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OPTIMAL SELLING RULES IN A REGIME-SWITCHING
EXPONENTIAL GAUSSIAN DIFFUSION MODEL∗

P. ELOE† , R. H. LIU† , M. YATSUKI† , G. YIN‡ , AND Q. ZHANG§

Abstract. This paper develops optimal selling rules in asset trading using a regime-switching
exponential Gaussian diffusion model. The optimization problem is solved by a combined approach
of boundary value problems and probabilistic analysis. A system of linear differential equations
with variable coefficients and two-point boundary conditions, satisfied by the objective function of
the problem, is derived. The existence and uniqueness of the solution are proved. A closed-form
solution in terms of Weber functions is obtained for one-dimensional cases. For m-dimensional cases,
a stochastic recursive algorithm for numerically searching the optimal value is developed. Numerical
results are reported.

Key words. optimal selling rule, Markov chain, regime-switching, Gaussian diffusion, boundary
value problem, stochastic recursive algorithm

AMS subject classifications. 91B26, 91B28, 60J27, 62L20

DOI. 10.1137/060652671

1. Introduction. This paper develops an optimal selling rule in asset trading
using a regime-switching exponential Gaussian diffusion model for asset price. A
selling rule is specified by two threshold levels—an upper level (greater than the
purchase price) for the profit target and a lower level (less than the purchase price)
for the stop-loss limit. The asset is sold once its price hits either level. Our objective in
this study is to obtain a pair of optimal threshold levels that maximize a prespecified
objective function which reflects the investment goal and/or risk attitude of investors.

Recently, considerable attention has been drawn to regime-switching models in
financial mathematics which aim to include the influence of macroeconomic factors
on the individual asset price behavior. In this setting, asset prices are dictated by
a number of stochastic differential equations coupled by a finite-state Markov chain,
which represents various randomly changing economical factors. Model parameters
(drift and volatility coefficients) are assumed to depend on the Markov chain. Regime-
switching models have been used in derivative pricing (see Buffington and Elliott [2],
Guo [12], Guo and Zhang [13], and Yao, Zhang, and Zhou [22] among others), for in-
terest rates and bond prices (see Bansal and Zhou [1] and Dai, Singleton, and Yang [6]
among others), and in modeling commodity and electricity prices (see Clewlow and
Strickland [3], Erlwein, Benth, and Mamon [9], Kluge [16], and Lucia and Schwartz [18]
among others).

Along another line, Zhang [26] studied an optimal selling rule for stock liquida-
tion using a regime-switching geometric Brownian motion (GBM) model. In [26], a
method that combines differential equation with probabilistic analysis was developed;
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SELLING RULES FOR REGIME-SWITCHING DIFFUSIONS 811

an analytical solution for the two-regime case was obtained, and optimization tech-
niques for deterministic functions were used to find the optimal thresholds. However,
when the number of regimes exceeds two, the analytical solutions are difficult to ob-
tain, and thus the deterministic optimization approaches are not applicable anymore.
To find a feasible solution, Yin, Liu, and Zhang [23] took a different approach, namely,
using stochastic approximation algorithms. By focusing on threshold-type strategies,
recursive algorithms using Monte Carlo simulation were developed in [23]. Conver-
gence and the rates of convergence of the algorithms were proved. The stochastic
algorithms were tested by using both simulations and market data (see Yin, Liu, and
Zhang [23], and Yin et al. [25] for more details).

In this work, we extend the aforementioned optimal selling rule study for the
regime-switching GBM model to a class of regime-switching exponential Gaussian
diffusion models that include the GBM and regime-switching GBM models as spe-
cial cases. The new mathematical model is presented first, and its connection with
other models is then noted. An objective function associated with the optimization
problem is defined next. Consequently, a system of linear differential equations with
two boundary conditions, satisfied by the objective function, is derived. We point
out a significant difference between the system considered in this paper and that of
Zhang [26]. That is, the coefficients of the differential equations are no longer con-
stant. Therefore, solutions from [26] cannot be used in this paper. We develop a
different approach. The existence of a solution to the variable coefficient boundary
value problem is proved by adopting a method of upper and lower solutions that use
the Green’s function of the associated homogeneous system. The uniqueness of the
solution is established by applying Dynkin’s formula. In addition, a numerical method
to construct a sequence of increasing functions (lower solution approximation) and a
sequence of decreasing functions (upper solution approximation) is developed. The
second part of the paper is concerned with stochastic optimization methods. We de-
velop a recursive algorithm which provides a feasible solution for searching the best
selling rules and is particularly applicable to models with large state spaces.

The rest of the paper is organized as follows. Section 2 presents the regime-
switching model and the precise formulation of the selling rule problem. The dif-
ferential equations and boundary values satisfied by the objective function of the
optimization problem is derived. Section 3 establishes the existence and uniqueness
of the solution to the problem. Section 4 is concerned with stochastic recursive algo-
rithms. The selling rule problem is reformulated as a stochastic optimization problem.
A recursive algorithm for searching the optimal thresholds using gradient estimation
and projection procedure is developed. Conditions for convergence of the algorithm
are provided. Numerical results are reported. Finally, the paper is concluded with
further remarks in section 5.

2. Problem formulation. Let (Ω,F ,P) be the underlying probability space,
upon which all stochastic processes are defined. Let α(t) be a continuous-time Markov
chain taking values in M := {1, . . . ,m}, a finite state space. The states represent
general market trends and other economic factors (called “state of the world” or
“regime”) and are labeled by integers 1 to m, where m is the total number of regimes
considered for the economy. For example, with m = 2, α(t) = 1 may stand for an up
market and α(t) = 2 a down market. Let B(t) be a real-valued standard Brownian
motion. Assume that α(t) is independent of B(t).

Let S(t) be the asset price at time t ≥ 0,

(2.1) S(t) = S0 exp(X(t)), t ≥ 0,
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812 P. ELOE, R. LIU, M. YATSUKI, G. YIN, AND Q. ZHANG

where S0 > 0 denotes the asset price at t = 0 (i.e., S(0) = S0), and X(t) is the
solution of the stochastic differential equation

(2.2)
{

dX(t) = [b(α(t)) + μ(α(t))X(t)]dt + σ(α(t))dB(t),
X(0) = 0.

Note that the coefficients b(α(t)), μ(α(t)), and σ(α(t)) in (2.2) all depend on α(t),
indicating that they can take different values for different regimes. We assume that
b(i) ≥ 0 and σ(i) > 0 for each i ∈ M. Before introducing the optimal selling rule
problem, we make three remarks regarding the model given by (2.1) and (2.2).

Remark 2.1. Consider a special case in which there is only one state for α(t),
i.e., m = 1. Then α(t) = 1 for all t ≥ 0. In this case, these is no regime switching,
and we can write b(α(t)) = b, μ(α(t)) = μ, and σ(α(t)) = σ, where b, μ, and σ are
constants. Then (2.2) becomes an Ornstein–Uhlenbeck process,

(2.3) dX(t) = [b+ μX(t)]dt+ σdB(t).

In particular, if we assume that μ < 0 and let κ = −μ and θ = b/κ, then we have the
well-known Vasicek model [21] for interest rates, namely,

dr(t) = κ[θ − r(t)]dt + σdB(t),

where r(t) := X(t) denotes the instantaneous spot rate at time t ≥ 0, θ is the mean-
reverting level, κ is the rate at which r(t) is pulled back to the level θ, and σ is the
volatility of r(t). Also note that the solution of (2.3) is given by

(2.4) X(t) =
b

μ
(eμt − 1) + σ

∫ t

0

eμ(t−s)dB(s),

which is a Gaussian process. Consequently, the asset price S(t) = S0 exp(X(t)) be-
comes an exponential Gaussian process. However, when there is more than one state
for α(t), i.e., m ≥ 2, then X(t) will no longer be a Gaussian process. Instead, it
is a mixture of m Gaussian processes. We use the term regime-switching exponen-
tial Gaussian diffusion model for (2.1) and (2.2) in this paper that generalizes the
Ornstein–Uhlenbeck process.

Remark 2.2. Set μ(i) ≡ 0 and let b(i) = ν(i) − 1
2σ

2(i) for i ∈ M in (2.2). Then
the model given by (2.1) and (2.2) is reduced to the regime-switching GBM model
considered in [26] with drift ν(α(t)) and volatility σ(α(t)), i.e.,

dS(t)
S(t)

= ν(α(t))dt + σ(α(t))dB(t),

which includes the commonly used log-normal model as a special case (when m = 1).
Thus the model we consider in this paper further generalizes the (regime-switching)
log-normal model. The selling rule problem for the case of μ(i) ≡ 0 for i ∈ M has
already been handled in Zhang [26]. In what follows we will focus on μ(i) �= 0; see
also Remark 2.6.

Remark 2.3. Note that if m = 1, i.e., without regime switching, then the model
given by (2.1) and (2.2) becomes a particular member of the class of affine diffusion
models (see Duffie, Filipović, and Schachermayer [8] for definition of affine models).
For m > 1, the model generalizes the affine model by adding a Markovian regime
switching.
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SELLING RULES FOR REGIME-SWITCHING DIFFUSIONS 813

To continue our studies, consider a threshold-type selling rule specified by a pair
of numbers z1 and z2 with −∞ < z1 ≤ 0 ≤ z2 <∞. Define a stopping time τ by

(2.5) τ = inf{t > 0 : X(t) �∈ (z1, z2)}.
Let SL = S0e

z1 and SU = S0e
z2 . Then 0 < SL ≤ S0 ≤ SU < ∞, and τ can be

equivalently defined in terms of S(t), i.e.,

(2.6) τ = inf{t > 0 : S(t) �∈ (SL, SU )}.
We call τ the selling time and SL and SU the lower and upper thresholds, respectively,
for asset S(t). That means we sell the asset at time τ either to take a profit (if SU is
reached) or to prevent further loss (if SL is reached).

The optimal selling rule problem is to find a pair of numbers (z1, z2) that maximize
the objective function:

(2.7) V (z1, z2) = E {Φ(X(τ)) exp(−ρτ)} ,
where Φ(x) is a prespecified utility function and ρ > 0 is a discount factor.

Remark 2.4. Depending on the investment purpose and/or the risk attitude of
an investor (risk-neutral or risk-averse), an appropriate utility function Φ(x) can be
used in the objective (2.7). For instance, if we choose Φ(x) = ex − 1, then we can
rewrite the objective function (2.7) as

V (z1, z2) = E

{
exp(−ρτ)S(τ) − S0

S0

}
,

which gives the expectation of the discounted percentage return. By maximizing this
objective function, one seeks the maximum percentage return, a common index used
in evaluating investment performance.

Remark 2.5. The selling rule problem we consider in this paper is an optimal
stopping problem. Note that the objective function (2.7) is determined by the first
hitting time τ of process X(t) at the double barriers z1, z2. When the log-normal
model (without regime-switching) is specified for the underlying asset price, a proba-
bilistic approach can be used to obtain the distribution function of the stopping time
τ (see Karatzas and Shreve [15] and Steele [20] for extensive discussions on the proba-
bilistic methods and results), and, consequently, an analytical objective function can
be derived. However, when the new regime-switching model is used, it is difficult
to obtain the distribution function of τ ; thus the “pure” probabilistic approach does
not work. We resort to methods of differential equations together with probabilistic
approaches to solve the problem.

To proceed, we derive a two-point boundary value problem associated with (2.7).
For a given real number z, consider the process ξ(t) that is the solution of

dξ(t) = [b(α(t)) + μ(α(t))ξ(t)]dt + σ(α(t))dB(t), ξ(0) = z.

Then ξ(t) = X(t) if z = 0. For each z ∈ [z1, z2], define a stopping time:

τ(z) = inf{t > 0 : ξ(t) �∈ (z1, z2)}.
Note we use τ(z) to indicate the z dependence of the stopping time. Let

(2.8) v(z, i) = E
{
Φ(ξ(τ(z))) exp(−ρτ(z))

∣∣∣α(0) = i, ξ(0) = z
}
.
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814 P. ELOE, R. LIU, M. YATSUKI, G. YIN, AND Q. ZHANG

Then the objective function (2.7) can be written in terms of v(z, i) as

(2.9) V (z1, z2) =
m∑

i=1

piv(0, i),

where pi = P{α(0) = i}, i = 1, . . . ,m, assumed given, is the initial probability
distribution of the Markov chain α(·).

Let matrix Q = (qij)m×m be the generator of the Markov chain α(·). From
Markov chain theory (see, for example, Yin and Zhang [24]), the entries qij of Q
satisfy (i) qij ≥ 0 if j �= i; (ii)

∑m
j=1 qij = 0 for each i = 1, . . . ,m. Moreover,

(2.10) lim
Δt→0+

P (Δt) − I

Δt
= Q,

where P (Δt) = (pij(Δt))m×m = (P{α(Δt) = j|α(0) = i)})m×m is the transition
probability matrix of α(·), and I denotes the m×m identity matrix.

Consider a small interval Δt. Since ξ(t) and α(t) are jointly Markovian, it follows
that

v(z, i) =
m∑

j=1

E {v(ξ(Δt), j) exp(−ρΔt)}P{α(Δt) = j|α(0) = i}.

Expanding v(ξ(Δt), j) exp(−ρΔt) at 0, using Itô’s formula, sending Δt→ 0, and using
the limit (2.10), we obtain the following system of differential equations associated
with the value functions v(z, i), i = 1, . . . ,m:

(2.11)
σ2(i)

2
d2v(z, i)
dz2

+ [b(i) + μ(i)z]
dv(z, i)
dz

− ρv(z, i) +
m∑

j=1

qijv(z, j) = 0

for z ∈ (z1, z2). The boundary conditions are given by

(2.12) v(z1, i) = Φ(z1), v(z2, i) = Φ(z2).

If the boundary value problem (2.11) and (2.12) has a smooth solution v(z, i), i =
1, . . . ,m, then, using Dynkin’s formula (see, for example, Oksendal [19]), we can show
that it must be given by (2.8), which implies the uniqueness of the solution. Therefore,
it is necessary to establish the existence of a C2 solution to (2.11) and (2.12). This is
the task of the next section.

Remark 2.6. While a system of constant coefficient linear differential equations
was obtained in Zhang [26] based on the regime-switching log-normal model for asset
price, what we have here for the new model is a system of differential equations with
variable coefficients. Therefore, methods used in [26] for constant coefficient systems
are not applicable and we need a new approach for the analysis of (2.11) and (2.12).
One of the major contributions of this paper (in the next section) is that we employ
a new method and successfully prove the existence of a C2 solution of the variable
coefficient boundary value problem (2.11) and (2.12).

In what follows, we use fx and fxx to denote the first- and second-order derivatives
of f with respect to x, respectively, where f is either a real-valued or a vector-valued
function of x. Using this notation, we rewrite the system (2.11)–(2.12) in the following
matrix form:

(2.13)
{
AVzz(z) + [B1 +B0z]Vz(z) + CV (z) = FV (z) for z ∈ (z1, z2),
V (z1) = Φ(z1)11m, V (z2) = Φ(z2)11m,
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SELLING RULES FOR REGIME-SWITCHING DIFFUSIONS 815

where V (z) = (v(z, 1), . . . , v(z,m))T , 11m = (1, . . . , 1)T , A = 1
2 diag(σ2(1), . . . , σ2(m)),

B0 = diag(μ(1), . . . , μ(m)), B1 = diag(b(1), . . . , b(m)), C = Qd − ρI = diag(q11 − ρ,
. . . , qmm − ρ), and F = Qd −Q where Qd = diag(q11, . . . , qmm).

3. Solution of the boundary value problem. In this section, we assume
that μ(i) > 0 for i ∈ M. The case of μ(i) < 0 can be handled similarly. We first
study the scalar system (the one-dimensional case) and derive an explicit solution.
Then we prove the existence of a solution for multidimensional systems, using the
one-dimensional result.

When m = 1, (2.13) reduces to a second-order scalar linear differential equation
subject to two boundary conditions:

(3.1)

⎧⎨⎩ σ2

2
Vzz(z) + [b+ μz]Vz(z) − ρV (z) = 0 for z ∈ (z1, z2),

V (z1) = Φ(z1), V (z2) = Φ(z2),

where V (z) = v(z, 1), μ = μ(1), b = b(1), and σ = σ(1). Set x = κ1 + κ0z, where
κ0 =

√
2μ
σ and κ1 = b

σ

√
2
μ . Let Ṽ (x) = V (z). Then (3.1) is transformed into

(3.2)

{
Ṽxx(x) + xṼx(x) − λṼ (x) = 0 for x ∈ (κ1 + κ0z1, κ1 + κ0z2),
Ṽ (κ1 + κ0z1) = Φ(z1), Ṽ (κ1 + κ0z2) = Φ(z2),

where λ := ρ/μ. To solve the homogeneous equation (3.2), we use the following
transform:

Ṽ (x) = exp
(
−x

2

4

)
D(x).

Then D(x) satisfies

(3.3) Dxx(x) +
[
1
2
− x2

4
− λ̄

]
D(x) = 0,

where λ̄ := 1 + λ > 0. From the results presented in Darling and Siegert [7] and
Finch [10], we have the following proposition.

Proposition 3.1. The function Dν(x) defined below (known as the parabolic
cylinder function or the Weber function) satisfies the equation

(3.4) Dν
xx(x) +

[
1
2
− x2

4
+ ν

]
Dν(x) = 0,

where

(3.5) Dν(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
π

exp
(
x2

4

) ∫ ∞

0

tν exp
(
− t

2

2

)
cos

(
xt− πν

2

)
dt, ν > −1,

1
Γ(−ν) exp

(
−x

2

4

)∫ ∞

0

t−ν−1 exp
(
− t

2

2
− xt

)
dt, ν < 0,

and Γ(·) is the Gamma function. The two branches in (3.5) agree for −1 < ν < 0.
Comparing (3.3) with (3.4), we see that one solution of (3.3) is given by

D(x) = D−λ̄(x) = D−(1+λ)(x) =
1

Γ(1 + λ)
exp

(
−x

2

4

) ∫ ∞

0

tλ exp
(
− t

2

2
− xt

)
dt.
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The second independent solution is given by

D(−x) =
1

Γ(1 + λ)
exp

(
−x

2

4

) ∫ ∞

0

tλ exp
(
− t

2

2
+ xt

)
dt.

It follows that the solution to (3.2) is

Ṽ (x) = C1

∫ ∞

0

tλ exp
(
− (t+ x)2

2

)
dt+ C2

∫ ∞

0

tλ exp
(
− (t− x)2

2

)
dt,

where C1 and C2 are constants to be determined using the given boundary conditions.
Consider the scalar boundary value problem defined below:

(3.6)

⎧⎨⎩ Dxx(x) +
[
1
2
− x2

4
− (1 + γ)

]
D(x) = 0 for x ∈ (x1, x2),

D(x1) = 0, D(x2) = 0,

where γ > 0 is a fixed constant. Set

D1(x) = exp
(
−x

2

4

) ∫ ∞

0

tγ exp
(
− t

2

2
− xt

)
dt

and

D2(x) = exp
(
−x

2

4

) ∫ ∞

0

tγ exp
(
− t

2

2
+ xt

)
dt.

Then D1 and D2 form a Descartes system of solutions for the homogeneous equation
in (3.6), since D1 > 0, D2 > 0, and W (D1, D2) > 0 on [x1, x2], where

W (D1, D2) = det
(

D1 D2

D1,x D2,x

)
denotes the Wronskian of D1 and D2. Thus, the equation in (3.6) is disconjugate on
[x1, x2] (see Coppel [5]). This result, coupled with the observation that the boundary
conditions in (3.6) (i.e., D(x1) = 0 and D(x2) = 0) are two-point conjugate boundary
conditions, implies two immediate corollaries which we shall employ below to establish
the existence of a solution of (2.13) and to provide numerical approximations that
converge monotonically to the appropriate C2 solution.

Corollary 3.2. There exists a Green’s function G(γ;x, s) for the boundary
value problem (3.6) satisfying

G(γ;x, s) < 0 for (x, s) ∈ (x1, x2) × (x1, x2).

Moreover, Gx(γ;x1, s) < 0 for s ∈ (x1, x2) and Gx(γ;x2, s) > 0 for s ∈ (x1, x2),
where Gx denotes the partial derivative of G with respect to x.

Note that the Green’s function G plays the role that

D(x) =
∫ x2

x1

G(x, s)f(s)ds

is the unique solution of⎧⎨⎩ Dxx(x) +
[
1
2
− x2

4
− (1 + γ)

]
D(x) = f(x) for x ∈ (x1, x2),

D(x1) = 0, D(x2) = 0,
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where f(x) is a continuous function on [x1, x2].
Corollary 3.3. The solution of the boundary value problem⎧⎨⎩ Dxx(x) +

[
1
2
− x2

4
− (1 + γ)

]
D(x) = 0 for x ∈ (x1, x2),

D(x1) > 0, D(x2) > 0

is positive on [x1, x2].
Proof. The disconjugacy of Dxx(x)+[12 − x2

4 − (1+γ)]D(x) = 0 on [x1, x2] means
that any nontrivial solution has at most one root (counting multiplicities) on [x1, x2].
Since the solution is strictly positive at each boundary, the desired result follows.

Having done with the one-dimensional case, now we address the existence of a C2

solution to the m-dimensional (m > 1) boundary value system (2.13). To carry out
the analysis, the following assumption is needed.

Assumption 3.4.

μ(1)
σ2(1)

=
μ(2)
σ2(2)

= · · · =
μ(m)
σ2(m)

and

b2(1)
σ2(1)μ(1)

=
b2(2)

σ2(2)μ(2)
= · · · =

b2(m)
σ2(m)μ(m)

.

Theorem 3.5. Under Assumption 3.4, there exists a unique C2 solution to the
boundary value problem (2.13).

Proof. We employ the method of upper and lower solutions to obtain existence.

Let x = κ1 + κ0z, where κ0 =
√

2μ(i)

σ(i) and κ1 = b(i)
σ(i)

√
2

μ(i) are two constants due to
Assumption 3.4. For notational brevity, in what follows, we introduce

(3.7) κ̄1 = κ1 + κ0z1 , κ̄2 = κ1 + κ0z2.

Let Ṽ (x) = V (z). Then (2.13) is converted to the following problem:

(3.8)

{
Ṽxx(x) + xṼx(x) − C̃Ṽ (x) = F̃ Ṽ (x) for x ∈ (κ̄1, κ̄2),
Ṽ (κ̄1) = Φ(z1)11m, V (κ̄2) = Φ(z2)11m,

where

(3.9) C̃ = diag(λ1, . . . , λm), λi =
ρ− qii
μ(i)

, i = 1, . . . ,m,

and

(3.10) F̃ =

⎛⎜⎜⎜⎝
0 −q12/μ(1) · · · −q1m/μ(1)

−q21/μ(2) 0 · · · −q2m/μ(2)
...

... · · · ...
−qm1/μ(m) −qm2/μ(m) · · · 0

⎞⎟⎟⎟⎠ .

Note that ρ > 0, μ(i) > 0, and qii ≤ 0. Hence λi > 0 for i = 1, . . . ,m.
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We use the (vector) transform Ṽ (x) = exp(−x2

4 )D(x), where

D(x) = (D1(x), . . . , Dm(x))T .

Then (3.8) is transformed into

(3.11)

⎧⎨⎩ Dxx(x) + C̄D(x) = F̃D(x) for x ∈ (κ̄1, κ̄2),

D(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1)11m, D(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2)11m,

where

(3.12) C̄ = diag
([

1
2
− x2

4
− (1 + λ1)

]
, . . . ,

[
1
2
− x2

4
− (1 + λm)

])
.

Note that the left-hand side of the vector equation (3.11) is decoupled and, hence,
diagonal. For each i = 1, . . . ,m, the corresponding homogeneous scalar boundary
value problem is given by

(3.13)

⎧⎨⎩ Di,xx(x) +
[
1
2
− x2

4
− (1 + λi)

]
Di(x) = 0 for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = 0, Di(κ̄2) = 0.

Let G(λi;x, s) be the associated Green’s function as given by Corollary 3.2. Define

G(x, s) = diag
(
G(λ1;x, s), . . . , G(λm;x, s)

)
.

Then G(x, s) is a Green’s function of the system (3.11).
Next, define a Banach space Cm by

Cm[κ̄1, κ̄2] =
{
U = (u1, . . . , um)T : [κ̄1, κ̄2] → R

m, ui ∈ C[κ̄1, κ̄2], i = 1, . . . ,m
}

with norm ‖U‖ = max1≤i≤m{‖ui‖0}, where ‖ · ‖0 denotes the usual supremum norm.
Consider the partial order on R

m:

V ≤ U ⇐⇒ vi ≤ ui, i = 1, . . . ,m, where U, V ∈ R
m.

Using this partial order, we define a partial order on Cm[κ̄1, κ̄2]:

V ≤ U ⇐⇒ V (x) ≤ U(x), x ∈ [κ̄1, κ̄2], where U, V ∈ Cm.

Let DΦ ∈ Cm denote the solution of the following homogeneous equation with non-
homogeneous boundary conditions:

(3.14)

⎧⎨⎩
Dxx(x) + C̄D(x) = 0 for x ∈ (κ̄1, κ̄2),

D(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1)11m, D(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2)11m.

The existence of DΦ is ensured by Corollary 3.3. Define an operator K on Cm by

(3.15) (KD)(x) = DΦ(x) +
∫ κ̄2

κ̄1

G(x, s)F̃D(s) ds,
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where F̃ is given by (3.10).
Remark 3.6. Let K be defined by (3.15). Then K : Cm[κ̄1, κ̄2] −→ C2

m[κ̄1, κ̄2].
The remark follows by standard properties of the diagonal structure of the Green’s

matrix G(x, s) (see Coddington and Levinson [4, p. 192]). In fact, each scalar-valued
function G(λi;x, s) is continuous on triangles, x < s, s < x, and satisfies the differen-
tial equation

Di,xx(x) +
[
1
2
− x2

4
− (1 + λi)

]
Di(x) = 0

on triangles, x < s, s < x, and

lim
x→s+

Gx(x, s) − lim
x→s−

Gx(x, s) = 1.

If D ∈ Cm[κ̄1, κ̄2], then it is standard to show that KD ∈ C2
m[κ̄1, κ̄2].

The following remark is also immediate from Corollary 3.2 and (3.15) (see Cod-
dington and Levinson [4, p. 192] and Jackson [14, p. 99]).

Remark 3.7. D ∈ C2
m is a solution of the boundary value problem (3.11) if and

only if D ∈ Cm and KD = D.
In view of Corollary 3.2 and (3.10), we have G(x, s)F̃ ≥ 0 elementwise. Therefore,

K is a monotonic operator; that is,

V ≤ U =⇒ KV ≤ KU, U, V ∈ Cm.

We establish upper and lower solutions of the boundary value problem (3.11),
respectively. That is, (see Jackson [14]), we seek U0 ∈ C2

m and V0 ∈ C2
m satisfying

(3.16) V0 ≤ U0, V0 ≤ KV0, KU0 ≤ U0,

and

(3.17) V0(κ̄i) ≤ exp
(

(κ̄i)2

4

)
Φ(zi)11m ≤ U0(κ̄i), i = 1, 2.

Once we obtain the upper and lower solutions, the proof for existence of a solution is
complete. To see this, define a closed and convex region Ω ⊂ Cm by

D ∈ Ω ⇐⇒ V0(x) ≤ D(x) ≤ U0(x), κ̄1 ≤ x ≤ κ̄2 .

The inequalities (3.16) and (3.17), coupled with the fact that K is monotone, imply
that K : Ω → Ω. Thus, the existence of a solution D, satisfying

(3.18) V0(x) ≤ D(x) ≤ U0(x), κ̄1 ≤ x ≤ κ̄2,

follows as an application of the Schauder fixed point theorem (Jackson [14, p. 102]).
It can be shown, using the definition (3.15) and Corollary 3.2, that V0 is a lower

solution if

(3.19)

⎧⎨⎩ V0,xx(x) + C̄V0(x) ≥ F̃ V0(x) for x ∈ (κ̄1, κ̄2),

V0(κ̄1) ≤ exp
(

(κ̄1)2

4

)
Φ(z1)11m, V0(κ̄2) ≤ exp

(
(κ̄2)2

4

)
Φ(z2)11m,
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where C̄ is the diagonal matrix defined in (3.12). Similarly, U0 is a upper solution if
the above inequalities are reversed, i.e.,

(3.20)

⎧⎨⎩ U0,xx(x) + C̄U0(x) ≤ F̃U0(x) for x ∈ (κ̄1, κ̄2),

U0(κ̄1) ≥ exp
(

(κ̄1)2

4

)
Φ(z1)11m, U0(κ̄2) ≥ exp

(
(κ̄2)2

4

)
Φ(z2)11m.

Consider the solution DΦ of (3.14). Since DΦ satisfies the homogeneous equation
(3.14), 0 ≥ F̃DΦ, and DΦ satisfies the boundary conditions, it is readily seen that DΦ

satisfies (3.19). Thus we can choose V0 = DΦ.
On the other hand, the upper solution can be chosen as U0 = (K, . . . ,K)T ∈ R

m,
where K is a constant satisfying

(3.21) K ≥ max
{

exp
(

(κ̄1)2

4

)
Φ(z1), exp

(
(κ̄2)2

4

)
Φ(z2)

}
.

To show that the so-chosen U0 is indeed an upper solution, we need only to verify the
first inequality in (3.20). In fact, in view of (3.9) and (3.10), substituting the constant
vector (K, . . . ,K)T into the inequality yields, for i = 1, . . . ,m,

1
2
− x2

4
− (1 + λi) =

1
2
− x2

4
−

(
1 +

ρ

μ(i)
− qii
μ(i)

)
≤ −

∑
j �=i

qij
μ(i)

,

which is true in view of
∑m

j=1 qij = 0 and μ(i) > 0. This completes the proof of the
existence of a C2 solution.

Remark 3.8. Define Vk+1 = KVk, Uk+1 = KUk, k = 0, 1, 2 . . . . Then it follows
that

Vk ≤ Vk+1 ≤ Uk+1 ≤ Uk, k ≥ 0.

This string of inequalities is immediate from the monotonicity of K. Consequently,
there exist functions V̄ , Ū such that {Vk} ↑ V̄ , {Uk} ↓ Ū (pointwise and component-
wise) as k → ∞. Moreover, by Dini’s theorem, the convergence is uniform in x. So
V̄ , Ū ∈ Cm. Applying operator (3.15) to Vk (resp., Uk) and letting k → ∞, we have
KV̄ = V̄ and KŪ = Ū . Therefore, both V̄ and Ū are the solutions of (3.11). From
Remark 3.6, we know both V̄ and Ū are C2

m functions. The uniqueness of the solution
implies that V̄ = Ū .

Remark 3.9. From the proof of Theorem 3.5, we also see that the C2 solution
of the system (2.13) (and therefore the objective function (2.9)) is continuous with
respect to the boundary points z1 and z2.

Now we study the optimality of the objective function (2.9). We make the fol-
lowing assumption on z1 and z2; see Zhang [26] for further discussions.

Assumption 3.10.

a1 ≤ z1 ≤ b1, a2 ≤ z2 ≤ b2,

where a1, b1, a2, b2 are prespecified constants satisfying −∞ < a1 < b1 < 0 < a2 <
b2 <∞.

Theorem 3.11. Under Assumptions 3.4 and 3.10, the following assertions hold:
1. For each 1 ≤ i ≤ m, v(z, i) ∈ C2 and is the unique solution to (2.11) and

(2.12).
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2. For each fixed pair (z, i), v(z, i) is a continuous function of (z1, z2) on
[a1, b1] × [a2, b2].

3. There exists an optimal pair (z∗1 , z
∗
2) ∈ [a1, b1] × [a2, b2] that maximizes the

objective function (2.9).
Proof. Parts 1 and 2 are obtained by Theorem 3.5 together with Dynkin’s formula.

Part 3 follows from the compactness of [a1, b1] × [a2, b2].
We provide a numerical example to demonstrate the approximation process pro-

posed in Remark 3.8.
Example 3.12. Consider a two-dimensional system (m = 2) and construct the

two sequences of approximation solutions (upper and lower) by iteratively solving the
corresponding boundary value problems. We numerically solve these equations and
graphically display the convergence of the two sequences.

When m = 2, the system (3.11) can be written componentwise as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D1,xx(x) +
(

1
2
− x2

4
− (1 + λ1)

)
D1(x) = − q12

μ(1)
D2(x),

D2,xx(x) +
(

1
2
− x2

4
− (1 + λ2)

)
D2(x) = − q21

μ(2)
D1(x) for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Di(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2), i = 1, 2.

(3.22)

We first find the solution DΦ = (D1,Φ, D2,Φ)T of the associated homogeneous equa-
tions with nonhomogeneous boundary conditions, i.e.,

(3.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D1,xx(x) +
(

1
2
− x2

4
− (1 + λ1)

)
D1(x) = 0,

D2,xx(x) +
(

1
2
− x2

4
− (1 + λ2)

)
D2(x) = 0 for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Di(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2), i = 1, 2.

To make the expression compact, let

Wλ(x) = exp
(
−x

2

4

) ∫ ∞

0

tλ exp
(
− t

2

2
− xt

)
dt.

Then we have

(3.24) D1,Φ(x) = C1Wλ1 (x) + C2Wλ1(−x),
where the two constants C1, C2 are determined by the given pair of boundary condi-
tions,

C1 =
Wλ1(−κ̄2) exp

(
(κ̄1)

2

4

)
Φ(z1) −Wλ1 (−κ̄1) exp

(
(κ̄2)

2

4

)
Φ(z2)

Wλ1 (κ̄1)Wλ1 (−κ̄2) −Wλ1 (−κ̄1)Wλ1(κ̄2)
,

C2 =
Wλ1(κ̄1) exp

(
(κ̄2)

2

4

)
Φ(z2) −Wλ1(κ̄2) exp

(
(κ̄1)

2

4

)
Φ(z1)

Wλ1(κ̄1)Wλ1 (−κ̄2) −Wλ1(−κ̄1)Wλ1 (κ̄2)
.

Replacing λ1 in the equations for D1,Φ with λ2 yields D2,Φ. Thus we obtain an
analytical lower solution V0 = DΦ.
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Starting at V0 = (V0,1, V0,2)T , the approximate sequence Vk = (Vk,1, Vk,2)T , k ≥ 1,
can be constructed by iteratively solving the following two-point boundary value prob-
lem:

⎧⎪⎪⎨⎪⎪⎩
Vk+1,1,xx(x) +

(
1
2
− x2

4
− (1 + λ1)

)
Vk+1,1(x) = − q12

μ(1)
Vk,2(x) for x ∈ (κ̄1, κ̄2),

Vk+1,1(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Vk+1,1(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2),

(3.25)

⎧⎪⎪⎨⎪⎪⎩
Vk+1,2,xx(x) +

(
1
2
− x2

4
− (1 + λ2)

)
Vk+1,2(x) = − q21

μ(2)
Vk,1(x) for x ∈ (κ̄1, κ̄2),

Vk+1,2(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Vk+1,2(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2) .

(3.26)

The same process, starting at the upper solution U0 = (K,K)T , will produce the
other sequence Uk, k ≥ 0. In view of (3.21), we choose

K = max
{

exp
(

(κ̄1)2

4

)
Φ(z1), exp

(
(κ̄2)2

4

)
Φ(z2)

}
.

We used a box method (see Zwillinger [27]) to solve (3.25) and (3.26). Various
parameters for the numerical experiment were chosen as follows:

μ(1) = 0.1, μ(2) = 0.2, b(1) = 0, b(2) = 0, σ2(1) = 0.25, σ2(2) = 0.5,

Q = (qij) =
( −2 2

3 −3

)
, ρ = 1, z1 = −1, z2 = 1, Φ(x) ≡ 1.

Figure 1 displays a number of upper and lower approximation solutions. It demon-
strates that the upper and lower approximate sequences converge to a common solu-
tion, which is the unique solution to the boundary value system.

4. Stochastic optimization method. Except for the special one-dimensional
case, it is very difficult to obtain the analytical representation of the objective func-
tion (2.7). Thus finding a systematic way of obtaining the optimal threshold values
becomes an important task. To search for the optimal thresholds, we develop stochas-
tic recursive approximation algorithms in this section. To this end, we reformulate
the task of finding optimal thresholds as a stochastic approximation or stochastic
optimization problem. For a general approach to stochastic approximation methods,
the reader is referred to Kushner and Yin [17] for an up-to-date account of stochastic
approximation.

4.1. Optimization problem and stochastic approximation algorithms.
In lieu of using the differential equation method, we convert the optimal stopping
problem to a stochastic optimization problem. The rationale is based on using a
threshold-type strategy, and the underlying problem can be stated as

(4.1) Problem P :
{

Find argmax ϕ(z) = E {Φ(X(τ)) exp(−ρτ)},
z = (z1, z2)T ∈ [a1, b1] × [a2, b2],
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Fig. 1. Approximation sequences and convergence. The dotted lines are the upper approxi-
mation sequences, and the solid lines are the lower approximation sequences. The left graph is for
D1(x), and the right graph is for D2(x).

where we use ϕ(z) for the objective function V (z1, z2) defined in (2.7), and τ is the
stopping time defined by (2.5). Our objective is to find the optimal vector-valued
threshold value for the constraint optimization problem P .

To approximate the optimal threshold value z∗ = (z∗1 , z
∗
2)T , we construct a recur-

sive algorithm

(4.2) zn+1 = zn + {step size} · {gradient estimate of ϕ(z)},
where zn = (zn,1, zn,2)T denote the threshold values at the nth iteration. The step
size is typically a decreasing sequence of real numbers satisfying certain conditions.

To implement (4.2), we need to construct gradient estimates of the objective
function ϕ(z) either by observing the real data with noisy measurements or by using a
simulation. We use ξ to denote the collective random factors (including the Brownian
motion, the Markov chain, and other observation noise or simulation of random effects
from random seeds) so that each realization of ξ uniquely determines a sample path of
the asset price dynamics (2.2) as well as the stopping time τ (2.5) for a fixed value of z.
At the nth iteration, suppose the threshold values are zn = (zn,1, zn,2)T . Let ϕ̃(zn, ξn)
denote the value of the discounted utility function either observed or simulated using
the sample path associated with ξn. We assume that E{ϕ̃(z, ξn)} = ϕ(z).

Let Δϕ̃(zn, ξn) = (Δ1ϕ̃(zn, ξn),Δ2ϕ̃(zn, ξn))T denote the sample path gradient
estimates using a finite difference approximation, where, for i = 1, 2,

(4.3) Δiϕ̃(zn, ξn) =
ϕ̃(zn + δnei, ξn) − ϕ̃(zn − δnei, ξn)

2δn
,

e1 = (1, 0)T and e2 = (0, 1)T are the standard unit vectors, and {δn} is a sequence of
positive real numbers tending to 0 and satisfying certain conditions.
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Remark 4.1. The following points are worth noting.
(1) In (4.3), we use the same sample path generated by ξn for calculations of

the function ϕ̃ at different z values. This is because when Monte Carlo simulation is
used to calculate a finite difference gradient approximation, using the same random
numbers in calculating the two function values can reduce the variance of the estimator
(see, for example, Glasserman [11]). The common random number generators can be
effectively used in conjunction with stochastic approximation methods; see Kushner
and Yin [17, pp. 15, 143].

(2) In the above construction of gradient estimates, instead of one simulation run,
we could use multiple replications. We could use (2.2) to generate n0 independent
sample paths of X(t). For each sample path, we find the value of τ , i.e., the first exit
time of X(t) from the interval (zn,1, zn,2). Then we construct the gradient estimates
using n0 different random seeds and then average them out. In lieu of one replication,
we then use the average of n0 replications as the gradient estimator. The advantage is
that the result will be smoother. However, if we deal with real data, this idea cannot
be implemented. For simplicity, we do not write the expression but refer the reader
to [23] for further details.

The stochastic recursive algorithm (4.2) takes the form

(4.4) zn+1 = zn + εnΔϕ̃(zn, ξn),

where {εn} is a sequence of real numbers known as step sizes satisfying 0 ≤ εn → 0 and
εn/δn → 0 as n → ∞, and

∑
n εn = ∞. To ensure the boundedness of the iterates,

similarly to Yin, Liu, and Zhang [23] (see also [17, p. 121]), we use the following
modified stochastic approximation algorithm for the constrained problem P :

(4.5) zn+1 = Π[zn + εnΔϕ̃(zn, ξn)],

or, in a component form,

zn+1,i = Π[ai,bi][zn,i + εnΔiϕ̃(zn, ξn)] for i = 1, 2,

where the projection Π is defined as, for each real value x,

Π[ai,bi](x) =

⎧⎪⎨⎪⎩
ai if x < ai,

bi if x > bi,

x otherwise.

The idea is as follows: For each component i, after the update zn,i + εnΔiϕ̃(zn, ξn) is
obtained, we compare this value with the bounds ai and bi. If the updated value is
smaller than the lower value ai, reset the value to ai; if it is greater than the upper
value bi, reset it to bi; otherwise keep the value as it was. Note that in view of the
techniques in [17, Chapter 5], the projection algorithm may be rewritten as

(4.6) zn+1 = zn + εnΔϕ̃(zn, ξn) + εnRn,

where εnRn = zn+1 − zn − εnΔϕ̃(zn, ξn), known as reflection term, is the minimal
force needed to bring the iterates back to the constrained region if they ever escape
from there.

In what follows, we present sufficient conditions guaranteeing the convergence of
the algorithm. For analysis purposes only, define

(4.7)

ψn = Δϕ̃(zn, ξn) − EnΔϕ̃(zn, ξn),
ζn,i = EnΔiϕ̃(zn, ξn) − [ϕ(zn + δnei) − ϕ(zn − δnei)], i = 1, 2,

bn,i =
ϕ(zn + δnei) − ϕ(zn − δnei)

2δn
− ∂ϕ(zn)

∂zi
, i = 1, 2,
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where En denotes the conditional expectation with respect to Fn, the σ-algebra gen-
erated by {z0, ξj : j < n}, and ϕz(z) = ((∂/∂z1)ϕ(z), (∂/∂z2)ϕ(z))T denotes the
gradient of ϕ(·). Above, ζn,i and bn,i for i = 1, 2 represent the noise and bias, and
{ψn} is a martingale difference sequence. This separation together with the expanded
form of the recursion is for analysis purposes. As far as computation is concerned,
only (4.5) is needed.

Write ζn = (ζn,1, ζn,2)T and βn = (bn,1, bn,2)T and note that ζn = ζn(zn, ξn).
With the noise ζn(zn, ξn) and the bias βn defined above, algorithm (4.5) becomes

(4.8) zn+1 = zn + εnϕz(zn) + εn
ψn

2δn
+ εnβn + εn

ζn
2δn

+ εnRn.

Denote tn =
∑n−1

i=1 εi and

m(t) =

{
n : tn ≤ t < tn+1, t ≥ 0,
0, t < 0.

To study the convergence of the algorithm, define a piecewise constant interpolation
by z0(t) = zn for t ∈ [tn, tn+1) and zn(t) = z0(t+ tn) for n > 0. Similarly, define the
interpolation for Rn. Let {Δn} be a sequence of positive real numbers tending to 0
as n → ∞ such that supj≥n εj/Δn → 0. Select an increasing sequence n = m1 <

m2 < · · · such that
∑ml+1−1

k=ml
εk/Δn → 1 as n→ ∞ uniformly in l. Then we have the

following convergence result.
Proposition 4.2. Assume that ϕzz(·), the second partial derivative of ϕ(·),

is continuous, that supnE|ϕ̃(z, ξn)|2 < ∞ for each z, that the projected ordinary
differential equation

(4.9) ż(t) = ϕz(z(t)) + r(t), r(t) ∈ C(z(t))

has a unique solution for each initial condition, and that there is a unique stationary
point z∗ of (4.9) in (a1, b1)× (a2, b2) that is globally asymptotically stable in the sense
of Liapunov. In addition, for each z in the constraint set, {ζn(z, ξ)} is uniformly
integrable, and

∑ml+1−1
k=ml

εkEml
ζ(z, ξk)/δk → 0 in probability. Then zn(·) converges

to z(·), the solution of the projected ordinary differential equation (4.9). Assume that
{sn} is a sequence of real numbers satisfying sn → ∞ as n → ∞. Then zn(sn + ·)
converges to z∗ with probability 1.

In Proposition 4.2, r(t) satisfies R(t) =
∫ t

0 r(s)ds, with R(t) being the limit of the
interpolation sequence of the projection term Rn. The set C(z) is defined as follows:
If z is inside (a1, b1) × (a2, b2), then C(z) contains only the zero element. If z is on
the boundary, then C(z) is the infinite convex cone generated by the outer normal at
z of the faces on which z lies; see [17, section 4.3] for more discussions. The proof of
the proposition is based on a combined use of a probabilistic approach and analytic
results on differential equations. For explanations on the conditions needed together
with a proof, we refer the reader to [23]. In addition to the convergence, we may also
study the rates of convergence and obtain large deviation-type bounds as was done
in [25]. However, these are not the main concerns of the current paper. We are more
interested in the numerical performance of the algorithm, which is discussed next.

4.2. Numerical results. In this section we provide two numerical examples and
compare the results. We study a two-dimensional problem with variable parameters
(i.e., regime-dependent parameters) in the first example and constant parameters in
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Table 1

Optimal thresholds using the stochastic approximation algorithm.

Initial z −0.05, 0.05 −0.10, 0.20 −0.20, 0.40 −0.10, 0.60 −0.05, 0.85
z∗(n0 = 100) −0.36, 0.421 −0.36, 0.422 −0.36, 0.422 −0.36, 0.422 −0.36, 0.423
z∗(n0 = 10) −0.36, 0.409 −0.36, 0.418 −0.36, 0.429 −0.36, 0.418 −0.36, 0.419
z∗(n0 = 1) −0.36, 0.409 −0.36, 0.416 −0.36, 0.425 −0.359, 0.417 −0.359, 0.423

the second. In both cases, the Markov chain α(t) takes two states, whose generator
is given by

Q =
( −6.04 6.04

8.90 −8.90

)
.

The probability distribution of the initial Markov chain α(0) is given by p1 = p2 = 1
2 .

We use the utility function Φ(x) = ex − 1 (see Remark 2.4).
Example 4.3. We choose the following parameter values for the regime-switching

model: μ(1) = 0.01, μ(2) = 0.02, b(1) = b(2) = 0, σ2(1) = 0.25, σ2(2) = 0.5,
and ρ = 1. We first implement the stochastic recursive algorithm developed in sec-
tion 4.1. For the search region for z = (z1, z2), we choose (z1, z2) ∈ [a1, b1]× [a2, b2] =
[−0.36,−0.01]× [0.01, 1.0]. The sequence {εn} for step sizes in (4.4) and the sequence
{δn} used in the gradient estimation (4.3) are chosen to be εn = 1/(n + k0) and
δn = 1/(n1/6 + k1), respectively, where k0 and k1 are some positive integers, e.g.,
k0 = k1 = 1. The search stops whenever εn < 0.001. In what follows, we use n0

replications, as presented in Remark 4.1. Table 1 reports the search results by using
the stochastic recursive algorithm for five different initial values of z and for three
different n0 for gradient estimation. Note that the last row in the table (n0 = 1) gives
the results obtained by using a single path gradient estimate in the recursion.

Next we numerically solve the differential equations (2.11) with boundary condi-
tions (2.12). For this example, they become

(4.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ2(1)
2

d2v(z, 1)
dz2

+ μ(1)z
dv(z, 1)
dz

+ (q11 − ρ)v(z, 1) + q12v(z, 2) = 0,

σ2(2)
2

d2v(z, 2)
dz2

+ μ(2)z
dv(z, 2)
dz

+ (q22 − ρ)v(z, 2) + q21v(z, 1) = 0,

v(z1, i) = ez1 − 1, v(z2, i) = ez2 − 1, i = 1, 2.

We use a grid size 0.01 to divide the region [−0.36,−0.01]×[0.01, 1.0] for (z1, z2). This
results in 36 points along z1, 100 points along z2, and totally 3600 different pairs for
(z1, z2). For each pair, which specifies the boundary values, a finite difference scheme
is used to solve the system (4.10). The objective function V (z1, z2) is then calculated
by V (z1, z2) = [v(0, 1) + v(0, 2)]/2. Figure 2 plots the surface V (z1, z2) using the
3600 values. The numerical results show that the maximum value for V (z1, z2) is
achieved at (−0.36, 0.41) and (−0.36, 0.42). This suggests that the optimal threshold
(z∗1 , z

∗
2) is very close to these two points. It is consistent with the estimates obtained

in Table 1 by using the stochastic optimization algorithms. Note that numerically
solving the differential equations is time consuming, while the stochastic recursive
algorithms produce the optimal estimates in much less computation. This efficiency
becomes more eminent when a small number of sample paths is used in gradient
estimation. From Table 1 we notice that even a single sample path yields pretty good
approximations to the optimal thresholds.
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Fig. 2. Surface of the value function V (z1, z2) over the region (z1, z2) ∈ [−0.36,−0.01] ×
[0.01, 1.0]. Grid size 0.01 is used.

Table 2

Comparison of optimal selling rules in different markets.

Optimal threshold Percentage increase Percentage decrease
(z∗1 , z∗2 ) in asset price in asset price

Bear market (Case I, Ex. 3) (−0.36, 0.33) 39% 30%
Bull market (Case II, Ex. 3) (−0.36, 0.55) 73% 30%

Mixed market (Ex. 2) (−0.36, 0.42) 52% 30%

Based on the results, we may conclude that the optimal threshold for this specific
example is given by (z∗1 , z∗2) = (−0.36, 0.42) with double-digit precision. This pair
of values corresponds to a 52% increase and a 30% decrease in asset price, respec-
tively. Following the selling rule, an investor would sell the asset he or she has bought
whenever the price goes up by 52% or down by 30%.

Example 4.4. In this example we assume that the model parameters do not
change across regimes, i.e., μ(1) = μ(2) = μ, σ(1) = σ(2) = σ, while keeping other
values the same, as in the last example. We report two cases: one uses regime 1
parameters and another uses regime 2 parameters from Example 4.3.
Case 1. μ = 0.01, σ2 = 0.25. The optimal thresholds are (z∗1 , z∗2) = (−0.36, 0.33),

which correspond to a 39% increase and a 30% decrease in asset price.
Case 2. μ = 0.02, σ2 = 0.50. The optimal thresholds are (z∗1 , z

∗
2) = (−0.36, 0.55),

which correspond to a 73% increase and a 30% decrease in asset price.
For comparison, in Table 2, we summarize the results from Examples 4.4 and

4.3. We may call Case 2 in Example 4.4 a bull market since a bigger μ value is used
and Case 1 a bear market since a smaller μ value is used. Then we call Example 4.3
a mixed market because of the switching between the two μ numbers. Note that
the optimal selling rules change in a manner that agrees with common investment
practice. If a 30% drop in asset price is used by investors for the stop-loss limit, then
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the upper threshold for achieving maximum profit is higher (73%) in the bull market
than that in the (more realistic) mixed market (52%), which in turn is higher than
that in the bear market (39%).

5. Concluding remarks. In this paper we developed an optimal selling rule
using a regime-switching exponential Gaussian diffusion model. The optimal selling
can be characterized by two threshold levels. We designed a numerical algorithm for
searching these threshold levels.

Note that our results in this paper rely crucially on Assumption 3.4. It is in-
teresting and practically useful to relax these conditions. In addition, we assumed
the market mode to be completely observable. In order to apply our results in prac-
tice, one needs to estimate the system mode using nonlinear filtering techniques. The
Wonham filter, in which the hidden Markov chain α(t) is observed in noise, is a good
candidate; it provides sound conditional probability estimates given the stock price
up to time t.

Acknowledgment. We thank the reviewers whose comments have improved the
exposition of this paper.
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