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For 1�k�n&1, solutions are obtained for the boundary value problem,
(&1)n&k y (n)= f (x, y), y(i)(0)=0, 0�i�k&1, and y( j) (1)=0, 0� j�n&k&1,
where f (x, y) is singular at y=0. An application is made of a fixed point theorem
for operators that are decreasing with respect to a cone. � 1997 Academic Press

1. INTRODUCTION

Let 1�k�n&1 be fixed. In this paper, we establish the existence of
solutions for the (k, n&k) conjugate boundary value problem,

(&1)n&k y(n)= f (x, y), 0<x<1, (1)

y(i)(0)=0, 0�i�k&1,
(2)

y( j)(1)=0, 0� j�n&k&1,

where f (x, y) has a singularity at y=0. Our assumptions throughout are:

(A) f (x, y) : (0, 1)_(0, �) � (0, �) is continuous,

(B) f (x, y) is decreasing in y, for each fixed x,

(C) �1
0 f (x, y) dx<�, for each fixed y,
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(D) limy � 0+ f (x, y)=� uniformly on compact subsets of (0, 1), and

(E) limy � � f (x, y)=0 uniformly on compact subsets of (0, 1).

Singular nonlinear two-point boundary value problems appear frequently
in applications and usually, only positive solutions are meaningful. This is
especially true for the case n=2, with Taliaferro [24] treating the general
problem, Callegari and Nachman [4] considering existence questions in
boundary layer theory, and Luning and Perry [19] obtaining constructive
results for generalized Emden�Fowler problems. Results have also been
obtained for singular boundary value problems arising in reaction-diffusion
theory and in non-Newtonian fluid theory [5]. Higher order boundary
value problems for ordinary differential equations are not documented as
well as that for second order problems. Yet, higher order boundary value
problems for ordinary differential equations arise naturally in technical
applications. Frequently, these occur in the form of a multipoint boundary
value problem for an nth order ordinary differential equation (or a system
of n first order ordinary differential equations), such as an n-point bound-
ary value problem model of a dynamical system with n degrees of freedom
in which n states are observed at n times; see Meyer [21]. Possibly, the
best known setting of a boundary value problem for a higher order
ordinary differential equation involves two-point problems for the fourth
order equation,

y(4)&h(x) g( y)=0,

which in certain cases arises in describing deformations of an elastic beam
with the boundary conditions often reflecting both ends simply supported,
or one end simply supported and the other end clamped by sliding clamps,
while vanishing moments and shear forces at the rail ends are frequently
included in the boundary conditions; for references, see Gupta [14] and
Yang [27]. One derivation of this fourth order equation plus the two-point
boundary conditions has resulted when the method of lines is used in
the descretization over regions of certain partial differential equations
describing the deflection of an elastic rail.

In close relation to the results of this paper is the recent work by Ma and
Wang [20] in which they established the existence of at least one positive
solution of the above fourth order equation satisfying (2, 2) conjugate con-
ditions for the cases when g is superlinear or sublinear.

It is noted by Meyer [21] that, strictly speaking, boundary value
problems for higher order ordinary differential equations are a particular
class of interface problems. One example in which this is exhibited is given
by Keener [17] in determining the speed of a flagellate protozoan in a
viscous fluid. Modelling the problem so as to describe an infinite swimming
corrugated sheet, the relevant equations are the equations for a Stokes'

137(k, n&k) BOUNDARY VALUE PROBLEMS
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flow in the variables for the velocity vector for the fluid, the pressure and
the viscosity of the fluid. A stream function is introduced which is shown
to satisfy a fourth order partial differential equation known as the bihar-
monic equation. To find the fluid motion, the biharmonic equation is solved
subject to the no-slip condition on the surface of the flagellum, with one of
the spatial variables satisfying

.(4)&2k2."+k4.=0

subject to some nonhomogeneous (2, 2) conjugate boundary conditions.
Another particular case of a boundary value problem for a higher order

ordinary differential equation arising as an interface problem is given by
Wayner, et al. [26]. That paper deals with a study of perfectly wetting
liquids. Using the concept of disjoining pressures a continuum description
of thin film is characterized as having small interfacial slope and Reynold's
numbers, which allowed for an application of a boundary layer approxima-
tion to describe the fluid mechanics in the thin film region. Combining the
conservation equations of mass, momentum, arid energy, a differential
equation for the thin film thickness, h, results,

h(m)= g(h, ..., h(m&1), x),

where m=2 if only the disjoining pressure is included, while m=4 if the
capillary pressure term is included.

We also mention in the context of boundary value problems for higher
order ordinary differential equations, the so-called Blasius equation from
laminar boundary layer theory,

u$$$+u"u=0,

where u$ is the dimensionless velocity in the boundary layer of a flat plate
in parallel laminar flow. The solution of this equation subject to the two-
point boundary conditions, u(0)=u$(0)=0, u$(�)=1, is well-established
in Evans [11].

A number of papers have been devoted to singular boundary value
problems in which topological transversality methods were applied; see, for
example [2, 3, 8, 18, 22, 23].

This paper arises as the completion of the work initiated by Eloe and
Henderson [9] in which (1), (2) was dealt with for k=n&1. The results
and methods of [9] as well as this work are outgrowth of papers on
second order singular boundary value problems by Gatica, Hernandez and
Waltman [12] and Gatica, Oliker and Waltman [13] which in turn
received some embellishment and generalization by Eloe and Henderson
[7] and Henderson and Yin [15, 16]. In attempting to improve some of
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these generalizations, the recent paper by Wang [25] did contain some
flaws, however, that paper was corrected in a subsequent work by Agarwal
and Wong [1].

We obtain solutions of (1), (2) by arguments involving positivity proper-
ties, an iteration, and a fixed point theorem due to [13] for mappings that
are decreasing with respect to a cone in a Banach space. We remark that,
for n=2, positive solutions of (1), (2) are concave. This concavity was
exploited in [13], and later in the generalizations [1, 9, 15, 16, 25], in
defining an appropriate subset of a cone on which a positive operator was
defined to which the fixed point theorem was applied. The crucial property
in defining this subset in [13] made use of an inequality that provides
lower bounds on positive concave functions as a function of their maxi-
mum. Namely, this inequality may be stated as:

If y # C (2)[0, 1] is such that y(x)�0, 0�x�1, and

y"(x)�0, 0�x�1, then

y(x)� 1
4 max

0�s�1
| y(s)|, 1

4�x� 3
4 . (3)

Although (3) can be developed using concavity, it can also be obtained
directly with the classical maximum principle. This observation was
exploited by Eloe and Henderson [9]. Then in [10], a generalization of
(3) was given for positive functions satisfying the boundary conditions (2).

In Section 2, we provide preliminary definitions and some properties of
cones in a Banach space. We also state the fixed point theorem from [13]
for mappings that are decreasing with respect to a cone. In that section,
we state the generalization of (3) as it extends to solutions of (1), (2).
An analogous inequality is also stated for a related Green's function.

In Section 3, we apply the generalization of (3) in defining a subset of a
cone on which we define an operator which is decreasing with respect to
the cone. A sequence of perturbations of f is constructed. with each term
of the sequence lacking the singularity of f. In terms of this sequence, we
define a sequence of decreasing operators to which the fixed point theorem
yields a sequence of iterates. This sequence of iterates is shown to converge
to a positive solution of (1), (2).

2. SOME PRELIMINARIES AND A FIXED POINT THEOREM

In this section, we first give definitions and some properties of cones in
a Banach space. After that, we state a fixed point theorem due to [13] for
operators that are decreasing with respect to a cone. We then state a

139(k, n&k) BOUNDARY VALUE PROBLEMS
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theorem from [10] generalizing (3) followed by an analogous inequality
for a Green's function.

Let B be a Banach space, and K a closed, nonempty subset of B. K is
a cone provided (i) :u+;v # K, for all u, v # K and all :, ;�0, and (ii)
u, &u # K imply u=0. Given a cone K, a partial order, �, is induced on
B by x� y, for x, y # B iff y&x # K. (For clarity, we may sometimes write
x� y(wrtK).) If x, y # B with x� y, let (x, y) denote the closed order
interval between x and y given by, (x, y)=[z # B | x�z�y]. A cone K is
normal in B provided, there exists $>0 such that &e1+e2 &�$, for all
e1 , e2 # K, with &e1&=&e2&=1.

Remark 1. If K is a normal cone in B, then closed order intervals are
norm bounded.

The following fixed point theorem can be found in [13].

Theorem 1. Let B be a Banach space, K a normal cone in B, E�K
such that, if x, y # E with x� y, then (x, y)�E, and let T : E � K be a
continuous mapping that is decreasing with respect to K, and which is
compact on any closed order interval contained in E. Suppose there exists
x0 # E such that T 2x0=T(Tx0) is defined, and furthermore, Tx0 , T 2x0 are
order comparable to x0 . If, either

(I) Tx0�x0 and T 2x0�x0 , or x0�Tx0 and x0�T 2x0 , or

(II) The complete sequence of iterates [T nx0]�
n=0 is defined, and there

exists y0 # E such that Ty0 # E and y0�T nx0 , for all n�0,

then T has a fixed point in E.

We next observe that, if y # C (n)[0, 1] such that (&1)n&k y(n)(x)>0 on
(0, 1), and if y satisfies (2), then y(x)=�1

0 G(x, s) y(n)(s) ds, where G(x, s) is
the Green's function for y(n)=0 and satisfying (2). It is well-known [6]
that (&1)n&k G(x, s)>0 on (0, 1)_(0, 1), and hence it follows that
y(x)>0 on (0, 1). It follows in turn, after successive applications of Rolle's
Theorem, that y(x) has one extreme point at, say x0 # (0, 1). If we define
a piecewise polynomial, p, by

p(x)={
| y|�

xk
0

xk,

| y|�

(x0&1)n&k (x&1)n&k,

0�x�x0 ,

x0�x�1,
(4)

where | y|�=sup0�x�1 | y(x)|= y(x0), then Eloe and Henderson [10]
established the following.
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Theorem 2. Assume y # C (n)[0, 1] is such that (&1)n&k y(n)(x)>0,
0<x<1. Assume in addition that y satisfies the boundary conditions (2).
Then y(x)� p(x), 0�x�1, where p is defined by (4).

Theorem 2 was used in [10] to give the following generalization of (3).
This generalization will be fundamental in our future arguments.

Theorem 3. Assume y # C (n)[0, 1] is such that (&1)n&k y(n)(x)�0,
0�x�1, and y satisfies the boundary conditions (2). Then

y(x)�
| y|�

4m ,
1
4

�x�
3
4

, (5)

where m=max[k, n&k].

Remark 2. If y is a solution of (1), (2), then Theorems 2 and 3 apply
to y.

For the sake of future reference, we restate if G(x, s) is the Green's func-
tion for

y(n)=0, 0�x�1, (6)

satisfying (2), then

(&1)n&k G(x, s)>0 on (0, 1)_(0, 1), (7)

and it is also known from [6] that both

(&1)n&k �k

�xk G(0, s)>0, 0<s<1, (8)

and

�n&k

�xn&k G(1, s)>0, 0<s<1. (9)

For the remainder of the paper, for 0<s<1, let {(s) # [0, 1] be defined by

(&1)n&k G({(s), s)= sup
0�x�1

(&1)n&k G(x, s). (10)

The following analogue of (5) for G(x, s) was also obtained in [10].

141(k, n&k) BOUNDARY VALUE PROBLEMS
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Theorem 4. Let G(x, s) denote the Green's function for (6), (2). Then,
for 0<s<1,

(&1)n&k G(x, s)�
(&1)n&k

4m G({(s), s),
1
4

�x�
3
4

, (11)

where m=max[k, n&k].

3. SOLUTIONS OF (1), (2)

In this section, we apply Theorem 1 to a sequence of operators that are
decreasing with respect to a cone. The obtained fixed points provide a
sequence of iterates which converges to a solution of (1), (2). Positivity of
solutions and Theorems 2�4 are fundamental in this construction.

To that end, let the Banach space B=C[0, 1], with norm &y&=| y|� ,
and let

K=[ y # B | y(x)�0 on [0, 1]].

K is a normal cone in B.
To obtain a solution of (1), (2), we seek a fixed point of the integral

operator,

T.(x)=(&1)n&k |
1

0
G(x, s) f (s, .(s)) ds,

where G(x, s) is the Green's function for (6), (2). Due to the singularity of
f given by (D), T is not defined on all of the cone K.

Next, define g : [0, 1] � [0, 1] by

g(x)={(2x)k,
[2(1&x)]n&k,

0�x� 1
2 ,

1
2�x�1,

and for each %>0, define g% (x)=%g(x). Then for the remainder of this
work, assume the condition:

(F) For each %>0, 0<�1
0 f (x, g% (x)) dx<�.

We remark, for each %>0, that g% # K, g% (x)>0 on (0, 1), and g%

satisfies the boundary conditions (2).
Our first result of this section is a consequence of Theorem 2 and its

proof in [10].
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Theorem 5. Let y # C (n)[0, 1] be such that (&1)n&k y(n)>0 on (0, 1),
and y satisfies (2). Then, there exists a %>0 such that g% (x)� y(x) on
[0, 1].

Proof. Let y be as stated above and let x0 # (0, 1) be the unique point
in the statements preceding Theorem 2 such that y(x0)=| y|� . Then, by
Theorem 2, y(x)� p(x) on [0, 1], where p is given by (4). Choosing
%=p( 1

2), then

p(x)� p( 1
2) g(x)= g% (x) on [0, 1],

and so, y(x)� g% (x) on [0, 1]. K

In view of Theorem 5, let D�K be defined by

D=[. # B | there exists %(.)>0 such that g% (x)�.(x) on [0, 1]],

(i.e. D=[. # B | there exists %(.)>0 such that g%�.(wrtK )]). Then,
define T : D � K by

T(.)(x)=(&1)n&k |
1

0
G(x, s) f (s, .(s)) ds, 0�x�1, . # D.

Note that, from conditions (A)�(F) and properties of G(x, s) in (7)�(9),
if . # D, then (&1)n&k (T.)(n)>0 on (0, 1), and T. satisfies the boundary
conditions (2). Application of Theorem 5 yields that T. # D so that
T : D � D. Moreover, if . is a solution of (1), (2), then by Theorem 5
again, . # D. As a consequence, . # D is a solution of (1), (2) if, and only
if, T.=..

Our next result establishes a priori bounds on solutions of (1), (2) which
belong to D.

Theorem 6. Assume that conditions (A)�(F ) are satisfied. Then, there
exists an R>0 such that &.&=|.|��R, for all solutions, ., of (1), (2) that
belong to D.

Proof. Let m=max[k, n&k], and assume to the contrary that the
conclusion is false. This implies there exists a sequence, [.l]/D, of solu-
tions of (1), (2) such that liml � � |.l |=�. Without loss of generality, we
may assume that, for each l�1

|.l |��|.l+1 |� . (12)

For each l�1, let xl # (0, 1) be the unique point from the statements
preceding Theorem 2 such that

0<.l (xl)=|.l |� ,

143(k, n&k) BOUNDARY VALUE PROBLEMS
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and also from Theorem 3,

.l (x)�
1

4m .l (xl),
1
4

�x�
3
4

.

By the monotonicity in (12), .l (xl)�.1(x1), for all l, and so

.l (x)�
1

4m .1(x1),
1
4

�x�
3
4

and l�1. (13)

Let %=(1�4m) .1(x1). Then

g% (x)�
1

4m .1(x1)�.l (x),
1
4

�x�
3
4

and l�1. (14)

We claim that .l (x)� g% (x), for 0�x� 1
4. Let .l be given, and let pl be

the corresponding piecewise polynomial defined by (4) relative to .l and
xl . Then

pl \1
4+=min {.l (xl)

xk
l \1

4+
k

,
.l (xl)

(1&xl)
n&k \1

4+
n&k

=
�

.l (xl)
4m

�
.1(x1)

4m

�g% \1
4+ . (15)

There are two cases for xl :

(i) Suppose xl�
1
4. Then, for 0�x� 1

4 ,

pl (x)=
|.l |�

xk
l

xk

�|.l |� xk

�|.1 |� xk

�
|.1 |�

4m xk

= g% (x). (16)
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(ii) Suppose xl<
1
4. Then, for 0�x�xl , it follows exactly as in (16)

that

pl (x)� g% (x).

On the other hand, on [xl ,
1
4], pl is a decreasing function, g% is an

increasing function, and pl (
1
4)� g% ( 1

4) from (15). Thus, for xl�x� 1
4 ,

pl (x)�pl(
1
4)� g%( 1

4)� g% (x).

Thus, again for 0�x� 1
4 ,

pl (x)� g% (x). (17)

From (16) and (17), and recalling .l (x)� pl (x) on [0, 1] by Theorem 2,
it follows that

.l (x)� g% (x), 0�x� 1
4 ,

and hence the claim. An analogous argument yields .l (x)� g% (x),
3
4�x�1. Thus, in conjunction with (14), we conclude

g% (x)�.l (x), 0�x�1 and l�1.

Now, set

0<M=sup[(&1)n&k G(x, s) | (x, s) # [0, 1]_[0, 1]].

Then, assumptions (B) and (F) yield, for 0�x�1 and all l�1,

.l (x)=T.l (x)

=(&1)n&k |
1

0
G(x, s) f (s, .l (s)) ds

�M |
1

0
f (s, g% (s)) ds

=N,

for some 0<N<�. In particular,

|.l |��N, for all l�1,

which contradicts liml � � |.l |�=�. The proof is complete. K

Remark 3. With R as in Theorem 6, .�R(wrtK ), for all solutions
. # D of (1), (2).
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Our next step in obtaining solutions of (1), (2) is to construct a sequence
of nonsingular perturbations of f. For each l�1, define �l : [0, 1] � [0, �) by

�l (x)=(&1)n&k |
1

0
G(x, s) f (s, l ) ds.

By conditions (A)�(E), for l�1,

0<�l+1(x)��l (x) on (0, 1),

and

lim
l � �

�l (x)=0 uniformly on [0, 1]. (18)

Now define a sequence of functions fl : (0, 1)_[0, �) � (0, �), l�1, by

fl (x, y)= f (x, max[ y, �l (x)]).

Then, for each l�1, fl is continuous and satisfies (B). Furthermore, for
l�1,

fl (x, y)� f (x, y) on (0, 1)_(0, �), and

fl (x, y)� f (x, �l (x)) on (0, 1)_(0, �). (19)

Theorem 7. Assume that conditions (A)�(F ) are satisfied. Then the
boundary value problem (1), (2) has a solution y # D.

Proof. We begin by defining a sequence of operators Tl : K � K, l�1,
by

Tl .(x)=(&1)n&k |
1

0
G(x, s) fl (s, .(s)) ds.

Note that, for l�1 and . # K, (&1)n&k (Tl.)(n) (x)>0 on (0, 1), Tl.
satisfies the boundary conditions (2), and Tl.(x)>0 on (0, 1); in par-
ticular, Tl . # D. Since each fl satisfies (B), it follows that, if .1 , .2 # K with
.1�.2(wrtK ), then for l�1, Tl.2�Tl.1(wrtK ); that is, each Tl is
decreasing with respect to K. It is also clear that 0�Tl (0) and 0�
T 2

l (0)(wrtK ), for each l.
Hence when we apply Theorem 1, for each l, there exists a .l # K such

that Tl .l=.l . The above note implies, for l�1, that (&1)n&k . (n)
l (x)>0

on (0, 1), .l satisfies (2), and .l (x)>0 on (0, 1). In addition, inequality
(19), coupled with the positivity of (&1)n&k G(x, s), yields Tl.�
T�l (wrtK ), for each . # K and l�1. Thus,

.l=Tl .l�T�l (wrtK ), l�1. (20)
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By essentially the same argument as in Theorem 6, in conjunction with
inequality (14), it can be shown that there exists an R>0 such that, for
each l�1,

.l�R(wrtK ). (21)

Our next claim is that there exists a }>0 such that }�|.l |� , for all l.
We assume this claim to be false. Then, by passing to a subsequence and
relabeling, we assume with no loss of generality that liml � � |.l |�=0.
This implies

lim
l � �

.l (x)=0 uniformly on [0, 1]. (22)

Next set

0<m=inf[(&1)n&k G(x, s) | (x, s) # [ 1
4 , 3

4]_[ 1
4 , 3

4]].

By condition (D), there exists a $>0 such that, for 1
4�x� 3

4 and 0< y<$,

f (x, y)>
2
m

.

The limit (22) implies there exists an l0�1 such that, for l�l0 ,

0<.l (x)<
$
2

, for 0<x<1.

Also, from (18), there exists an l1�l0 such that, for l�l1 ,

0<�l (x)<
$
2

, for
1
4

�x�
3
4

.

Thus, for l�l1 and 1
4�x� 3

4 ,

.l (x)=(&1)n&k |
1

0
G(x, s) fl (s, .l (s)) ds

�(&1)n&k |
3�4

1�4
G(x, s) fl (s, .l (s)) ds

�m |
3�4

1�4
f (s, max[.l (s), �l (s)]) ds

�m |
3�4

1�4
f \s,

$
2+ ds

�1.
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But this contradicts the uniform limit (22). Hence, our claim is verified.
That is, there exists a }>0 such that

}�|.l |��R, for all l.

Applying Theorem 3,

.l (x)�
1

4m |.l | �

�
}

4m ,
1
4

�x�
3
4

, l�1.

One can mimic part of the proof of Theorem 6 to show, if %=(}�4m), then

g% (x)�.l (x) on [0, 1], for l�1.

By (21), we now have

g%�.l�R(wrtK ), for l�1;

that is, the sequence [.l] belongs to the closed order interval (g% , R)/D.
When restricted to this closed order interval, T is a compact mapping, and so,
there is a subsequence of [T.l] which converges to some .* # K. We relabel
the subsequence as the original sequence so that liml � � &T.l&.*&=0.

The final part of the proof is to establish that liml � � &T.l&.l&=0. To
this end, let %=}�4m be as above, and set

0<M=sup[(&1)n&k G(x, s) | (x, s) # [0, 1]_[0, 1]].

Let =>0 be given. By the integrability condition (F), there exists 0<$<1
such that

2M _|
$

0
f (s, g% (s)) ds+|

1

1&$
f (s, g% (s)) ds&<=.

Further, by (18), there exists an l0 such that, for l�l0 ,

�l (x)� g% (x) on [$, 1&$],

so that

�l (x)� g% (x)�.l (x) on [$, 1&$].
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Observe also that, for $�s�1&$ and l�l0 ,

fl (s, .l (s))= f (s, .l (s)).

Hence, for l�l0 and 0�x�1,

T.l (x)&.l (x)

=T.l (x)&Tl.l (x)

=(&1)n&k |
$

0
G(x, s)[ f (s, .l (s))& fl (s, .l (s))] ds

+(&1)n&k |
1

1&$
G(x, s)[ f (s, .l (s))& fl (s, .l (s))] ds.

So, for l�l0 and 0�x�1,

|T.l (x)&.l (x)|

�M _|
$

0
[ f (s, .l (s))+ f (s, max[.l (s), �l (s)])] ds

+|
1

1&$
[ f (s, .l (s))+ f (s, max[.l (s), �l (s)])] ds&

�2M _|
$

0
f (s, .l (s)) ds+|

1

1&$
f (s, .l (s)) ds&

�2M _|
$

0
f (s, g% (s)) ds+|

1

1&$
f (s, g% (s)) ds&

<=.

In particular,

lim
l � �

&T.l&.l &=0.

In turn, we have liml � � &.l&.*&=0, and thus

.* # ( g% , R)/D,
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and

.*= lim
l � �

T.l=T( lim
l � �

.l)=T.*,

which is sufficient for the conclusion of the theorem. K
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