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RESEARCH PAPER

CONJUGATE POINTS FOR FRACTIONAL

DIFFERENTIAL EQUATIONS

Paul Eloe 1, Jeffrey T. Neugebauer 2

Abstract

Let b > 0. Let 1 < α ≤ 2. The theory of u0-positive operators with
respect to a cone in a Banach space is applied to study the conjugate
boundary value problem for Riemann-Liouville fractional linear differential
equations Dα

0+u+λp(t)u = 0, 0 < t < b, satisfying the conjugate boundary
conditions u(0) = u(b) = 0. The first extremal point, or conjugate point,
of the conjugate boundary value problem is defined and criteria are estab-
lished to characterize the conjugate point. As an application, a fixed point
theorem is applied to give sufficient conditions for existence of a solution
of a related boundary value problem for a nonlinear fractional differential
equation.

MSC 2010 : Primary 26A33; Secondary 34A08, 34A40, 26D20
Key Words and Phrases: fractional boundary value problem, u0-positive

operator, conjugate point, fractional differential inequalities

1. Introduction

Let 1 < α ≤ 2. For each 0 < b, we shall consider the family of boundary
value problems (BVPs) of the form

Dα
0+u + p(t)u = 0, 0 < t < b, (1.1)

u(0) = u(b) = 0, (1.2)

c© 2014 Diogenes Co., Sofia
pp. 855–871 , DOI: 10.2478/s13540-014-0201-5
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where Dα
0+ is the standard Riemann-Liouville derivative, defined in Section

2, and p(t) is a continuous nonnegative function on [0,∞) which does not
vanish identically on any nondegenerate compact subinterval of [0,∞).

The purpose of this article is to define and characterize a unique b0 ∈
(0,∞) such that the BVP, (1.1), (1.2), has a nontrivial solution that exists
in a cone, and if 0 < b < b0, the BVP, (1.1), (1.2), is uniquely solvable (with
unique solution u ≡ 0.) In particular, we shall define the conjugate point
of (1.1) corresponding to the Dirichlet or conjugate boundary conditions,
(1.2), to be this value b0. Since b is a variable in this article, we shall refer
to the BVP(b), (1.1), (1.2).

Disconjugacy of ordinary differential equations is well-studied and has
enjoyed a rich history; we refer the reader to the monograph of Coppel
[7] or landmark papers of Hartman [20], Levin [25] or Nehari [28]. Very
little progress has been made to develop analogous theories for linear frac-
tional differential equations, although a Fite type result [1] has recently
been obtained for an iterated Riemann-Liouville fractional differential op-
erator. The contribution we make here is modest since we consider the
analogue of the second order conjugate two point conjugate problem for
the ordinary differential equation, and one of the roots is pre-specified at
t = 0, due to the nature of the definitions in fractional calculus. However,
the characterization of the conjugate point, even in this case, is new.

Recently, the authors [14] showed the existence and compared small-
est eigenvalues of the boundary value problem, (1.1), (1.2), using the the-
ory of u0-positive operators. As pointed out in that article, significant
progress has been made with the study of nonlinear eigenvalue problems
for fractional BVPs through the application of fixed point theory (see, for
example, [3, 4, 16, 17, 21]). We are unaware of other advancements for
the linear eigenvalue problem for fractional BVPs. In particular, in [14],
a Banach space was defined and a cone with nonempty interior was de-
fined so that the theory of u0-positive operators could be applied. Once
these definitions were constructed, a usual technique that has been em-
ployed for a wide variety of boundary value problems for various func-
tional equations was used; we refer the reader to the following citations,
[6, 8, 11, 12, 15, 19, 26, 27, 31, 32].

For ordinary differential equations, a classical result is that if p(t) >
0 and continuous on (0,∞) and b0 is the conjugate point of the BVP,
y′′(t)+ p(t)y(t) = 0, y(0) = y(b) = 0, then there exists a nontrivial solution
y of the BVP, y′′(t) + p(t)y(t) = 0, y(0) = y(b0) = 0, and y does not vanish
on (0, b0). The classical result is obtained by elementary methods, although
we refer the reader to [7] or [28]. Schmitt and Smith [30] applied the theory
of cones to extend this theory to second order, m−dimensional systems of
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two-point conjugate BVPs. Their method [30] was further extended to
higher order scalar equations [18], [13]. We extend these arguments here to
the BVP(b0), (1.1), (1.2).

In Section 2, we provide definitions and theorems so that the article
is self-contained. In Section 3, we introduce a family of Green’s functions
and observe appropriate sign properties. Some of the properties are obvious
and merely tabulated, some have been essentially obtained in [5], and some
are developed here and employed in Section 4. In Section 4, appropriate
Banach spaces, cones and fixed point operators are defined. With the
introduction of the Banach spaces, the contraction mapping principle is
employed to obtain a δ > 0, such that (1.1), (1.2) is uniquely solvable if
0 < b < δ. We close Section 4 with a statement and proof of the main result
of the paper, a characterization of the conjugate point of the BVP(b0),
(1.1), (1.2). Finally, in Section 5, we apply a fixed point theorem and
obtain sufficient conditions for existence of a solution of a boundary value
problem for a nonlinear fractional differential equation.

2. Preliminary Definitions and Theorems

Definition 2.1. Let n denote a positive integer and assume n − 1 <
α ≤ n. The α-th Riemann-Liouville fractional derivative of the function
u : [0,∞) → R, denoted Dα

0+u, is defined as

Dα
0+u(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds,

provided the right-hand side exists.

For this article, n = 2 and 1 < α ≤ 2. Recall [10], the α−th fractional
integral, Iα

0+, is defined as

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

and

Dα
0+Iα

0+u(t) = u(t), 0 < t, if u ∈ L1[0, b],

Iα
0+Dα

0+u(t) = u(t) + c1t
α−2 + c2t

α−1, 0 < t, if Dα
0+u ∈ L1[0, b].

Note that if Dα
0+u ∈ C[0, b] and u(0) = 0, then u ∈ C[0, 1].

Definition 2.2. We shall say that 0 < b0 is the first extremal point
or conjugate point of the BVP(b), (1.1), (1.2), if

b0 = inf{b > 0 : (1.1), (1.2) has a nontrivial solution}.
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Definition 2.3. Let B be a Banach space over R. A closed nonempty
subset P of B is said to be a cone provided:

(i) αu + βv ∈ P, for all u, v ∈ P and all α, β ≥ 0, and
(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.4. A cone P is solid if the interior, P◦, of P, is
nonempty. A cone P is reproducing if B = P − P; i.e., given w ∈ B,
there exist u, v ∈ P such that w = u − v.

Remark 2.1. Krasnosel’skii [24] showed that every solid cone is re-
producing.

Definition 2.5. Let P be a cone in a real Banach space B. If u, v ∈ B,
u ≤ v with respect to P if v − u ∈ P. If both M,N : B → B are bounded
linear operators, M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P.

Definition 2.6. A bounded linear operator M : B → B is u0-positive
with respect to P if there exists u0 ∈ P\{0} such that for each u ∈ P\{0},
there exist k1(u) > 0 and k2(u) > 0 such that k1u0 ≤ Mu ≤ k2u0 with
respect to P.

Throughout the paper we shall denote the spectral radius of a bounded
linear operator N by r(N).

The following four theorems are fundamental to our results. The first
result is found in [29]. The last three results and proofs are found in [2],
[24], [23], or [22]. In each of the following theorems, assume that P is a
reproducing cone, and that N,N1, N2 : B → B are compact, linear, and
positive with respect to P.

Theorem 2.1. Let Nb, η ≤ b ≤ β be a family of compact, linear
operators on a Banach space such that the mapping b 	→ Nb is continuous in
the uniform operator topology. Then the mapping b 	→ r(Nb) is continuous.

Theorem 2.2. Assume r(N) > 0. Then r(N) is an eigenvalue of N ,
and there is a corresponding eigenvector in P.

Theorem 2.3. If N1 ≤ N2 with respect to P, then r(N1) ≤ r(N2).
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Theorem 2.4. Suppose there exists γ > 0, u ∈ B, −u /∈ P, such
that γu ≤ Nu with respect to P. Then N has an eigenvector in P which
corresponds to an eigenvalue λ with λ ≥ γ.

3. Green’s Functions and Associated Properties

The Green’s function for −Dα
0+u(t) = 0, (1.2) is given by [5] as

G(b; t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[t(b − s)]α−1

bα−1Γ(α)
− (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ b,

[t(b − s)]α−1

bα−1Γ(α)
, 0 ≤ t ≤ s ≤ b.

(3.1)

In particular, if f : [0,∞) × R → R is continuous, if u ∈ C[0, b] and

u(t) =
∫ b

0
G(b; t, s)f(s, u(s))ds,

then u is a solution of

Dα
0+u + f(t, u(t)) = 0, 0 < t < b, u(0) = 0, u(b) = 0.

We remark that Bai and Lu [5] assume b = 1. The construction of G for
arbitrary b is straightforward.

We point out some sign properties of G, which we summarize in a
theorem.

Theorem 3.1. The following properties hold:

(1) G(b; t, s) > 0 on (0, b) × (0, b).

(2)
∂

∂t
G(b; t, s) > 0,

∂2

(∂t)2
G(b; t, s) < 0, 0 < t < s.

(3)
∂

∂t
G(b; t, s) < 0,

∂2

∂t2
G(b; t, s) > 0, 0 < s < t.

(4) lim
t→s+

∂

∂t
G(b; t, s) = −∞.

(5) G(b; t, s) = tα−1v(b; t, s) where v(b; 0, s) > 0,
∂

∂b
v(b; 0, s) > 0,

for 0 < s < b, and
∂

∂t
v(b; b, s) < 0, for 0 < s < b.

(6)
∂

∂t
G(b; b, s) = −α − 1

Γ(α)
(b − s)α−2(

s

b
) < 0, 0 < s < b.

(7) yα−1G(b;w, s) ≤ wα−1G(b; y, s), 0 ≤ y ≤ w ≤ b.

(8) 0 ≤ G(b; t, s) ≤ G(b; s, s) = max
0≤tεb

G(b; t, s).
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(9) If b
4 ≤ t ≤ 3b

4 , 0 < s < b, then there exists γb(s) > 0 such that

γb(s)G(b; s, s) ≤ G(b; t, s).

P r o o f. The proofs are straightforward calculations. To verify (1),
first note the inequality is obvious on the triangle, t < s. On the triangle,
s ≤ t, write

[t(b − s)]α−1

bα−1
=

(
t −

(
t

b

)
s

)α−1

.

Then (
t −

(
t

b

)
s

)α−1

> (t − s)α−1, on 0 < s < t < b

and the inequality is valid on the triangle, s ≤ t.
To verify (5), note

v(b; t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[(b − s)]α−1

bα−1Γ(α)
− (1 − s

t )
α−1

Γ(α)
, 0 ≤ s ≤ t ≤ b,

[(b − s)]α−1

bα−1Γ(α)
, 0 ≤ t ≤ s ≤ b.

So,

v(b; 0, s) =
[(b − s)]α−1

bα−1Γ(α)
> 0,

− ∂

∂b
v(b; 0, s) =

∂

∂t
v(b; b, s) = −α − 1

Γ(α)

(
1 − s

b

)α−2 s

b2
< 0.

To verify (7), consider each of the three cases, y < w < s, y < s < w,
s < y < w, independently. If y < w < s,

G(b;w, s)
wα−1

=
G(b; y, s)

yα−1
.

If y < s < w,

G(b;w, s)
wα−1

=
(b − s)α−1

bα−1Γ(α)
− (w − s)α−1

wα−1Γ(α)
≤ (b − s)α−1

bα−1Γ(α)
=

G(b; y, s)
yα−1

.

Finally, if s < y < w,

(y − s)α−1

yα−1
≤ (w − s)α−1

wα−1
=⇒ G(b;w, s)

wα−1
≤ G(b; y, s)

yα−1
.
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Property (9) has been obtained in [5] for the case b = 1. For arbitrary
b,

γb(s) =

⎧⎪⎪⎨
⎪⎪⎩

[3b
4 (b − s)]α−1 − (3b

4 − s)α−1

(s(b − s))α−1
, 0 < s ≤ r(b),

(
b
4s

)α−1
, r(b) ≤ s ≤ b,

where r(b) ∈ (
b
4 , 3b

4

)
is the unique solution of

(
3b
4

(b − s)
)α−1

−
(

3b
4

− s

)α−1

=
(

b(b − s)
4

)α−1

.

In [5], Bai and Lu point out the important observation that if α �= 2,
lims→0 γb(s) = 0. �

Now, define H(b; t, s) = ∂
∂bG(b; t, s) for b ∈ (0,∞). We make three

observations.

Theorem 3.2. The following properties hold:

(1) H(b; t, s) =
α − 1
Γ(α)

(1 − s
b )

α−2(
s

b2
)tα−1.

(2) H(b; t, s) > 0 on (0, b) × (0, b).

(3) For each s ∈ (0, b), H is the solution of the boundary value problem

−Dα
0+u(t) = 0, 0 < t < b,

u(0) = 0, u(b) = −(
∂

∂t
)G(b; b, s) > 0.

P r o o f. (1) and (3) are obtained through straightforward calculations
and (1) implies (2). However, we offer a more qualitative proof in the spirit
of developing disconjugacy of fractional linear differential equations.

Let ε > 0, and let u(ε, b, t) denote the solution of the BVP,

Dα
0+u(t) + ε = 0, 0 < t < b,

u(0) = 0, u(b) = −
(

∂

∂t

)
G(b; b, s) > 0.

Then

u(ε, b, t) =
(
−

(
∂

∂t

)
G(b; b, s)

)
tα−1

bα−1
+ ε

∫ b

0
G(b; t, s)ds.
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Let 0 < y ≤ w ≤ b, and employ property (7), Theorem 3.1 to obtain

wα−1u(ε, b, y) = wα−1

(
−

(
∂

∂t

)
G(b; b, s)

)
yα−1

bα−1
+ wα−1ε

∫ b

0
G(b; y, s)ds

≥ yα−1

(
−

(
∂

∂t

)
G(b; b, s)

)
wα−1

bα−1
+ yα−1ε

∫ b

0
G(b;w, s)ds

= yα−1u(ε, b, w).

Then

wu(ε, b, y) = w2−αwα−1u(ε, b, y) ≥ w2−αyα−1u(ε, b, w)

≥ y2−αyα−1u(ε, b, w) = yu(ε, b, w).

In particular, bu(ε, b, t) ≥ tu(ε, b, b) = t(−( ∂
∂t)G(b; b, s)), or

u(ε, b, t) ≥ (−( ∂
∂t)G(b; b, s))

b
t. (3.2)

(3.2) is true for all ε > 0. Continuous dependence on ε will be valid once
we define appropriate Banach spaces and fixed point operators in Section
4. Hence, (2) is verified. �

4. Criteria for Conjugate Points

To apply Theorems (2.1)-(2.4) we define a family of Banach spaces and
cones. First define

B = {u : [0,∞) → R : u = tα−1v, v ∈ BC[0,∞)}, (4.1)

where BC[0,∞) is the Banach space of bounded continuous functions on
[0,∞) and

‖u‖ = sup
t∈[0,∞)

|v(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : u(t) ≥ 0 for 0 ≤ t < ∞}. (4.2)

The cone P is a reproducing cone since if u ∈ B,

u1(t) = max{0, u(t)}, u2(t) = max{0,−u(t)},
are in P and u = u1 − u2.

For each 0 < b, define the Banach Space

Bb = {u : [0, b] → R : u = tα−1v, v ∈ C1[0, b], v(b) = 0},
with the norm

‖u‖b = max
t∈[0,b]

|v′(t)| = |v′|0.
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We point out some easy but useful relations between common supre-
mum norms and the norm ‖u‖b. Note that for v ∈ C1[0, b], v(b) = 0,

|v(t)| = |v(t) − v(b)| =
∣∣∣∣
∫ t

b
v′(s)ds

∣∣∣∣ ≤ (b − t)|v′|0 ≤ b‖u‖b, 0 ≤ t ≤ b.

Therefore, using sup norm notation and assuming 0 ≤ t ≤ b,

|v|0 ≤ b‖u‖b = b|v′|0 and max
t∈[0,b]

|u(t)| = |u|0 = |tα−1v|0 ≤ bα‖u‖b.

For each 0 < b define the cone Pb ⊂ Bb to be

Pb = {u ∈ Bb : u(t) ≥ 0 for t ∈ [0, b]}.
In [14], the authors showed

Ω1 = {u = tα−1v ∈ P1 : u(t) > 0, for 0 < t < 1, v(0) > 0, v′(1) < 0} ⊂ P◦
1 ,

where P◦
1 denotes the interior of P1. So, P1 has nonempty interior implying

P1 is solid and hence, reproducing.

Remark 4.1. The proof in [14] is easily modified to show that for
each b > 0,

Ωb = {u = tα−1v ∈ Pb : u(t) > 0, for 0 < t < b, v(0) > 0, v′(b) < 0} ⊂ P◦
b .

So, the results obtained in [14] on [0, 1] are valid on [0, b] for each 0 < b and
are employed in this work without proof. Hence, we shall state without
proof that Pb has nonempty interior and is reproducing.

Define N0u(t) = 0, 0 ≤ t, and for each 0 < b, and define Nb : B → B by

Nbu(t) =
{ ∫ b

0 G(b; t, s)p(s)u(s)ds, 0 ≤ t ≤ b,
0, b ≤ t < ∞.

(4.3)

We shall also refer to Nb : Bb → Bb where Nb is defined by

Nbu(t) =
∫ b

0
G(b; t, s)p(s)u(s)ds, 0 ≤ t ≤ b.

Before proceeding, we argue that b0, the first conjugate point, is posi-
tive.

Theorem 4.1. Assume p ∈ C[0, β] for some β > 0. Then there exists
δ > 0 such that if 0 < b < δ, there exists a unique solution of the BVP(b),
(1.1), (1.2); in particular, if 0 < b < δ, then u ≡ 0 is the only solution of
(1.1), (1.2).
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P r o o f. Let P = max
0≤t≤β

|p(t)|. We show there exists δ > 0 such that if

0 < b < δ, Nb : Bb → Bb is a contraction map. Let u1, u2 ∈ Bb and consider

(Nbu1 − Nbu2)(t) = tα−1

(∫ b

0

(b − s)α−1

bα−1Γ(α)
p(s)(u1 − u2)(s)ds

− t1−α

∫ t

0

(t − s)α−1

Γ(α)
p(s)(u1 − u2)(s)ds

)
.

Set

v(t) =
(∫ b

0

(b − s)α−1

bα−1Γ(α)
p(s)(u1 − u2)(s)ds

− t1−α

∫ t

0

(t − s)α−1

Γ(α)
p(s)(u1 − u2)(s)ds

)
.

So ‖Nbu1 − Nbu2‖b = |v′|0. In [14], the authors showed v′(0) = 0 for the
case b = 1; the argument is valid for b > 0. For t > 0,

|v′(t)| =
∣∣∣∣(1 − α)t−α

∫ t

0

(t − s)α−1

Γ(α)
p(u1 − u2)(s)ds

+ (α − 1)t1−α

∫ t

0

(t − s)α−2

Γ(α)
p(u1 − u2)(s)ds

∣∣∣∣
≤

∣∣∣∣(1 − α)t−α

∫ t

0

(t − s)α−1

Γ(α)
p(u1 − u2)(s)ds

∣∣∣∣
+

∣∣∣∣(α − 1)t1−α

∫ t

0

(t − s)α−2

Γ(α)
p(u1 − u2)(s)ds

∣∣∣∣
≤α − 1

Γ(α)
P |u1 − u2|0t−α

∫ t

0
(t − s)α−1ds

+
α − 1
Γ(α)

P |u1 − u2|0t1−α

∫ t

0
(t − s)α−2ds

=
(

α − 1
Γ(α + 1)

+
1

Γ(α)

)
P |u1 − u2|0

≤
(

α − 1
Γ(α + 1)

+
1

Γ(α)

)
Pbα‖u1 − u2‖b.

Thus, if
(

α − 1
Γ(α + 1)

+
1

Γ(α)

)
Pbα < 1, then Nb is a contraction map.

Choose δ > 0 such that
(

α − 1
Γ(α + 1)

+
1

Γ(α)

)
Pδα = 1 and the proof is

complete. �
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Lemma 4.1. For each 0 < b, the linear operator Nb is positive with
respect to P and with respect to Pb.

This is an easy consequence of Theorem 3.1 (1) and the sign condition
on p.

Lemma 4.2. Let β > 0. Consider Nb, 0 ≤ b ≤ β, defined on B. The
map b 	→ Nb is continuous in the uniform topology.

This is, of course, an application of Theorem 2.1. We point out that
the operator, N1, defined on B1, was proved to be compact in [14]. This
argument is readily modified to show each Nb, defined on Bb, is a compact
map. Finally, since each u ∈ Bb is extended by 0 to construct u ∈ B,
it follows that each Nb, defined now on Bβ, is compact. To see that the
mapping b 	→ Nb is continuous in the uniform operator topology, assume
u = tα−1v ∈ Bβ with ‖u‖β = 1. Assume for simplicity that 0 < b1 < b2 ≤ β.
Let P = max

0≤t≤β
|p(t)|. Then

|(Nb2 − Nb1)u(t)|

≤ Ptα−1βα

Γ(α)

(∫ b1

0

∣∣∣∣(b2 − s)α−1

bα−1
2

− (b1 − s)α−1

bα−1
1

∣∣∣∣ ds +
∫ b2

b1

(b2 − s)α−1

bα−1
2

ds

)
.

Note that

Ptα−1βα

Γ(α)

∫ b1

0

∣∣∣∣(b2 − s)α−1

bα−1
2

− (b1 − s)α−1

bα−1
1

∣∣∣∣ ds

≤ Pβ2α−1

Γ(α)

∫ b1

0

(
(b2 − s)α−1

bα−1
2

− (b1 − s)α−1

bα−1
1

)
ds

≤ Pβ2α−1

Γ(α)

(
−(b2 − s)α

αbα−1
2

+
(b2 − s)α

αbα−1
2

)∣∣∣∣
b1

0

≤ Pβ2α−1

Γ(α + 1)
|b2 − b1|

and

Ptα−1βα

Γ(α)

∫ b2

b1

(b2 − s)α−1

bα−1
2

ds ≤ Pβ2α−1

Γ(α)
(b2 − b1)α

bα−1
2

=
Pβ2α−1

Γ(α)
(b2 − b1)α−1

bα−1
2

(b2 − b1) ≤ Pβ2α−1

Γ(α)
|b2 − b1|.

Thus,

|(Nb2 − Nb1)u(t)| ≤ Pβ2α−1

(
1

Γ(α + 1)
+

1
Γ(α)

)
|b2 − b1|.
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If b1 = 0,

|(Nb2 − N0)u(t)| ≤ Pβ2α−1

Γ(α)
|b2 − 0|.

In particular, Theorem 2.1 now applies on compact domains [0, β].

Theorem 4.2. Consider Nb, 0 ≤ b, defined on B. r(Nb) is strictly
increasing as a function of b.

P r o o f. In [14], the authors showed that there exists λ > 0 and u ∈
P1 \{0} such that N1u(t) = λu(t), 0 ≤ t ≤ 1. Referring to Remark 4.1, the
proof is easily extended to show that for each 0 < b, there exists λb > 0 and
u ∈ Pb \ {0} such that Nbu(t) = λbu(t), 0 ≤ t ≤ b. Extend u by u(t) = 0,
for b < t. Then for 0 ≤ t, Nbu(t) = λbu(t), and r(Nb) ≥ λb > 0.

Assume 0 < b1 < b2. r(Nb1) > 0 implies there exists u1 ∈ Pb1 \{0} such
that Nb1u1 = r(Nb1)u1. Set y1 = Nb1u1 and y2 = Nb2u1. Let t ∈ [0, b1].
Then

(y2 − y1)(t) =
∫ b2

0
G(b2; t, s)p(s)u1(s)ds −

∫ b1

0
G(b1; t, s)p(s)u1(s)ds

=
∫ b1

0
(G(b2; t, s) − G(b1; t, s))p(s)u1(s)ds.

Since u1(s) �= 0 for some s ∈ [0, b1], it follows from Theorem 3.2 (2) that
(y2 − y1)(t) > 0 for 0 < t < b1. Moreover, it follows by Theorem 3.1 (2)
that if ui(t) = tα−1vi(t), i = 1, 2, then (v2 − v1)(0) > 0. In particular, the
restriction of y2 − y1 to [0, b1] is an element of the interior of Pb1 . Thus,
there exists δ > 0 such that y2 − y1 ≥ δu1, where this inequality is with
respect to the cone Pb1 . Since y1(t) = 0 for t > b1 and y2 ∈ Pb2 , it
follows that y2 − y1 ≥ δu1, where the inequality is now with respect to the
cone, Pb2 . Thus, y2 ≥ y1 + δu1 = (r(Nb1) + δ)u1 and by Theorem 2.4,
r(Nb2) ≥ r(Nb1) + δ > r(Nb1).

�

We now state and prove the main result of the paper.

Theorem 4.3. The following are equivalent:

(1) b0 is the first extremal point of the BVP corresponding to (1.1),
(1.2);

(2) there exists a nontrivial solution u of the BVP(b0) (1.1), (1.2)
such that u ∈ Pb0 ;

(3) r(Nb0) = 1.
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P r o o f. (3) =⇒ (2) is an immediate consequence of Theorem 2.2.
We prove (2) =⇒ (1). Let u ∈ Pb0 \ {0} satisfy (1.1), (1.2). Extend

u by u(t) = 0 for b0 < t. Then r(Nb0) ≥ 1. If r(Nb0) = 1, the proof is
complete by Theorem 4.2. To see this, let 0 < b < b0. Then r(Nb) < 1 and
the BVP(b), (1.1), (1.2), has only the trivial solution.

So assume for the sake of contradiction that r(Nb0) > 1. Let û ∈ P\{0}
such that Nb0 û = r(Nb0)û. Again, referring to Remark 4.1, the methods
and results in [14] are readily modified to show that the restriction of û to
[0, b0] (denoted by û) satisfies û ∈ P◦

b0
. Thus, there exists δ > 0 such that

u ≥ δû where ≤ is with respect to the cone Pb0 . Thus, u ≥ δû where u and
û have been extended to [0,∞) and ≤ is now with respect to the cone P.
Let δ̂ = sup{δ > 0|u ≥ δû}. Then

u = Nb0u ≥ Nb0 δ̂û = δ̂Nb0 û = δ̂r(Nb0)û.

This contradicts the definition of δ̂ if r(Nb0) > 1, so, r(Nb0) = 1.
To prove (1) =⇒ (3) observe that lim

b→0+
r(Nb) = 0. Thus, (1) =⇒ (3)

follows from Theorem 2.1. Notice since (1) implies r(Nb0) ≥ 1 and if
r(Nb0) > 1, then by continuity of r, there exists 0 < b < b0 such that
r(Nb) = 1, contradicting (1). �

5. Application to a Nonlinear Problem

In this section, we shall apply Theorems 4.2 and 4.3 to a nonlinear
problem in a standard way. This application employs a fixed point result,
proved in [9] or [30] and this particular application has been employed in
[30] or [13], for example. Webb [33, 34, 35] has recently produced several
applications of u0 positive operators to nonlinear problems.

Consider a boundary value problem for a nonlinear fractional differen-
tial equation of the form

Dα
0+u + f(t, u) = 0, 0 < t < b, (5.1)

with boundary conditions, (1.2), where f(t, u) : [0,∞) × R → R is contin-
uous, and f(t, 0) ≡ 0. In addition, assume f is differentiable in u at u = 0.
Assume p(t) ≡ (∂f

∂u )(t, 0) is continuous on [0,∞) and does not vanish iden-
tically on each compact subinterval of [0,∞). Then the variational equation
along the zero solution of (5.1) is

Dα
0+u + p(t)u = 0, 0 < t < b. (5.2)

Thus, assume in addition that p(t) ≥ 0, t ∈ (0,∞) so that if u ∈ P, then
p(t)u(t) ≥ 0, for 0 ≤ t.

To obtain sufficient conditions for the existence of solutions of the BVP,
(5.1), (1.2), we shall apply the following fixed point theorem; see [9] or [30].
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Theorem 5.1. Let B be a Banach space and let P ⊂ B be a reproduc-
ing cone. Let M : B → B be a completely continuous, nonlinear operator
such that M : P → P and M(0) = 0. Assume M is Fréchet differentiable
at u = 0 whose Fréchet derivative N = M ′(0) has the property:

(A) There exist w ∈ P and μ > 1 such that Nw = μw, and Nu = u
implies u /∈ P. Further, there exists ρ > 0 such that, if u = ( 1

λ )Mu,u ∈ P
and ||u|| = ρ, then λ ≤ 1.

Then, the equation, u = Mu has a solution, u ∈ P \ {0}.

We shall apply Theorem 5.1 and the results of Section 4 to prove the
following theorem. So, now assume B and P are as in (4.1) and (4.2),
respectively.

Theorem 5.2. Assume b0 is the first extremal point of (5.2), (1.2).
For each b > b0 assume the property:

(Â) There exists ρ(b) > 0 such that if u(t) is a nontrivial solution of
the BVP,

Dα
0+u +

(
1
λ

)
f(t, u) = 0, 0 < t < b,

with boundary conditions, (1.2) and if u ∈ Pb, with ‖u‖b = ρ(b), then
λ ≤ 1.

Then for all b > b0, the BVP(b), (5.1), (1.2), has a nontrivial solution,
u ∈ Pb.

P r o o f. For each b > b0, let Nb : B → B be defined by (4.3), where
p(t) ≡ (∂f

∂u )(t, 0), and define the nonlinear operator, Mb : B → B by

Mbu(t) =

⎧⎨
⎩

∫ b

0
G(b; t, s)f(s, u(s))ds, 0 ≤ t ≤ b,

0, b ≤ t < ∞.

The differentiability of f with respect to u at u = 0 is sufficient to argue
that Mb is Fréchet differentiable at u = 0 since∣∣∣∣

∫ b

0
G(b; t, s)[f(s, u(s)) − p(s)u(s)]ds

∣∣∣∣
=

∣∣∣∣
∫ b

0
G(b; t, s)[fu(s, ũ(s)) − p(s)]u(s)ds

∣∣∣∣
≤ Kbα‖u‖b

∫ b

0
|fu(s, ũ(s)) − p(s)|ds,
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where K = bα−1

Γ(α) ≥ |G(b; t, s)| for (t, s) ∈ (0, b) × (0, b). Moreover, M ′
b(0) =

Nb.
By Theorems 4.2 and 4.3, it follows that r(Nb0) = 1 and r(Nb) > 1 if

b0 < b. Moreover, since b0 is the first extremal point of (5.2), (1.2), it also
follows from Theorem 4.3 that if b0 < b, if Nbu = u and u is nontrivial,
then u /∈ P. Thus, with Condition (Â), we can apply Theorem 5.1 and
obtain the existence of a u ∈ P \ {0} such that u = Mbu and the proof is
complete. �
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