The same precision ε = 0.0005
is used. A total of 97 iterations are required for the lower approximations, and 86
iterations are required for the upper approximations. The convergence rate is slower
for the four-regime case than the two-regime case.

Example 2. In this example we study the optimal selling rule problem given by
(2.11)–(2.13) using the same model parameters as in Example 1, Case 1. The prob-
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Table 2

Upper and lower prices of the double barrier options in a four-regime mean-reverting model.

z -0.5545 −0.4159 −0.2773 −0.1386 0 0.1386 0.2773 0.4159 0.5545
S = ez 0.5743 0.6598 0.7579 0.8706 1.0000 1.1487 1.3195 1.5157 1.7411

LP (α0 = 1) 1.5007 1.4635 1.4524 1.4493 1.4513 1.4579 1.4700 1.4918 1.5452
UP (α0 = 1) 1.5012 1.4640 1.4530 1.4499 1.4519 1.4584 1.4706 1.4923 1.5456
LP (α0 = 2) 1.5596 1.4820 1.4609 1.4554 1.4577 1.4666 1.4848 1.5220 1.6187
UP (α0 = 2) 1.5601 1.4825 1.4615 1.4560 1.4582 1.4672 1.4854 1.5225 1.6191
LP (α0 = 3) 1.6411 1.5260 1.4852 1.4721 1.4734 1.4863 1.5146 1.5715 1.6951
UP (α0 = 3) 1.6414 1.5265 1.4857 1.4727 1.4739 1.4869 1.5151 1.5720 1.6954
LP (α0 = 4) 1.7157 1.5851 1.5261 1.5030 1.5014 1.5176 1.5549 1.6254 1.7560
UP (α0 = 4) 1.7160 1.5855 1.5266 1.5035 1.5019 1.5181 1.5554 1.6258 1.7562

Table 3

Optimal selling rules using a two-regime mean-reverting model.

[l1, u1]× [l2, u2] V (z∗1 , z
∗
2 ) (z∗1 , z

∗
2 ) % up % down

[−0.2,−0.01]× [0.01, 1.0] 0.04 (−0.2, 0.31) 36.3% 18.1%
[−0.3,−0.01]× [0.01, 1.0] 0.08 (−0.3, 0.36) 43.3% 25.9%
[−0.4,−0.01]× [0.01, 1.0] 0.14 (−0.4, 0.42) 52.2% 33.0%
[−0.5,−0.01]× [0.01, 1.0] 0.22 (−0.5, 0.48) 61.6% 39.4%
[−0.6,−0.01]× [0.01, 1.0] 0.31 (−0.6, 0.54) 71.6% 45.1%
[−0.8,−0.01]× [0.01, 1.0] 0.52 (−0.8, 0.66) 93.5% 55.1%
[−1.0,−0.01]× [0.01, 1.0] 0.68 (−1.0, 0.73) 107.5% 63.2%

ability distribution of the initial Markov chain α0 is assumed to be p1 = p2 = 1
2 .

We use Φ(z, 1) = Φ(z, 2) = ez − 1. By using this utility function, one seeks for
the maximum percentage return of investment (see [10, Remark 2.4]). We numeri-
cally search the maximum objective function value V (z1, z2) over a closed rectangular
region [l1, u1] × [l2, u2] of (z1, z2). We use a grid size 0.01 to discretize the region
[l1, u1] × [l2, u2], resulting in a collection of discrete values for (z1, z2). For example,
for [l1, u1] × [l2, u2] = [−0.40,−0.01]× [0.01, 1.0], we have a total of 4000 points for
(z1, z2), representing a discrete approximation of the region [−0.40,−0.01]×[0.01, 1.0].
For each point, which specifies the boundaries z1 and z2, the boundary value prob-
lem (4.2), (4.3) is solved and the approximate solutions v(z, 1), v(z, 2) are obtained.
In view of (2.13), the objective function V (z1, z2) is then calculated by V (z1, z2) =
[v(0, 1)+v(0, 2)]/2. The optimal thresholds (z∗1 , z

∗
2) and the maximum objective func-

tion value V (z∗1 , z
∗
2) are then identified.

Table 3 reports the results of the optimal selling rules over a number of search
regions for (z1, z2). The first column is the rectangular region over which the optimal
thresholds are sought; the second and third columns are the optimal objective function
value V (z∗1 , z

∗
2) and the optimal thresholds (z∗1 , z

∗
2), respectively; the fourth and fifth

columns are the percentage increase (% up) and decrease (% down) for the underlying
asset prices, computed using (z∗1 , z∗2). From Table 3 we see that the optimal thresholds
for selling the asset are strongly influenced by the prespecified stop-loss limit l1. For
instance, if a 33% drop in asset price (given by l1 = −0.4) is used by an investor
for the stop-loss limit, then the optimal percentage increase in asset price is 52.2%.
Following the selling rule, the investor would sell the asset he/she has held whenever
the price goes up by 52.2% or down by 33%.

Example 3. In this example we consider a different regime-switching diffusion
process:

(5.2) dZt = sin(a(αt)Zt)dt+ σ(αt)dBt.
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Fig. 5. Upper solution sequences in Example 3.

The corresponding boundary value problem is given as

(5.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ2(i)

2

d2v(z, i)

dz2
+ sin(a(i)z)

dv(z, i)

dz
− (ρ− qii)v(z, i)

= −
∑
j �=i

qijv(z, j), for z ∈ (z1, z2),

v(z1, i) = Φ(z1, i), v(z2, i) = Φ(z2, i), i = 1, . . . ,m.

For (5.3), we do not have a closed-form lower solution V0(z) and an explicit Green’s
function G(z, s). However, an upper solution is still given by U0(z) = (K,K, . . . ,K)′

where K = max{Φ(z1, i),Φ(z2, i), i = 1, . . . ,m}. Hence we proceed with the con-
struction of an upper solution sequence to approximate the value function. A finite
difference method is used. We choose the following parameters for the numerical im-
plementation: m = 2, a(1) = 2, a(2) = 3, σ(1) = 0.6, σ(2) = 0.8, ρ = 0.1, q12 = 2,
q21 = 3, z1 = 1, z2 = 2, and Φ(z1, i) = Φ(z2, i) = 2, i = 1, 2. Figure 5 plots several
upper approximation solutions of the value functions v(z, 1) and v(z, 2), beginning at
the initial constant upper solutions. We see again that the approximation sequences
converge to the solution of the boundary value system (5.3).

6. Concluding remarks. We develop a method of upper and lower solutions
for a general regime-switching model in this paper. The method is used to prove
the existence of a unique C2 solution of the associated system of ordinary differential
equations with two-point boundary conditions. It is also used to numerically compute
approximation solutions. An outstanding feature of the proposed numerical method
is that the true solution is bracketed by the upper and lower approximation solutions.
The convergence of the approximation sequences is validated both theoretically and
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numerically. The numerical experiments show that the upper and lower approxima-
tions method is much faster than the MC simulations, which are commonly used to
determine a confidence interval for the true value. Our method can be applied to a
broad class of asset models typically used in financial mathematics and financial en-
gineering. In particular, we apply the method to a regime-switching mean-reverting
model and generalize early results.

The method of upper and lower solutions is an important and appealing approach
in the study of boundary value problems. While in this paper we focus on systems
of ordinary differential equations with boundary conditions, an interesting topic for
future research is to develop the upper and lower solutions for systems of partial
differential equations with boundary conditions, which will have many important
applications, particularly in financial mathematics and financial engineering.

Acknowledgment. We are grateful to the referees for their valuable comments,
which helped to improve the exposition of this paper.
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