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ABSTRACT. In this paper, we study existence and multiplicity results for a coupled system of

nonlinear nonlocal boundary value problems for higher order fractional differential equations of the

type


















cDα
0+u(t) = λa(t)f(u(t), v(t)), cDβ

0+v(t) = µb(t)g(u(t), v(t)),

u′(0) = u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0, u(1) = ξ1u(η1),

v′(0) = v′′(0) = v′′′(0) = · · · = v(n−1)(0) = 0, v(1) = ξ2v(η2),

where λ, µ > 0, n − 1 < α, β ≤ n for n ∈ N; ξi, ηi ∈ (0, 1) for i = 1, 2 and cDα
0+ is Caputo

fractional derivative. We employ the Guo-Krasnosel’skii fixed point theorem to establish existence

and multiplicity results for positive solutions. We derive explicit intervals for the parameters λ and

µ for which the system possess the positive solutions or multiple positive solutions. Examples are

included to show the applicability of the main results.

1. INTRODUCTION

Fractional differential equations is rapidly growing both in theory and in appli-

cations to real world problems. Many problems in engineering, physics and other

applied sciences can be modeled as differential equations of fractional order. It has

been established that, in many situations, these models provide more suitable results

than analogous models with integer derivatives.

The attention drawn to boundary value problems for nonlinear fractional differ-

ential equations is evident from an increased number of recent publications. Existence

and uniqueness of solutions of fractional differential equations is well studied, see for
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example [1, 2, 3, 6, 12, 13, 15] and references therein. Recently, existence and multi-

plicity results for positive solutions of boundary value problems involving fractional

order derivatives have received much attention, for example, [4, 5, 7, 8, 9, 14, 16, 18].

In contrast, boundary value problems for coupled systems of fractional differential

equations have received less attention; only a few results can be found in the liter-

ature concerning existence and multiplicity of positive solutions of boundary value

problems for coupled systems of fractional differential equations. See for example

[4, 9, 18].

In this paper, we study existence and multiplicity results for positive solutions

to nonlinear three-point boundary value problems corresponding to a higher order

coupled system of fractional differential equations of the type


















cDα
0+u(t) = λa(t)f(u(t), v(t)), cDβ

0+v(t) = µb(t)g(u(t), v(t)),

u′(0) = u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0, u(1) = ξ1u(η1),

v′(0) = v′′(0) = v′′′(0) = · · · = v(n−1)(0) = 0, v(1) = ξ2v(η2),

(1.1)

where λ, µ > 0, n − 1 < α, β ≤ n for n ∈ N; ξi, ηi ∈ (0, 1) for i = 1, 2 and cDα
0+ is

Caputo fractional derivative. We employ the Guo-Krasnosel’skii fixed point theorem

to study existence and multiplicity results. We point out that the results in this article

extend those obtained in [3] as we study a system of higher order equations and more

importantly, our results extend those obtained in [3, 9] as we consider f(u(t), v(t)),

g(u(t), v(t)) instead of f(v(t)), g(u(t)).

The paper is organized as follows: In Section 2, we recall the definitions of

fractional integral and fractional derivative and some basic lemmas. In Section 3,

properties of the Green’s function for the associated linear problem are studied. By

employing the Guo-Krasnosel’skii fixed point theorem, some sufficient conditions for

the existence or multiplicity of positive solutions to the system (1.1) are established.

We obtain explicit intervals for λ and µ such that for any value of λ and µ in the

intervals, existence or multiplicity of positive solution is guaranteed. Examples are

included to demonstrate the application the main results.

2. PRELIMINARIES

We recall some basic definitions and lemmas from fractional calculus.

Definition 2.1. [17] The fractional integral of order α > 0 of a function g : (a,∞) →

R is defined by

Iα
a+g(t) =

1

Γ (α)

∫ t

a

g(s)

(t − s)1−α
ds,

provided the integral converges.



POSITIVE SOLUTIONS, FRACTIONAL DIFFERENTIAL EQUATIONS 171

Definition 2.2. [17] The Caputo fractional derivative of order α > 0 of a continuous

function g : (0,∞) → R is defined by

cDα
a+g(t) =

1

Γ (n − α)

∫ t

a

g(n)(s)

(t − s)α−n+1
ds,

where n = [α]+1, (the notation [a] stands for the largest integer not greater than α).

Remark 2.3. Under the natural conditions on g(t) the Caputo fractional derivative

becomes conventional integer order derivative of function g(t) as α → n.

Lemma 2.4. For α > 0, g(t) ∈ C(0, 1)∩L(0, 1), the homogenous fractional differen-

tial equation cDα
0+g(t) = 0, has a solution g(t) = c1 + c2t + c3t

2 + · · ·+ cnt
n−1, where,

ci ∈ R, i = 0, ..., n and n = [α] + 1.

Lemma 2.5. Assume that g(t) ∈ C(0, 1) ∩ L(0, 1), with derivative of order n that

belongs to C(0, 1) ∩ L(0, 1), then Iα
0+

cDα
0+g(t) = g(t) + c1 + c2t + c3t

2 + · · · + cnt
n−1,

where, ci ∈ R, i = 0, ..., n and n = [α] + 1.

Lemma 2.6. [10] If α > β > 0, then cDβ
0+I

α
0+φ(t) = Iα−β

0+ φ(t). In particular, if m is

positive integer and δ > m, then dm

dtm
(Iδ

0+φ(t)) = Iδ−m
0+ φ(t).

The proofs of our main results are based on the following fixed point theorem.

Theorem 2.7 ([11] Guo-Krasnosel’skii Fixed Point Theorem). Let B be Banach space

and E ⊂ B be a cone. Assume that Ω1, Ω2 are open disks in B such that 0 ∈ Ω1 ⊂

Ω1 ⊂ Ω2. Let A : E ∩ (Ω2\Ω1) → E be completely continuous such that either

(i) ‖Au‖ ≤ ‖u‖, for u ∈ E ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, for u ∈ E ∩ ∂Ω2 or

(ii) ‖Au‖ ≥ ‖u‖, for u ∈ E ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, for u ∈ E ∩ ∂Ω2.

Then, A has a fixed point in P ∩ (Ω2\Ω1).

3. MAIN RESULTS

Lemma 3.1. Let h ∈ C[0, 1], then the three-point linear boundary value problem

cDα
0+u(t) + h(t) = 0, t ∈ (0, 1), n − 1 < α ≤ n,

u′(0) = u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0, u(1) = ξ1u(η1),
(3.1)

has a unique unique solution given by

u(t) =

∫ 1

0

Hα(t, s)h(s)ds,
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where

Hα(t, s) =



























(1−s)α−1−(1−ξ1)(t−s)α−1−ξ1(η1−s)α−1

(1−ξ1)Γ (α)
, s ≤ t, η1 ≥ s,

(1−s)α−1−(1−ξ1)(t−s)α−1

(1−ξ1)Γ (α)
, η1 ≤ s ≤ t ≤ 1,

(1−s)α−1−ξ1(η1−s)α−1

(1−ξ1)Γ (α)
, 0 ≤ t ≤ s ≤ η1,

(1−s)α−1

(1−ξ1)Γ (α)
, t ≤ s, s ≥ η1.

(3.2)

Proof. In view of Lemma 2.5, the general solution of differential equation in (3.1) is

given by

u(t) = −Iα
0+h(t) +

n
∑

k=1

ckt
k−1, ck ∈ R, k = 1, 2, . . . , n.(3.3)

By Lemma 2.6 and equation (3.3), we obtain

u(m)(t) = −Iα−m
0+ h(t) +

n
∑

k=m+1

(k − 1)!ck

(k − m − 1)!
tk−m−1,(3.4)

where m = 1, 2, . . . , n−1. The boundary conditions imply that ck = 0, k = 2, 3, . . . , n,

and

c1 =

∫ 1

0

(1 − s)α−1

Γ (α)(1 − ξ1)
h(s)ds −

∫ η1

0

ξ1(η1 − s)α−1

Γ (α)(1 − ξ1)
h(s)ds.

Substitute c1 into (3.3) to obtain

u(t) =

∫ 1

0

(1 − s)α−1

Γ (α)(1 − ξ1)
h(s)ds

−

∫ η1

0

ξ1(η1 − s)α−1

Γ (α)(1 − ξ1)
h(s)ds −

∫ t

0

(t − s)α−1

Γ (α)
h(s)ds.

Thus,

u(t) =

∫ 1

0

Hα(t, s)h(s)ds

where Hα(t, s) is given by (3.2).

Similarly, the general solution of cDβ
0+v(t) + h(t) = 0, t ∈ (0, 1), 1 < α <

2, v′(0) = v′′(0) = v′′′(0) = · · · = v(n−1)(0) = 0, v(1) = ξ2u(η2), is given by

v(t) =
∫ 1

0
Hβ(t, s)h(s)ds, where

Hβ(t, s) =



























(1−s)β−1−(1−ξ2)(t−s)β−1−ξ2(η2−s)β−1

(1−ξ2)Γ (β)
, s ≤ t, η2 ≥ s,

(1−s)β−1−(1−ξ2)(t−s)β−1

(1−ξ2)Γ (β)
, η2 ≤ s ≤ t ≤ 1,

(1−s)β−1−ξ2(η2−s)β−1

(1−ξ2)Γ (β)
, 0 ≤ t ≤ s ≤ η2,

(1−s)β−1

(1−ξ2)Γ (β)
, t ≤ s, s ≥ η2.

Lemma 3.2. The Green’s function Hα(t, s) defined by (3.2) satisfies the following

properties:

(P1) Hα(t, s) > 0 for all t, s ∈ (0, 1);
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(P2) For each s ∈ [0, 1], Hα(t, s) is nonincreasing in t;

(P3) For ℓ ∈ (0, 1), Φα(s) ≥ Hα(t, s) ≥ γ1 min
ℓ≤t≤1

Hα(t, s) ≥ γ1Φα(s) where

γ1 = ξ1(1 − ηα−1
1 ), Φα(s) =

(1 − s)α−1

(1 − ξ1)Γ (α)
.

Proof. (P1): For 0 ≤ t ≤ 1, η1 ≥ s,

Hα(t, s) =
(1 − s)α−1 − (1 − ξ1)(t − s)α−1 − ξ1(η1 − s)α−1

(1 − ξ1)Γ (α)
.

For t < η1,

Hα(t, s) >
(1 − s)α−1 − (η1 − s)α−1

(1 − ξ1)Γ (α)
> 0

and for t ≥ η1,

Hα(t, s) ≥
(1 − s)α−1 − (t − s)α−1

(1 − ξ1)Γ (α)
> 0.

For η1 ≤ s ≤ t ≤ 1,

Hα(t, s) =
(1 − s)α−1 − (1 − ξ1)(t − s)α−1

(1 − ξ1)Γ (α)
≥

(1 − s)α−1 − (t − s)α−1

(1 − ξ1)Γ (α)
> 0.

Thus, for each case, η1 ≤ s ≤ t ≤ 1 and 0 ≤ t ≤ s, s ≥ η1, Hα(t, s) > 0.

(P2) : From (3.2), if t > s,

∂

∂t
Hα(t, s) = −

(α − 1)

Γ(α)
(t − s)α−2 = −

(t − s)α−2

Γ(α − 1)
≤ 0.

If t ≤ s, then
∂

∂t
Hα(t, s) ≡ 0.

Thus, Hα(t, s) is nonincreasing in t.

(P3): Clearly, Hα(t, s) ≤ (1−s)α−1

Γ (α)(1−ξ1)
= Φα(s).

Case (i): s ≤ η1: For t ≥ s, apply (P2) so that

Hα(t, s) ≥ Hα(1, s) =
ξ1(1 − ηα−1

1 )(1 − s)α−1

(1 − ξ1)Γ (α)
= γ1Φα(s).

For t ≤ s, we have

Hα(t, s) ≥
(1 − s)α−1 − ξ1η

α−1
1 (1 − s)α−1

(1 − ξ1)Γ (α)
≥ ξ1(1 − ηα−1

1 )Φα(s) = γ1Φα(s).

Case (ii): s > η1: For t ≥ s,

Hα(t, s) ≥ Hα(1, s) =
ξ1(1 − s)α−1

(1 − ξ1)Γ (α)
≥ γ1Φα(s).

For t < s, we have Hα(t, s) = (1−s)α−1

(1−ξ1)Γ (α)
= Φα(s) ≥ γ1Φα(s).

Hence, min
ℓ≤t≤1

Hα(t, s) ≥ γ1Φα(s) where ℓ ∈ (0, 1), γ1 = ξ1(1 − ηα−1
1 ) and Φα(s) =

(1−s)α−1

(1−ξ1)Γ (α)
.
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Similarly, we can prove that Hβ(t, s) > 0 for all t, s ∈ (0, 1) and for ℓ ∈ (0, 1),

min
ℓ≤t≤1

Hβ(t, s) ≥ γ2Φβ(s) where γ2 = ξ2(1− η
β−1
2 ) and Φβ(s) = (1−s)β−1

(1−ξ2)Γ (β)
. Furthermore

Hβ(t, s) is decreasing in t.

Now we write the system of boundary value problem (1.1) as an equivalent system

of integral equations

(3.5)







u(t) = λ
∫ 1

0
Hα(t, s)a(s)f(u(s), v(s))ds

v(t) = µ
∫ 1

0
Hβ(t, s)b(s)g(u(s), v(s))ds,

and consider the Banach space C[0, 1] equipped with the norm

‖(u, v)‖ = ‖u‖ + ‖v‖ = max
0≤t≤1

|u(t)| + max
0≤t≤1

|v(t)|.

Define operators Aλ,Aµ : C[0, 1] × C[0, 1] → C[0, 1] × C[0, 1] by

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds,

Aµ(u, v)(t) = µ

∫ 1

0

Hβ(t, s)b(s)g(u(s), v(s))ds,

respectively, and define an operator A : C[0, 1] × C[0, 1] → C[0, 1] × C[0, 1] by

A(u, v) = (Aλ(u, v), Aµ(u, v)).

By a solution of (1.1), we mean a fixed point of the operator A.

Let γ = min{γ1, γ2}, fix ℓ ∈ (0, 1), and define a cone in C[0, 1]×C[0, 1] = (C[0, 1])2

by

P =
{

(u, v) ∈ (C[0, 1])2 : u(t) ≥ 0, v(t) ≥ 0, min
l≤t≤1

(u(t) + v(t)) ≥ γ‖(u, v)‖
}

.

For the remainder of the paper, we shall employ the following assumptions when

appropriate:

(H1) f, g ∈ C([0, 1] × R
+, R), and the limits

f0 = lim
u+v→0

f(u, v)

u + v
, f∞ = lim

u+v→∞

f(u, v)

u + v
,

g0 = lim
u+v→0

g(u, v)

u + v
, g∞ = lim

u+v→∞

g(u, v)

u + v

exist and f0, f∞, g0, g∞ ∈ [0,∞);

(H2) a, b ∈ C([0, 1], (0,∞)) such that Iα
0+a(1) and Iβ

0+b(1) exist and are finite;

(H3)

(1 − ξ1)I
α
0+a(1)f0 < γ1γI

α
l+a(1)f∞,

(1 − ξ2)I
β
0+b(1)g0 < (1 − γ)γ2I

β
l+b(1)g∞;
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(H4)

(1 − ξ1)I
α
0+a(1)f∞ < γγ1I

α
l+a(1)f0,

(1 − ξ2)I
β
0+b(1)g∞ < (1 − γ)γ2I

β
0+b(1)g0;

(H5) there exist constants r, Λ, N satisfying

(1 − ξ1)NIα
0+a(1) < γ2ΛIα

l+a(1), (1 − ξ2)NIβ
0+b(1) < γ(1 − γ)ΛIβ

l+b(1),

and such that

(i) f0 = 0, g0 = 0, f∞ = 0, g∞ = 0;

(ii) f(u, v) ≥ Λr, g(u, v) ≥ Λr, for ‖(u, v)‖ ∈ [γr, r];

(H6) there exist constants r, Λ, N satisfying

(1 − ξ1)ΛI
α
0+a(1) < γ2NIα

l+a(1) (1 − ξ2)ΛI
β
0+b(1) < γ(1 − γ)NIβ

l+b(1),

and such that

(i) f0 = ∞, g0 = ∞, f∞ = ∞, g∞ = ∞;

(ii) f(u, v) ≤ Λr, g(u, v) ≤ Λr, for ‖(u, v)‖ ∈ [0, r].

Lemma 3.3. Assume that (H1), (H2) hold. Then A : P → P is completely contin-

uous.

Proof. First, we prove that AP ⊂ P . For any (t, s) ∈ [l, 1]× [0, 1], by Lemma 3.2, we

have

min
l≤t≤1

(Aλ(u, v)(t) + Aµ(u, v)(t))

= min
l≤t≤1

(

λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds, +µ

∫ 1

0

Hβ(t, s)b(s)g(u(s), v(s))ds

)

≥ λγ1

∫ 1

0

Φα(s)a(s)f(u(s), v(s))ds + µγ2

∫ 1

0

Φβ(s)b(s)g(u(s), v(s))ds

= max
0≤t≤1

(γ1Aλ(u, v)(t) + γ2Aµ(u, v)(t)) = γ1‖Aλ(u, v)‖ + γ2‖Aµ(u, v)‖.

Hence min
l≤t≤1

(Aλ(u, v)(t) + Aµ(u, v)(t)) ≥ γ‖A(u, v)‖, and AP ⊂ P.

Next we prove that A maps bounded sets into uniformly bounded sets. For fixed

M > 0, consider a bounded subset M of P defined by M =
{

(u, v) ∈ P : ‖(u, v)‖ ≤

M
}

. Define

L1 = max
{

f(u(t), v(t)) : ‖(u, v)‖ ≤ M
}

, L2 = max
{

g(u(t), v(t)) : ‖(u, v)‖ ≤ M
}

.

Then for (u, v) ∈ M, employ (H2) and Lemma 3.2 to obtain obtain

|Aλ(u, v)| =
∣

∣

∣
λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds
∣

∣

∣

≤ λL1

∫ 1

0

(1 − s)α−1a(s)

Γ(α)(1 − ξ1)
ds =

L1λ

1 − ξ1

Iα
0+a(1) < +∞.
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Similarly, |Aµ(u, v)| < +∞. Therefore |Aλ(u, v)| + |Aµ(u, v)| < +∞, which implies

that A(M) is uniformly bounded.

Finally, we show that A(M) is equicontinuous. By (P2) of Lemma 3.2, we have

following estimate

∣

∣

d

dt
(Aλ(u, v)(t))

∣

∣ ≤ λ

∫ 1

0

(t − s)α−2

Γ(α − 1)
a(s)|f(u(s), v(s))|ds

≤ L1λ

∫ 1

0

(1 − s)α−2

Γ(α − 1)
a(s)ds = L1λI

α−1
0+ a(1) < +∞.

Define δ =
(

L1λI
α−1
0+ a(1) + L2µI

β−1
0+ b(1)

)−1

, and choose t1, t2 ∈ [0, 1] such that t1 <

t2 and t2 − t1 < δ. Then for all ε > 0 and (u, v) ∈ M, we obtain

∣

∣Aλ(u, v)(t2) −Aλ(u, v)(t1)
∣

∣ =
∣

∣

∣

∫ t2

t1

d

ds
(Aλ(u, v)(s))ds

∣

∣

∣

≤ L1λI
α−1
0+ a(1)(t2 − t1).

Similarly,
∣

∣Aµ(u, v)(t2) −Aµ(u, v)(t1)
∣

∣ ≤ L2µI
β−1
0+ b(1)(t2 − t1).

Hence, it follows that
∥

∥A(u, v)(t2) −A(u, v)(t1)
∥

∥ ≤
(

L1λI
α−1
0+ a(1) + L2µI

β−1
0+ b(1)

)

(t2 − t1) < ε.

Therefore, by means of Arzela-Ascoli Theorem, A : P → P is completely continuous.

3.1. Existence of at least one positive solution.

Theorem 3.4. (i) Assume that (H1)-(H3) hold. Then for every

λ ∈
( 1 − ξ1

γ1Iα
l+a(1)f∞

,
γ

Iα
0+a(1)f0

)

, µ ∈
(

0,
1 − γ

Iβ
0+b(1)g0

)

,

or

λ ∈
(

0,
γ

Iα
0+a(1)f0

)

, µ ∈
( 1 − ξ2

γ2I
β
l+b(1)g∞

,
1 − γ

Iβ
0+b(1)g0

)

,

the boundary value problem (1.1) has at least one positive solution.

(ii) Assume that (H2), (H3) hold and assume f0 = 0, g0 = 0, f∞ = ∞, g∞ = ∞.

Then for each λ, µ ∈ (0,∞) the boundary value problem (1.1) has at least one

positive solution.

Proof. Assume that (H2), (H3) hold and assume either f∞ < ∞ and g∞ < ∞ or

f∞ = ∞ and g∞ = ∞. Choose ε > 0 such that

1 − ξ1

γ1Iα
l+a(1)(f∞ − ε)

≤ λ ≤
γ

Iα
0+a(1)(f0 + ε)

, 0 < µ ≤
1 − γ

Iβ
0+b(1)(g0 + ε)

.

By the definition of f0, g0 , there exists r > 0 such that

f(u, v) ≤ (f0 + ε)(u + v), g(u, v) ≤ (g0 + ε)(u + v), for u + v ∈ [0, r].
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Define Ωr = {(u, v) ∈ P : ‖(u, v)‖ ≤ r} . For any (u, v) ∈ P ∩ ∂Ωr , by Lemma 3.2, we

have

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds

≤ λ

∫ 1

0

(1 − s)α−1

Γ(α)
a(s)(f0 + ε)(u + v)ds

≤ λ(f0 + ε)Iα
0+a(1)‖(u, v)‖ ≤ γ‖(u, v)‖,

Aµ(u, v)(t) = µ

∫ 1

0

Hβ(t, s)b(s)f(u(s), v(s))ds

≤ µ

∫ 1

0

(1 − s)β−1

Γ(β)
b(s)(g0 + ε)(u + v)ds

≤ µ(g0 + ε)Iβ
0+b(1)‖(u, v)‖ ≤ (1 − γ)‖(u, v)‖.

Hence,

‖A(u, v)‖ ≤ γ‖(u, v)‖ + (1 − γ)‖(u, v)‖

= ‖(u, v)‖, for all (u, v) ∈ P ∪ ∂Ωr .
(3.6)

Now we consider two different cases:

Case 1. Assume f∞ < ∞ and g∞ < ∞. Choose ε1 > 0 such that 0 <
1−ξ1

γ1Iα
l+

a(1)(f∞−ε1)
≤ λ. By the definition of f∞, g∞ there exists a constant r∗ > r,

such that

f(u, v) ≥ (f∞ − ε1)(u + v), g(u, v) ≥ (g∞ − ε1)(u + v), for u + v ≥ γr∗.

Define Ωr∗ = {(u, v) ∈ P : ‖(u, v)‖ ≤ r∗} . Then for (u, v) ∈ P ∩ ∂Ωr∗ , we have

u(t) + v(t) ≥ min
l≤t≤0

(u(t) + v(t)) ≥ γ‖(u, v)‖ = γr∗.

Therefore, by Lemma 3.2, we have

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds

≥ λγ1

∫ 1

l

(1 − s)α−1

(1 − ξ1)Γ(α)
a(s)(f∞ − ε)(u + v)ds

≥
λγ1

1 − ξ1

Iα
l+a(1)(f∞ − ε)‖(u, v)‖ ≥ ‖(u, v)‖.

Therefore, we have

(3.7) ‖A(u, v)‖ ≥ ‖Aλ(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ P ∩ ∂Ωr∗ .

Hence, by Theorem 2.7 and equations (3.6), (3.7), the operator A has a fixed point

(u, v) ∈ P ∩ Ω̄r∗\Ωr such that r ≤ ‖(u, v)‖ ≤ r∗.
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Case 2. Assume f∞ = ∞ and g∞ = ∞. Let λ > 0, Choose a constant N > 0

such that N ≥ min
{

1−ξ1
λγ1Iα

l+
a(1)

, 1−ξ2

µγ2Iβ

l+
b(1)

}

. Since f∞ = ∞, g∞ = ∞, there exists

r∗ > r, such that

f(u, v) ≥ N (u + v), for u + v ≥ γr∗.

For (u, v) ∈ P ∩ ∂Ωr∗ , we have u(t) + v(t) ≥ min
l≤t≤0

(u(t) + v(t)) ≥ γ‖(u, v)‖ = γr∗.

Hence,

f(u, v) ≥ N (u + v), for any (u, v) ∈ P ∩ ∂Ωr∗ .

By Lemma 3.2, we have

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds

≥ λγ1N

∫ 1

l

(1 − s)α−1

(1 − ξ1)Γ(α)
a(s)(u + v)ds

≥
λγ1N

1 − ξ1
Iα

l+a(1)‖(u, v)‖ ≥ ‖(u, v)‖.

Thus, we conclude that

(3.8) ‖A(u, v)‖ ≥ ‖Aλ(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ P ∩ ∂Ωr∗ .

Hence, Theorem 2.7 and equations (3.6), (3.8), the operator A has a fixed point

(u, v) ∈ P ∩ Ω̄r∗\Ωr such that r ≤ ‖(u, v)‖ ≤ r∗.

Theorem 3.5. (i) Assume that (H1), (H2) and (H4) hold. Then for every

λ ∈
( 1 − ξ1

γ1Iα
l+a(1)f0

,
γ

Iα
0+a(1)f∞

)

, µ ∈
(

0,
1 − γ

Iβ
0+b(1)g∞

)

,

or

λ ∈
( γ

Iα
0+a(1)f∞

)

, µ ∈
( 1 − ξ2

γ2I
β
0+b(1)g0

,
1 − γ

Iβ
0+b(1)g∞

)

,

the boundary value problem (1.1) has at least one positive solution.

(ii) Assume (H2), (H4) hold and assume f0 = ∞, g0 = ∞, f∞ = 0, g∞ = 0. Then

for each λ, µ ∈ (0,∞) the boundary value problem (1.1) has at least one positive

solution.

Proof. The proof is similar to the Theorem 3.4, so we omit it.

3.2. Multiplicity Results.

Theorem 3.6. Assume that (H1), (H2) and (H5) hold. Then for any

λ ∈
[ 1 − ξ1

γΛIα
l+a(1)

,
γ

NIα
0+a(1)

]

, µ ∈
(

0,
1 − γ

NIβ
0+b(1)

]

,

or

λ ∈
(

0,
γ

NIα
0+a(1)

]

, µ ∈
[ 1 − ξ2

γΛIβ
l+b(1)

,
1 − γ

NIβ
0+b(1)

]

,
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the boundary value problem (1.1) has at least two positive solutions (u1, v1), (u2, v2)

such that 0 < ‖(u1, v1)‖ < r < ‖(u2, v2)‖.

Proof. Since f0 = 0, g0 = 0, there exists r1 ∈ (0, r) such that

f(u, v) ≤ N (u + v), g(u, v) ≤ N (u + v), for u + v ∈ (0, r1).

Define Ωr1
= {(u, v) ∈ P : ‖(u, v)‖ < r1}. For any (u, v) ∈ P ∩ ∂Ωr1

, by Lemma 3.2

we have

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds

≤ λN

∫ 1

0

(1 − s)α−1

Γ(α)
a(s)(u + v)ds

≤ λNIα
0+a(1)‖(u, v)‖ ≤ θ‖(u, v)‖.

Aµ(u, v)(t) = λ

∫ 1

0

Hβ(t, s)b(s)g(u(s), v(s))ds

≤ µN

∫ 1

0

(1 − s)β−1

Γ(β)
b(s)(u + v)ds

≤ µNIβ
0+b(1)‖(u, v)‖ ≤ (1 − θ)‖(u, v)‖,

which implies that

(3.9) ‖A(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ P ∩ ∂Ωr1
.

Since f∞ = 0, g∞ = 0, there exists r2 > r such that for some positive constant N , we

have

(3.10) f(u, v) ≤ N (u + v), g(u, v) ≤ N (u + v), for u + v ≥ r2.

Set Ωr2
= {(u, v) ∈ P : ‖(u, v)‖ < r2}. For any (u, v) ∈ P ∩ ∂Ωr2

, by Lemma 3.2 we

have

(3.11) ‖A(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ P ∩ ∂Ωr2
.

Next define Ωr = {(u, v) ∈ P : ‖(u, v)‖ < r}. For any (u, v) ∈ P∩∂Ωr , by Lemma

3.2 we have

u(t) + v(t) ≥ ‖(u, v)‖ ≥ γr, for all t ∈ [l, 1].

Therefore we have following estimate

Aλ(u, v)(t) = λ

∫ 1

0

Hα(t, s)a(s)f(u(s), v(s))ds

≥ λγ

∫ 1

l

(1 − s)α−1

(1 − ξ1)Γ(α)
a(s)Λrds

= λγIα
l a(1)Λr = r = ‖(u, v)‖.
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Finally, we have

(3.12) ‖A(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ P ∩ ∂Ωr.

Hence, by (3.9), (3.11), (3.12) and Theorem 2.7, it follows that the operator A has

two fixed points u1 ∈ Ω̄r\Ωr1
and u2 ∈ Ω̄r2

\Ωr.

Theorem 3.7. Assume that (H1), (H2) and (H6) hold. Then for any

λ ∈

[

1 − ξ1

γNIα
l+a(1)

,
γ

ΛIα
0+a(1)

]

, µ ∈
( 1 − γ

ΛIβ
0+b(1)

]

,

or

λ ∈
(

0,
γ

ΛIα
0+a(1)

]

, µ ∈

[

1 − ξ2

γNIβ
l+b(1)

,
1 − γ

ΛIβ
0+b(1)

]

,

the boundary value problem (1.1) has at least two positive solutions (u1, v1), (u2, v2)

such that 0 < ‖(u1, v1)‖ < r < ‖(u2, v2)‖.

Proof. The proof is similar to the Theorem 3.6, so we omit it.

Example 3.8. Consider the system of fractional differential equations






























cD
5

2

0+u(t) = λ(243
578

+ eπt)
(

π − 6(u + v + π
2
)−

3

2

)

,

cD
27

10

0+v(t) = µ(sin t + 256eπt)
(

(

1 + 23√
u+v

)− 5

2 + π
257

)

,

u′(0) = u′′(0) = 0, u(1) = 1
2
u(2

3
),

v′(0) = v′′(0) = 0, v(1) = 3
4
u(3

5
),

(3.13)

where α = 5
2
, β = 27

10
, a(t) = 243

578
+ eπt , b(t) = sin t + 256eπt, f(u, v) = π − 6(u +

v + π
2
)−

3

2 , g(u, v) =
(

1 + 23√
u+v

)− 5

2

+ π
257

, ξ1 = 1
2
, ξ2 = 3

4
, η1 = 2

3
, η2 = 3

5
. Obviously

f0 = π − 6( 2
π
)

3

2 , f∞ = π, g0 = π
257

and g∞ = 1 + π
257

. Choose l = 1
4
. By direct

calculations γ1 ≈ 0.227834, γ2 ≈ 0.435284, γ ≈ 0.227834; Iα
0+a(1) ≈ 1.079424,

Iα
l+a(1) ≈ 0.786560, Iβ

0+b(1) ≈ 182.201363 and Iβ
l+b(1) ≈ 133.391627.

Since, (1 − ξ1)I
α
0+a(1)f0 ≈ 0.050678 < γ1γI

α
l+a(1)f∞ ≈ 0.128268 and (1 −

ξ2)I
β
0+b(1)g0 ≈ 0.556812 < (1 − γ)γ2I

β
l+b(1)g∞ ≈ 45.382788. Therefore for each λ ∈

(0.888114, 2.247865) and µ ∈ (0, 0.346692) or λ ∈ (0, 2.247865) and µ ∈ (0.004254,

0.346692), by Theorem 3.4, the system of fractional differential equations (3.13) has

at least one positive solution.

Example 3.9. Consider the system of fractional differential equations






























cD
14

5

0+u(t) = 194λt2

1+t

(

12π
u+v+12π

− e−π(u+v)
)

,

cD
12

5

0+v(t) = 78125µt2

1+t2

(

1√
u+v

− e−π(u+v)
)

,

u′(0) = u′′(0) = 0, u(1) = 37
50

u(11
25

),

v′(0) = v′′(0) = 0, v(1) = 11
20

u(19
50

),

(3.14)



POSITIVE SOLUTIONS, FRACTIONAL DIFFERENTIAL EQUATIONS 181

where α = 14
5
, β = 12

5
, a(t) = t2

1+t
, b(t) = t2

1+t2
, f(u, v) = 194

(

12π
u+v+12π

− e−π(u+v)
)

,

g(u, v) = 78125
(

12π
u+v+12π

− e−π(u+v)
)

, ξ1 = 37
50

, ξ2 = 11
20

, η1 = 11
25

, η2 = 19
50

. Obviously

f0 = 0, f∞ = 0, g0 = 0 and g∞ = 0. Choose constants l = 1
2
, r = 5, N = 12,

Λ = 2449, then by computations

Iα
0+a(1) ≈ 0.015652, Iα

l+a(1) ≈ 0.007547,

Iβ
0+b(1) ≈ 0.034126, Iβ

l+b(1) ≈ 0.018676,

(1 − ξ1)NIα
0+a(1) ≈ 0.326817 < γ2ΛIα

l+a(1) ≈ 0.959355

and

(1 − ξ2)NIβ
0+b(1) ≈ 0.184282 < γ(1 − γ)ΛIβ

l+b(1) ≈ 8.046569.

Also f(u, v) > 12245, for ‖(u, v)‖ ∈ (1.1397, 5) and g(u, v) > 12245, for ‖(u, v)‖ ∈

(1.1397, 5). Therefore, for any λ ∈ [0.061746, 1.213008] and

µ ∈ (0, 1.885560] or λ ∈ (0, 1.213008] and µ ∈ [0.043183, 1.885560], by Theorem 3.6

the boundary value problem (3.14) has at least two positive solutions.
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