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In Memory of Professor Drumi Bainov

July 2, 1933 – July 1, 2011.

1. Introduction

We obtain positive solutions to the singular fourth order nonlocal boundary
value problem,

u(4) = f(x, u), 0 < x < 1, (1)

u(0) = u′′(0) = u′(1) = u′′(1)− u′′(2/3) = 0, (2)

where f(x, y) is singular at x = 0, x = 1, y = 0, and may be singular at y = ∞.
Throughout, we assume the following conditions on f :

(A1) f(x, y) : (0, 1) × (0,∞) → (0,∞) is continuous, and f(x, y) is decreasing
in y, for every x.

(A2) limy→0+ f(x, y) = +∞ and limy→+∞ f(x, y) = 0 uniformly on compact
subsets of (0, 1).

Equation (1), which is often referred to as the beam equation, has been
studied under a variety of boundary conditions. Physical interpretations of some
of the boundary conditions for the linear beam equation can be found in Zill and
Wright [40]. Contributions to the literature for the beam equation involving
boundary conditions different from the boundary conditions (2) include the
papers [14, 16, 17, 18, 26, 27, 35, 38]. The beam equation, with the nonlocal
boundary conditions like (2) has been studied by Graef et al. [13, 15]. Some of
the results from these latter two papers will play major roles in this work.

Singular boundary value problems for ordinary differential equations have
used to model glacial advance and transport of coal slurries down conveyor
belts as examples of non-Newtonian fluid theory in studies of pseudoplastic
fluids [9], for problems involving draining flows [1, 5], and semipositone and
positone problems [2], and as models in boundary layer applications, Emden-
Fowler boundary value problems, and reaction-diffusion applications [6, 7, 8,
25].

There has been substantial theoretical interest in singular boundary value
problems; we suggest the studies in [4, 21, 22, 31, 32, 33, 36, 37, 39]. In this
work, we will convert the problem (1)–(2) into an integral equation problem,
from which we define a sequence of decreasing integral operators associated with
a sequence of perturbed integral equations. Applications of a Gatica, Oliker,
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and Waltman [12] fixed point theorem, for operators that are decreasing with
respect to a cone, yield a sequence of fixed points of the integral operators. A
solution of (1)–(2) is then obtained from a subsequence of the fixed points.

This method has been used to obtain positive solutions for other singular
boundary value problems by DaCunha, Davis and Singh [10], Eloe and Hender-
son [11], Henderson et al. [23, 24], Maroun [29, 30] and Singh [34]. Important
to our obtaining positive solutions of (1)–(2) are positivity results by Graef et
al. in [13, 15].

2. Definitions, Cone Properties and the Gatica,

Oliker and Waltman Fixed Point Theorem

In this section, we state some definitions and properties of Banach space cones,
and we state the fixed point theorem on which the paper’s main result depends.

Let (B, || · ||) be a real Banach space. A nonempty closed K ⊂ B is called
a cone if the following hold:

(i) αu+ βv ∈ K, for all u, v ∈ K, and for all α, β ∈ [0,∞).

(ii) K ∩ (−K) = {0}.
Given a cone K, a partial order, ≤, is induced on B by x ≤ y, for x, y ∈ B
if, and only if, y − x ∈ K. (We sometimes will write x ≤ y (w.r.t.K).) If
x, y ∈ B with x ≤ y, let 〈x, y〉 denote the closed order interval between x and

y and be defined by, 〈x, y〉 := {z ∈ B | x ≤ z ≤ y}. A cone K is normal in B
provided there exists a δ > 0 such that ||e1 + e2|| ≥ δ, for all e1, e2 ∈ K with
||e1|| = ||e2|| = 1.

Remark 2.1. If K is a normal cone in B, then closed order intervals are
norm bounded.

We now state the Gatica, Oliker, and Waltman [12] fixed point theorem on
which the main result of this paper depends.

Theorem 2.2. Let B be a Banach space, K a normal cone, J a subset
of K such that, if x, y ∈ J, x ≤ y, then 〈x, y〉 ⊆ J, and let T : J → K be a
continuous decreasing mapping which is compact on any closed order interval
contained in J . Suppose there exists x0 ∈ J such that T 2x0 is defined, and
furthermore, Tx0 and T 2x0 are order comparable to x0.

Then T has a fixed point in J provided that, either
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(I) Tx0 ≤ x0 and T 2x0 ≤ x0, or Tx0 ≥ x0 and T 2x0 ≥ x0, or

(II) The complete sequence of iterates {T nx0}∞n=0 is defined, and there exists
y0 ∈ J such that y0 ≤ T nx0, for every n.

We shall also make extensive use of the following theorem due to Graef,
Qian and Yang [15].

Theorem 2.3. Let β(x) ∈ C(4)[0, 1]. If β(x) satisfies the boundary con-
ditions (2) and β(4)(x) ≥ 0 on [0, 1], then

max0≤s≤1 β(s) = β(1) > β(x), 0 ≤ x < 1,

β′(x) > 0, 0 ≤ x < 1,

β′′(x) < 0, 0 < x ≤ 1,

and
(

3x−x3

2

)

β(1) ≤ β(x), 0 ≤ x ≤ 1.

3. Properties of Positive Solutions

In preparing to apply Theorem 2.2, we define the Banach space (B, || · ||) by

B := {u : [0, 1] → R | u is continuous}, ||u|| := sup
0≤x≤1

|u(x)|.

And, we define a cone K ⊂ B by

K := {u ∈ B | u(x) ≥ 0 on [0, 1]}.

We observe that, if y(x) is a positive solution of (1)–(2), then y(4)(x) ≥ 0, and
moreover from Theorem 2.3,

y(x) ≥ 0, y′(x) ≥ 0, and y′′(x) ≤ 0.

Next, we define g(x) : [0, 1] → [0, 1] by

g(x) :=
3x− x3

2
,
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and for θ > 0, we define

gθ(x) := θg(x).

Notice that g(x) > 0, g′(x) > 0, g′′(x) < 0 on (0, 1), and

max
0≤x≤1

g(x) = 1 and max
0≤x≤1

gθ(x) = θ.

We will assume hereafter:

(A3)
∫ 1
0 f(x, gθ(x))dx < ∞, for all θ > 0.

It follows from Theorem 2.3 that, for each positive solution u(x) of (1)–(2),
there exists a θ > 0 such that

gθ(x) ≤ u(x), 0 ≤ x ≤ 1.

In particular, with θ = sup0≤x≤1 |u(x)| = u(1), then

u(x) ≥
(

3x− x3

2

)

θ = gθ(x), 0 ≤ x ≤ 1.

Next, we define a subset D ⊂ K by

D := {v ∈ K | there exists θ(v) > 0 such that gθ(x) ≤ v(x), 0 ≤ x ≤ 1}.

We observe that, for each v ∈ D and 2
3 ≤ x ≤ 1,

v(x) ≥ gθ(x) =

(

3x− x3

2

)

θ ≥ 23

27
θ, (3)

and for each positive solution u(x) of (1)–(2),

u(x) ≥ g(x) sup
0≤x≤1

|u(x)| ≥ 23

27
sup

0≤x≤1
|u(x)| = 23

27
u(1),

2

3
≤ x ≤ 1. (4)

There is a Green’s function, G(x, s), for y(4) = 0 satisfying (2) which will
play the role of a kernel for certain compact operators meeting the requirements
of Theorem 2.2.

First, the Green’s function G1(x, s) for

−y′′ = 0, y(0) = y′(1) = 0,
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is given by

G1(x, s) =







x, x ≤ s,

s, s ≤ x,

and second, the Green’s function G2(x, s) for

−y′′ = 0, y(0) = y(1)− y(2/3) = 0,

is given by

G2(x, s) =







































x, x ≤ s ≤ 2/3,

s, s ≤ x and s ≤ 2/3,

3(1− s)x, s ≥ 2/3 and x ≤ s,

s+ (2− 3s)x, x ≥ s ≥ 2/3.

Both G1 and G2 are positive valued on (0, 1] × (0, 1).

It follows that G(x, s) : [0, 1] × [0, 1] → [0,∞) defined by

G(x, s) :=

∫ 1

0
G1(x, r)G2(r, s)dr

is the Green’s function for y(4) = 0 and satisfying (2).

Remark 3.1. Graef, Kong, and Yang [13] by direct computation have
also given the closed form expression

G(x, s) =
x(1− s)

2

(

2− x2 + s
)

+
(x− s)3

6
H(x− s)

+
(2− 3s)

6

(

x3 − 3x
)

H

(

2

3
− s

)

,

where H(·) denotes the Heaviside function.

Now we define an integral operator T : D → K by

(Tu)(x) :=

∫ 1

0
G(x, s)f(s, u(s))ds, u ∈ D.
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We shall show that T is well-defined on D, is decreasing, and T : D → D. To
that end, let v, u ∈ D be given, with v(x) ≤ u(x). Then, there exists θ > 0
such that gθ(x) ≤ v(x). By Assumptions (A1) and (A3), and the positivity of
G,

0 ≤
∫ 1

0
G(x, s)f(x, u(x))dx ≤

∫ 1

0
G(x, s)f(x, v(x))dx

≤
∫ 1

0
G(x, s)f(x, gθ(x))dx < ∞.

Therefore, T is well-defined on D and T is a decreasing operator.
Next, for v ∈ D, let w(x) := (Tv)(x) =

∫ 1
0 G(x, s)f(s, v(s))ds ≥ 0, 0 ≤ x ≤

1. From properties of the Green’s functions, w(4)(x) = f(x, v(x)) > 0, 0 < x <
1, and w(0) = w′′(0) = w′(1) = w′′(1) − w′′(2/3) = 0, and so by Theorem 2.3,
w = Tv ∈ D. So, we also have T : D → D.

Remark 3.2. It is well-known that Tu = u if, and only if, u is a solution
of (1)–(2). Therefore, we seek solutions of (1)–(2) that belong to D. It follows
from (4) and (5), in the context of our Banach space B, that for each positive
solution u(x) of (1)–(2),

u(x) ≥ g(x)||u|| ≥ 23

27
||u|| = 23

27
u(1),

2

3
≤ x ≤ 1. (5)

4. A priori Bounds on Norms of Solutions

In this section, we exhibit that solutions of (1)–(2) have positive a priori upper
and lower bounds on their norms.

Lemma 4.1. If f satisfies (A1) – (A3), then there exists an S > 0 such
that ||u|| ≤ S, for any solution u of (1)–(2) in D.

Proof. Assume the conclusion is false. Then there exists a sequence {um}∞m=1

of solutions of (1)–(2) in D such that um(x) > 0, for all 0 < x ≤ 1, and

||um|| ≤ ||um+1|| and lim
m→∞

||um|| = ∞.

From (4) or (5),

um(x) ≥ 23

27
||um|| = 23

27
um(1),

2

3
≤ x ≤ 1.
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Therefore,

lim
m→∞

um(x) = ∞ uniformly on

[

2

3
, 1

]

.

Next, let M > 0 be defined by

M := max{G(x, s) | (x, s) ∈ [0, 1] × [0, 1]}.

(A2) implies there exists m0 ∈ N such that, for each m ≥ m0 and 2
3 ≤ x ≤ 1,

f(x, um(x)) ≤ 3

M
.

Let
θ := um0(1).

Then, for m ≥ m0,

um(x) ≥ g||um||(x) ≥ g||um0 ||
(x) = gθ(x), 0 ≤ x ≤ 1.

So, for m ≥ m0 and 0 ≤ x ≤ 1, we have

um(x) = Tum(x)

=

∫ 1

0
G(x, s)f(s, um(s))ds

=

∫ 2
3

0
G(x, s)f(s, um(s))ds +

∫ 1

2
3

G(x, s)f(s, um(s))ds

≤
∫ 2

3

0
G(x, s)f(s, um(s))ds +

∫ 1

2
3

M · 3

M
ds

≤
∫ 2

3

0
G(x, s)f(s, gθ(s))ds + 1

≤ M

∫ 1

0
f(s, gθ(s))ds + 1,

which, in view of (A3), contradicts limm→∞ ||um|| = ∞. Therefore, there exists
an S > 0 such that ||u|| ≤ S, for any solution u ∈ D of (1)–(2). �

Following that, we now exhibit positive a priori lower bounds on the solution
norms.

Lemma 4.2. If f satisfies (A1) – (A3), then there exists an R > 0 such
that ||u|| ≥ R, for any solution u of (1)–(2) in D.
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Proof. Again, we assume the conclusion to the lemma is false. Then, there
exists a sequence {um}∞m=1 of solutions of (1)–(2) in D such that um(x) > 0,
for 0 < x ≤ 1, and

||um|| ≥ ||um+1|| and lim
m→∞

||um|| = 0.

That is,

lim
m→∞

um(x) = 0 uniformly on [0, 1].

Now, define

m := min

{

G(x, s) | (x, s) ∈
[

2

3
,
5

6

]

×
[

2

3
,
5

6

]}

> 0.

(A2) implies limy→0+ f(x, y) = ∞ uniformly on compact subsets of (0, 1), and
so, there exists a δ > 0 such that, for 2

3 ≤ x ≤ 5
6 and 0 < y < δ,

f(x, y) >
6

m
.

Also, there exists m0 ∈ N such that, for m ≥ m0 and 0 < x < 1,

0 < um(x) <
δ

2
.

For m ≥ m0 and 2
3 ≤ x ≤ 5

6 , we have

um(x) = Tum(x)

=

∫ 1

0
G(x, s)f(s, um(s))ds

≥
∫ 7

9

2
3

G(x, s)f(s, um(s))ds

≥ m

∫ 5
6

2
3

f(s, um(s))ds

≥ m

∫ 5
6

2
3

f(s,
δ

2
)ds

≥ m

∫ 5
6

2
3

6

m
ds

= 1.
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This contradicts limm→∞ um(x) = 0 uniformly on [0, 1]. Therefore, there exists
an R > 0 such that R ≤ ||u|| for any solution u ∈ D of (1)–(2). �

In summary, there exist 0 < R < S such that, for each solution u ∈ D of
(1)–(2), we have

R ≤ ||u|| ≤ S.

5. Existence of Positive Solutions

In this section, we will construct a sequence of operators, {Tm}∞m=1, each of
which is defined on all of K. Applications of Theorem 2.2 yield that, for each
m ∈ N, Tm has a fixed point φm ∈ K. Then, we will extract a subsequence
from the fixed points {φm}∞m=1 that converges to a fixed point of the operator
T .

Theorem 5.1. If f satisfies (A1) – (A3), then (1)–(2) has at least one
positive solution u ∈ D.

Proof. For each m ∈ N, we define a function um(x) by

um(x) := T (m) :=

∫ 1

0
G(x, s)f(s,m)ds, 0 ≤ x ≤ 1.

Since f is decreasing with respect to its second component, we have

0 < um+1(x) < um(x), for 0 < x < 1,

and by (A2), limm→∞ um(x) = 0 uniformly on [0, 1].
Next, we define fm(x, y) : (0, 1) × [0,∞) → (0,∞) by

fm(x, y) := f(x,max{y, um(x)}).

Then, fm is continuous and fm does not have the singularity at y = 0 possessed
by f . Moreover, for (x, y) ∈ (0, 1) × (0,∞),

fm(x, y) ≤ f(x, y) and fm(x, y) ≤ f(x, um(x)).

Next, we define a sequence of operators, Tm : K → K, for φ ∈ K and
0 ≤ x ≤ 1, by

Tmφ(x) :=

∫ 1

0
G(x, s)fm(s, φ(s))ds.



POSITIVE SOLUTIONS FOR A SINGULAR FOURTH ORDER... 77

Then standard arguments yield that each Tm is a compact operator on K.
Furthermore,

Tm(0) =

∫ 1

0
G(x, s)fm(s, 0)ds

=

∫ 1

0
G(x, s)f(s,max{0, um(s)})ds

=

∫ 1

0
G(x, s)f(s, um(s))ds

≥ 0,

and

T 2
m(0) = Tm

(
∫ 1

0
G(x, s)fm(s, 0)ds

)

≥ 0.

Theorem 2.2 implies, with J = K and x0 = 0, that Tm has a fixed point in K,
for each m. That is, for each m, there exists φm ∈ K such that

Tmφm(x) = φm(x), 0 ≤ x ≤ 1.

So, for each m ≥ 1, φm satisfies the boundary conditions (2), and also,

Tmφm(x) =

∫ 1

0
G(x, s)fm(s, φm(s))ds

≤
∫ 1

0
G(x, s)f(s, um(s))ds

= Tum(x).

That is, for each 0 ≤ x ≤ 1 and for each m,

φm(x) = Tmφm(x) ≤ Tum(x).

Using arguments similar to those in the proofs of Lemmas 4.1 and 4.2, there
exist R > 0 and S > 0 such that

R ≤ ||φm|| ≤ S, for every m.

Now, let θ := R. Since φm belongs to K and is a fixed point of Tm, the
conditions of Theorem 2.3 hold. So, for every m and 0 ≤ x ≤ 1,

φm(x) ≥ g(x)||φm|| ≥ g(x) ·R = gθ(x).
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So, the sequence {φm}∞m=1 is contained in the closed order interval 〈gθ, S〉, and
therefore, the sequence is contained in D. Since T is a compact mapping, we
may assume without loss of generality that limm→∞ Tφm exists; let us call the
limit φ∗.

To complete the proof, it suffices to show that

lim
m→∞

(Tφm(x)− φm(x)) = 0

uniformly on [0, 1], from which it will follow that φ∗ ∈ 〈gθ, S〉.
In that direction, let ǫ > 0 be given, and choose 0 < δ < 1

2 such that

∫ δ

0
f(s, gθ(s))ds +

∫ 1

1−δ

f(s, gθ(s))ds <
ǫ

2M
,

where as before M := max{G(x, s) | (x, s) ∈ [0, 1] × [0, 1]}. Then, there exists
m0 such that, for m ≥ m0 and for δ ≤ x ≤ 1− δ,

um(x) ≤ gθ(x) ≤ φm(x).

So, for m ≥ m0 and for δ ≤ x ≤ 1− δ,

fm(x, φm(x)) = f(x,max{φm(x), um(x)}) = f(x, φm(x)).

Then, for m ≥ m0 and 0 ≤ x ≤ 1,

|Tφm(x)− φm(x)| = |Tφm(x)− Tmφm(x)|

=

∣

∣

∣

∣

∫ 1

0
G(x, s)[f(s, φm(s))− fm(s, φm(s))]ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ δ

0
G(x, s)[f(s, φm(s))− fm(s, φm(s))]ds

+

∫ 1

1−δ

G(x, s)[f(s, φm(s))− fm(s, φm(s))]ds

∣

∣

∣

∣

≤ M

∫ δ

0
[f(s, φm(s)) + fm(s, φm(s))]ds

+M

∫ 1

1−δ

[f(s, φm(s)) + fm(s, φm(s))]ds

≤ M

∫ δ

0
[f(s, φm(s)) + f(s, φm(s))]ds

+M

∫ 1

1−δ

[f(s, φm(s)) + f(s, φm(s))]ds
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= 2M

[
∫ δ

0
f(s, φm(s))ds +

∫ 1

1−δ

f(s, φm(s))ds

]

≤ 2M

[
∫ δ

0
f(s, gθ(s))ds +

∫ 1

1−δ

f(s, gθ(s))ds

]

< 2M · ǫ

2M
= ǫ.

So, for m ≥ m0,

||Tφm − φm|| < ǫ.

That is, limm→∞(Tφm(x)−φm(x)) = 0 uniformly on [0, 1]. Hence, for 0 ≤ x ≤ 1,

Tφ∗(x) = T ( lim
m→∞

Tφm(x))

= T ( lim
m→∞

φm(x))

= lim
m→∞

Tφm(x)

= φ∗(x),

and φ∗ is a desired positive solution of (1)–(2) belonging to D. �

Example. Define f(x, y) : (0, 1) × (0,∞) → (0,∞) by

f(x, y) :=
1

4
√

x(1− x)y
.

Clearly, Assumptions (A1) and (A2) are satisfied with respect to f . Next, let
θ > 0 be given. Then,

∫ 1

0
f(x, gθ(x))dx =

∫ 1

0

1
4
√

x(1− x)gθ(x)
dx

≤ 4

√

2

θ

[

∫ 2
3

0

1
4
√
x2 4

√

(1− x)(3− x2)
dx

+

∫ 1

2
3

1
4
√

x2(1− x)

4

√

1

2
dx

]

≤ 4

√

2

θ

[

∫ 2
3

0
x−

1
2 · 4

√
3 · 4

√

9

23
dx+

∫ 1

2
3

√

3

2
4

√

1

2
· (1− x)−

1
4 dx

]

<∞,
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and so Assumption (A3) is also satisfied. By Theorem 5.1, the boundary value
problem

u(4) =
1

4
√

x(1− x)u
, 0 < x < 1, (6)

u(0) = u′′(0) = u′(1) = u′′(1)− u′′(2/3) = 0, (7)

has at least one positive solution.

6. Dependence on Higher Order Derivatives

The techniques of proof of Theorem 5.1 can be extended to a boundary value
problem of the form

u(4) = f(x, u, u′, u′′), 0 < x < 1, (8)

with boundary conditions (2) using methods developed by Henderson and Yin
[24] if one extends Theorem 2.3 in the following way.

Theorem 6.1. Let β(x) ∈ C(4)[0, 1]. If β(x) satisfies the boundary con-
ditions (2) and β(4)(x) ≥ 0 on [0, 1], and β(4)(x) > 0 for some x ∈ [0, 1], then

max0≤s≤1 β(s) = β(1) > β(x), 0 ≤ x < 1,

β′(x) > (−β′′(1))
(

1−x2

2

)

> 0, 0 ≤ x < 1,

β′′(x) ≤ β′′(1)x < 0, 0 < x ≤ 1,

and
(

3x−x3

6

)

(−β′′(1)) ≤ β(x), 0 ≤ x ≤ 1.

Proof. In the proof of Theorem 2.3, Graef, Qian and Yang [15] have shown

β′′(x) < 0, 0 < x ≤ 1.

Set v(x) = β′′(x)− β′′(1)x. Then v satisfies,

v′′(x) ≥ 0, 0 < x < 1, v′′(x) > 0 for some x ∈ (0, 1),

and
v(0) = 0, v(1) = 0.



POSITIVE SOLUTIONS FOR A SINGULAR FOURTH ORDER... 81

So,

v(x) < 0, 0 < x < 1,

or

β′′(x) ≤ β′′(1)x < 0, 0 < x ≤ 1. (9)

The inequality in β′ is obtained by integrating (9) from 1 to x and then the
inequality in β is obtained by integrating again, now from 0 to x.

�

To state and prove a theorem analogous to Theorem 5.1 for the boundary
value problem, (8), (2), conditions (A1) and (A2) are replaced by conditions:

(B1) f(x, y) : (0, 1) × (0,∞)2 × (−∞, 0) → (0,∞) is continuous,
f(x, y1, y2, y3) is decreasing in y1, for every x, y2, y3,
f(x, y1, y2, y3) is decreasing in y2, for every x, y1, y3,
f(x, y1, y2, y3) is increasing in y3, for every x, y1, y2.

(B2) limy1→0+ f(x, y1, y2, y3) = +∞ and limy1→+∞ f(x, y1, y2, y3) = 0 uni-
formly on compact subsets of (0, 1) × (0,∞)× (−∞, 0),
limy2→0+ f(x, y1, y2, y3) = +∞ and limy2→+∞ f(x, y1y2, y3) = 0 uniformly
on compact subsets of (0, 1) × (0,∞) × (−∞, 0),
limy3→0+ f(x, y1, y2, y3) = −∞ and limy3→−∞ f(x, y1y2, y3) = 0 uniformly
on compact subsets of (0, 1) × (0,∞)2.

In this section, the definition of g(x) is motivated by Theorem 6.1 and so
for this section, define g(x) : [0, 1] → [0, 1] by

g(x) :=
3x− x3

6
.

Again for θ > 0, define

gθ := θg(x).

Condition (A3) is replaced by the condition:

(B3)
∫ 1
0 f(x, gθ(x), g′θ(x), g′′θ (x))dx < ∞, for all θ > 0.

The Banach space for this section is C2[0, 1] equipped with the standard
norm

||u|| := max{ sup
0≤x≤1

|u(x)|, sup
0≤x≤1

|u′(x)|, sup
0≤x≤1

|u′′(x)|}
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and, we define a cone K ⊂ B by

K := {u ∈ B | u(x) ≥ 0 on [0, 1], u′(x) ≥ 0 on [0, 1], u′′(x) ≤ 0 on [0, 1]}.

It follows from Theorem 6.1 that, for each solution u(x) ∈ K of (8), (2),
there exists a θ > 0 such that

gθ(x) ≤ u(x), g′θ(x) ≤ u′(x), g′′θ (x) ≥ u′′(x), 0 ≤ x ≤ 1. (10)

In particular, with θ = |u′′(1)|, (10) is valid. So, define D ⊂ K by

D := {v ∈ K | there exists θ(v) > 0 such that

gθ(x) ≤ v(x), g′θ(x) ≤ v′(x), g′′θ (x) ≥ v′′(x), 0 ≤ x ≤ 1}

and define the fixed point operator T : D → K

(Tu)(x) :=

∫ 1

0
g(x, s)f(s, u(s), u′(s), u′′(s))ds, u ∈ D.

Then the proof of Theorem 5.1 can be adapted along the lines of the proof of
Theorem 3.3 in [24] so that Theorem 2.3 applies to the boundary value problem
(8), (2). The construction of the a priori bounds R and S begins by obtaining
the bounds on sup0≤x≤1 |u′′(x)| followed by successive integration, using the
boundary conditions, to obtain the bounds on ||u||.

Theorem 6.2. If f satisfies (B1) – (B3), then (8), (2) has at least one
solution u ∈ D.
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