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Abstract: In [10] the �rst author used Lyapunov functionals and studied the exponential stability of the zero
solution of �nite delay Volterra Integro-di�erential equation. In this paper, we use modi�ed version of the
Lyapunov functional that were used in [10] to obtain criterion for the stability of the zero solution of the
in�nite delay nonlinear Volterra integro-di�erential equation

x′(t) = Px(t) +
t∫

−∞

C(t, s)g(x(s))ds.
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1 Introduction
In [10] the �rst author analysed the exponential stability of the zero solution of the nonlinear �nite delay
Volterra integro-di�erential equation

x′(t) =
t∫

t−r

C(t, s)g(x(s))ds, (1)

where r > 0 is a constant, and C is continuous inbotharguments. The function g(x) : R→ Rand is continuous
in x. Equation (1) has its roots in the study of nuclear reactors and the stability of its zero solutionwas studied
by Brownwell and Ergen [1] in 1954. Later on, the same study was revisited by Nohel [9], in 1960 and then by
Levin and Nohel [8], in 1964.

Recently, in [2] and [3], Burton used the notion of �xed point theory to alleviate some of the di�culties
that arise from the use of Lyapunov functionals and obtained results concerning the stability and asymptotic
stability of the zero solution of (1) when it is scalar. As it is mentioned above, in [10] the author obtained
results concerning the exponential stability of (1), which generalized the papers of [1], [8] and [9]. In [10],
the author proposed the open problem of extending the results of [10] to the in�nite delay nonlinear Volterra
integro-di�erential equation

x′(t) =
t∫

−∞

C(t, s)g(x(s))ds. (2)
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In the past six years, we have reviewed three papers concerning the open problem, and none did had the
correct solution. It turned out that the problem is still unresolved and remains a mystery. The di�culty arise
from the presence of in�nite delay, which in turns makes it di�cult, if not impossible to construct a suitable
Lyapunov functional that is in the spirit of [10]. We have beenworking on this problem for the last three years
and in search for a way to obtain exponential stability, which we failed at, we arrived at stability results of
the zero solution, instead. Our aim is to share our results with the research community in hope that it would
shed a light on how to solve the open problem. For more on the study of stability, we refer the reader to [4],
[6], [9], and [11].

2 Main Results
Now we consider the in�nite delay nonlinear Volterra integro-di�erential equation

x′(t) = Px(t) +
t∫

−∞

C(t, s)g(x(s))ds, −∞ < s ≤ t (3)

and construct a Lyapunov functional; V(t, x) := V(t) and show that for some positive α and under suitable
conditions, we have that V ′(t) ≤ −α|x|2 along the solutions of (3). This will position us to obtain stability
results regarding the zero solution and in addition, we will show that every square solution is integrable, or
L1.
Normally P of (3) is expected to be a negative function for stability properties of the zero solution. In this
paper we do not require this condition. We use the size of the kernel C(t, s) to o�set the positive e�ect of the
constant P. At the end of this paper we provide two examples as an application of our main results showing
that the zero solution of (3) is uniformly stable for positive constant P, depending on how fast kernel C(t, s)
decays.
It should cause no confusion to denote the norm of a continuous function φ : (−∞,∞)→ R with

||φ|| = sup
s∈R
|φ(s)|.

Let ψ : Et0 → R be a given bounded and continuous initial function, where

Et0 = (−∞, t0].

Then, we say x(t) ≡ x(t, t0, ψ) is a solution of (3) if x(t) satis�es (3) for t ≥ t0 and x(t, t0, ψ) = ψ(s), s ∈ Et0 .
Throughout this paper it is to be understood that when a function is written without its argument, then the
argument is t. We begin with the following stability de�nition. For t ≥ t0, the set C(t) denotes the set of all
continuous functions ϕ : R→ R where ‖ϕ‖ = sup{|ϕ(s)| : s ≤ t}.

De�nition 2.1. The zero solution of (3) is stable if for each ε > 0 and each t0, there exists a δ = δ(ε, t0) > 0
such that [ϕ ∈ Et0 → R, ϕ ∈ C(t) : ‖ϕ‖ < δ] implies |x(t, t0, ϕ)| < ε for all t ≥ t0. The zero solution is said to
be uniformly stable if it is stable and δ is independent of t0.

Next, we use a special technique to rewrite (3) so that a suitable Lyapunov functional can be displayed. Let
us begin by letting

A(t, s) :=
t−s∫
−∞

C(u + s, s) du, t − s ≥ 0.

Assume the existence of positive constants λ1, and λ2 such that the following conditions hold.

xg(x) ≥ λ2x2if x ≠ 0, (4)
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|g(x)| ≤ λ1|x| (5)

and
A(t, t) > 0, for all t ∈ [0,∞). (6)

It is clear that conditions (4) and (5) imply that g(0) = 0. It can be easily proved that (3) is equivalent to

x′(t) = Px(t) − A(t, t)g(x(t)) + d
dt

t∫
−∞

A(t, s)g(x(s))ds. (7)

Theorem 2.1. Let (4)- (6) hold, and suppose there are constants γ > 0 and α > 0 so that

2P − 2λ2A(t, t) + P2 + λ1A2(t, t) + λ21γ
∞∫
t

|A(u, t)|du ≤ −α, (8)

2
t∫

−∞

|A(t, s)|ds − γ ≤ 0, (9)

and

1 − λ1
t∫

−∞

|A(t, s)|ds > 0 (10)

then, the zero solution of (3) is stable.

Proof. Let x(t) = x(t, t0, ψ) be a solution of (3) and de�ne the Lyapunov functional V(t) = V(t, x) by

V(t) =
(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2

+γ
t∫

−∞

∞∫
t

|A(u, z)|g2(x(z))du dz. (11)

Now, di�erentiating (11) and using (3) we have

V ′(t) = 2
(
x −

t∫
−∞

A(t, s)g(x(s))ds
)
[Px − A(t, t)g(x)] + γ

∞∫
t

|A(u, t)|g2(x(t))du − γ
t∫

−∞

|A(t, z)|g2(x(z))dz

= 2Px2 − 2A(t, t)xg(x) − 2Px
t∫

−∞

A(t, s)g(x(s))ds + 2A(t, t)g(x)
t∫

−∞

A(t, s)g(x(s))ds

+ γ

∞∫
t

|A(u, t)|g2(x(t))du − γ
t∫

−∞

|A(t, z)|g2(x(z))dz. (12)

In what to follow using Schwarz inequality, we perform some calculations to simplify (12).

2Px
t∫

−∞

A(t, s)g(x(s))ds ≤ P2x2 +
( t∫
−∞

A(t, s)g(x(s))ds
)2

= P2x2 +
( t∫
−∞

|A(t, s)|
1
2 |A(t, s)|

1
2 |g(x(s))|ds

)2

≤ P2x2 +
t∫

−∞

|A(t, s)|ds
t∫

−∞

|A(t, s)|g2(x(s))ds.
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Similarly,

2A(t, t)g(x)
t∫

−∞

A(t, s)g(x(s))ds ≤ λ21A2(t, t)x2 +
t∫

−∞

|A(t, s)|ds
t∫

−∞

|A(t, s)|g2(x(s))ds.

By substituting the above two expressions into (12) and then using (8) and (9), yield

V ′(t) ≤
[
2P − 2λ2A(t, t) + P2 + λ1A2(t, t) + λ21γ

∞∫
t

|A(u, t)|du
]
|x|2

+
[
2

t∫
−∞

|A(t, s)|ds − γ
] t∫
−∞

|A(t, s)|g2(x(s))ds

≤ −α|x|2. (13)

Let ε > 0 be given, we will �nd δ > 0 so that |x(t, t0, ψ)| < ε as long as [ψ ∈ Et0 → R : ‖ψ‖ < δ]. Let

L2 =
(
1 + λ21

t0∫
−∞

|A(t0, s)|ds
)2

+ λ21γ
t0∫

−∞

∞∫
t0

|A(u, z)|du dz.

By (13), we have V is decreasing for t ≥ t0. Thus, using (11) for t ≥ t0 we arrive at

V(t, x) ≤ V(t0, ψ)

≤ (|ψ(t0)| + λ1
t0∫

−∞

|A(t0, s)||ψ(s)|ds
)2

+ λ21γ
t0∫

−∞

∞∫
t0

|A(u, z)|ψ2(z))du dz

= δ2
[(
1 + λ21

t0∫
−∞

|A(t0, s)|ds
)2

+ λ21γ
t0∫

−∞

∞∫
t0

|A(u, z)|du dz
]

≤ δ2L2. (14)

By (11), we have

V(t, x) ≥
(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2

≥
(
|x| − |

t∫
−∞

A(t, s)g(x(s))ds|
)2
.

Combining the above two inequalities leads to

|x(t)| ≤ δL +
t∫

−∞

|A(t, s)||g(x(s))|ds.

So as long as |x(t)| < ε, using (5), we have

|x(t)| < δL + ελ1
t∫

−∞

|A(t, s)|ds, for all t ≥ t0.

Thus, we have from the above inequality that

|x(t)| < ε for δ < ε
L (1 − λ1

t∫
−∞

|A(t, s)|ds). Note that by (10), we have 1 − λ1
t∫

−∞

|A(t, s)|ds > 0 and hence, the

above inequality regarding δ is valid.
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The next theorem provide conditions under which any solution x satis�es |x(t)|2 ∈ L[t0 ,∞), t0 ∈ Ek .

Theorem 2.2. Assume all the conditions of Theorem 2.1 hold. Let x(t) be any solution of (3). Then we have
|x(t)|2 ∈ L[t0 ,∞), t0 ∈ Ek .

Proof. We know from Theorem 2.1 that the zero solution is stable. Thus, for the same δ of stability, we take
|x(t, t0, ψ)| < 1. Since V is decreasing, we have by integrating (13) from t0 to t and using (14) that,

V(t, x) ≤ V(t0, ψ) − α
t∫

t0

|x(s)|2ds ≤ δ2L2 − α
t∫

t0

|x(s)|2ds.

Since,

V(t, x) ≥
(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2

we have that

(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2
≤ δ2L2 − α

t∫
t0

|x(s)|2ds. (15)

Also, using Schwarz inequality and (5) one obtains

( t∫
−∞

|A(t, s)||g(x(s))|ds
)2

=
( t∫
−∞

|A(t, s)|1/2|A(t, s)|1/2|g(x(s))|ds
)2

≤ λ21

t∫
−∞

|A(t, s)|ds
t∫

−∞

|A(t, s)||x(s)|2ds.

As
∫ t
−∞ |A(t, s)|ds is bounded by (9) and |x|2 < 1, we have

∫ t
−∞ |A(t, s)||x(s)|

2ds is bounded and hence∫ t
−∞ |A(t, s)||g(x(s))|ds is bounded. Therefore, from (15), we arrive at

α
t∫

t0

|x(s)|2ds ≤ δ2L2 −
(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2

≤ δ2L2 +
(
|x| + |

t∫
−∞

A(t, s)g(x(s))ds|
)2

≤ δ2L2 + |x|2 + 2|x||
t∫

−∞

A(t, s)g(x(s))ds| +
(
|

t∫
−∞

A(t, s)g(x(s))ds|
)2

≤ δ2L2 + |x|2 + |x|2 +
(
|

t∫
−∞

A(t, s)g(x(s))ds|
)2

+
(
|

t∫
−∞

A(t, s)g(x(s))ds|
)2

≤ δ2L2 + 2 + 2
( t∫
−∞

|A(t, s)||g(x(s))|ds
)2

≤ K, for some positive constant K.

This shows that |x(t)|2 ∈ L[t0 ,∞), t0 ∈ Ek .
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It is straight forward to extend the results of this paper to (2). This is remarkable since (2) is totally nonlinear.
The absence of a linear termmakes it extremely di�cult if not impossible to invert or �nd a suitable Lyapunov
functional. Our advantage here is that we were able to rewrite our equation so that it is equivalent to (7).

Theorem 2.3. Let (4)- (6) hold. In addition, we assume

−2λ2A(t, t) + λ1A2(t, t) + λ21γ
∞∫
t

|A(u, t)|du ≤ −α. (16)

t∫
−∞

|A(t, s)|ds − γ ≤ 0, (17)

and

1 − λ1
t∫

−∞

|A(t, s)|ds > 0 (18)

then, the zero solution of (2) is stable and |x(t)|2 ∈ L[t0 ,∞), t0 ∈ Ek .

Proof. The proof is immediate consequence of Theorem 2.1 and Theorem 2.2 by setting P = 0.

In the next theorem we show that the zero solution of (3) is uniformly stable by requiring uniform bounded-
ness on the double integral in the Lyapunov functional. For simplicity, we let

J =
t∫

−∞

|A(t, s)|ds. (19)

Theorem 2.4. Assume all the conditions of Theorem 2.1 hold. Suppose for some positive constant R and for all
t ≥ t0,

t∫
−∞

∞∫
t

|A(u, z)|du dz ≤ R, (20)

then the zero solution of (3) is uniformly stable.

Proof. Let V be given by (11). Then by expanding V and using Schwartz inequality we arrive at,

V(t) = x2(t) +
( t∫
−∞

A(t, s)g(x(s))ds
)2
− 2x(t)

t∫
−∞

A(t, s)g(x(s))ds

+ γ

t∫
−∞

∞∫
t

|A(u, z)|g2(x(z))du dz

≤ 2x2(t) + 2
t∫

−∞

|A(t, s)|ds
t∫

−∞

|A(t, s)|g2(x(s))ds + γ

t∫
−∞

∞∫
t

|A(u, z)|g2(x(z))du dz

≤ 2x2(t) + 2λ21J
t∫

−∞

|A(t, s)|x2(s)ds + γλ21

t∫
−∞

∞∫
t

|A(u, z)|x2(z)du dz. (21)

Given an ϵ > 0 and a �xed t0 ∈ Ek, we choose δ > 0 with 0 < δ < ϵ such that

(2 + 2λ21J + +γλ21R)1/2δ < ϵ(1 − λ1J). (22)
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Let x(t) = x(t, t0, ϕ) be a solution of (3) with ||ϕ|| < δ. Then for t ≥ t0, using (21) and (22) we have

(
x −

t∫
−∞

A(t, s)g(x(s))ds
)2

≤ V(t) ≤ V(t0)

≤ (2 + 2λ21J + +γλ21R)δ2. (23)

Also, we notice that

∣∣∣x − t∫
−∞

A(t, s)g(x(s))ds
∣∣∣ ≥ |x| −

t∫
−∞

|A(t, s)||g(x(s))|ds

≥ |x| − λ1
t∫

−∞

|A(t, s)||x(s))ds (24)

We claim that |x(t)| < ϵ for all t ≥ t0. Note that |x(u)| < δ < ϵ for all −∞ ≤ u ≤ t0. If the claim is not true,
let t = t* be the �rst t such that |x(t*)| = ϵ and |x(s)| < ϵ for t0 ≤ s < t*. Then, using (5), (19), (23), and (24) we
obtain

ϵ(1 − λ1J) = ϵ(1 − λ1
t∫

−∞

|A(t, s)|ds)

≤ |x(t*)| − λ1
t*∫

−∞

|A(t*, s)||x(s)|ds

≤ |x(t*)| −
t*∫

−∞

|A(t*, s)||g(x(s))|ds

≤ |x(t*) −
t*∫

−∞

A(t*, s)g(x(s))ds|

≤ (2 + 2λ21J + γλ21R)1/2δ,

which contradicts (22) and this completes the proof.

We state the following corollary regarding the uniform stability of the zero solution of (2). Its proof follows
along the lines of Theorem 2.4.

Corollary 1. Assume all the conditions of Theorem 2.3 hold along with (20). Then the zero solution of (2) is
uniformly stable.

Next, we display an example.

3 Examples

Example 3.1. Let g(x) = x( sin
2(x) + 1
4 ), then g(0) = 0, xg(x) > x2/4 and |g(x)| ≤ 1

2 |x|. If we choose C(t, s) =
−1

16(t − s + 1)4 , then C(u + s, s) =
−1

16(u + 1)4 , and

A(t, s) =
t−s∫
−∞

C(u + s, s)ds = 1
4(t − s + 1)3 .
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This implies that A(t, t) = 1
4 , and hence condition (6) is satis�ed. It is easy to verify that

∞∫
t

|A(u, t)|du = 3/4,
t∫

−∞

|A(t, s)|ds = 3/4,

and
t∫

−∞

∞∫
t

|A(u, z)|du dz =
t∫

−∞

∞∫
t

1
4(u − z + 1)3 du dz

=
t∫

−∞

3
4(t − z + 1)2 dz

= 3/2.

Letγ = 3/2 and P = −1. Then it is easy to verify that (8), (9) and (10) are satis�ed since λ1 = 1/2, and λ2 =
1/4. Thus, we have shown that the zero solution of the nonlinear Volterra integro-di�erential equation

x′(t) = −x(t) −
t∫

−∞

1
16(t − s + 1)4 x(s)(

sin2(x(s))
4 + 1)ds

is uniformly stable.

In the next example we display a kernel C that allows us to have P > 0.

Example 3.2. Let g(x) be de�ned as in the previous example. Let C(t, s) = −e−k(t−s), for some positive constant
k to be chosen later. Then, A(t, s) = 1

k e
−k(t−s) and as a consequence we have A(t, t) = 1

k . It is easy to verify
that

∞∫
t

|A(u, t)|du =
t∫

−∞

|A(t, s)|ds = 1
k2 .

Moreover,
t∫

−∞

∞∫
t

|A(u, z)|du dz = 1
k3 .

Let k = 4, and γ = 1/32. Then conditions (9) and (10) are satis�ed since λ1 = 1/2, and λ2 = 1/4. Left
to show that (8) is satis�ed for the appropriate choice of P. A substitution of all the parameters in (8) leads to
the quadratic equation in P,

P2 + 2P − η2 < 0, where η2 = 0.09326171875. (25)

Inequality (25) is satis�ed for
0 ≤ P < −1 +

√
2 + 2η2.

Thus, we have shown that the zero solution of the nonlinear Volterra integro-di�erential equation with posi-
tive coe�cient P

x′(t) = Px(t) −
t∫

−∞

e−k(t−s)x(s)( sin
2(x(s))
4 + 1)ds

is uniformly stable.

4 Discussion and Future Direction
It is always believed that when using Lyapunov theory in the qualitative analysis of functional di�erential
equations, the obtained results are directly related to the characteristic of the Lyapunov function or func-
tional. In this paper, we transformed our nonlinear integro-di�erential equation to created a linear term,
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which lead us to the "right" Lyapunov functional. By rewriting (3) in the form (7) gave us a hint on how to
approach the creation of the Lyapunov functional given in (11). This can be easily seen by noticing that (7)
can be put in the form

d
dt

(
x(t) −

t∫
−∞

A(t, s)g(x(s))ds
)
= Px(t) − A(t, t)g(x(t)),

which is the �rst term in the Lyapuniov functional given by (11), squared. In addition, such technique allowed
us to deduce stability results on the totally nonlinear integro-di�erential equation given by (2).
In the paper [7], the authors considered the pairs of the scalar linear Volterra integro-di�erential equation

x′(t) = h(t)x(t) +
t∫

0

C(at − s)x(s)ds (26)

and its perturbed form

x′(t) = h(t)x(t) +
t∫

0

C(at − s)x(s)ds + g(t, x(t)) (27)

where a is a constant, a > 1. The function g(t, x(t)) is continuous in t and x, and satis�es |g(t, x(t))| ≤
λ(t)|x(t)|, where λ(t) is continuous. Moreover, h(t) is continuous for all t ≥ 0 and C : R → R is continuous.
We point out that if C ∈ L1[0,∞), then the equations (1.1) and (1.2) become fading memory problems. When
a > 1, the memory term

∫ t
0 C(at − s)ds =

∫ at
(a−1)t C(u)du tends to zero as t → ∞, that is the memory fades

away completely. On the other hand, if 0 < a < 1, the memory term never fades away completely; it tends to a
constant as t →∞. For a = 1, equation (26) and (27) are the well-known convolution equations. In the same
spirit of [7], we conjecture the following:

Conjecture 1. Assume all the conditions of Theorem 2.1 hold. If we require that
∞∫
t

|A(u, z)|du ∈ L1(−∞,∞), (28)

then the zero solution of (3) is uniformly asymptotically stable.

we end this paper by stating an open problem.

Open Problem 1. In light of [10], what can be said about the exponential stability of the zero solution and
the instability of the nonlinear Volterra integro-di�erential equation with in�nite delay

x′(t) = Px(t) +
t∫

−∞

C(t, s)g(x(s))ds, −∞ < s ≤ t?
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