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ALMOST AUTOMORPHIC SOLUTIONS OF DELAYED

NEUTRAL DYNAMIC SYSTEMS ON HYBRID

DOMAINS

Murat Adıvar, Halis Can Koyuncuoğlu, Youssef N. Raffoul

We study the existence of almost automorphic solutions of the delayed neu-
tral dynamic system on hybrid domains that are additively periodic. We use
exponential dichotomy and prove the uniqueness of projector of exponential
dichotomy to obtain some limit results leading to sufficient conditions for
existence of almost automorphic solutions to neutral system. Unlike the ex-
isting literature we prove our existence results without assuming boundedness
of the coefficient matrices in the system. Hence, we significantly improve the
results in the existing literature. Finally, we also provide an existence result
for almost periodic solutions of the system.

1. INTRODUCTION

The theory of neutral type equations has attracted a prominent attention due
to the potential of its application in variety of fields in the natural sciences dealing
with models that analyze and control real life processes. In particular, investigation
of periodic solutions of neutral dynamic systems has a particular importance for
scientists interested in biological models of certain type of populations having peri-
odical structures (see [10], [20] and [23]). There is a vast literature on neutral type
equations on continuous and discrete domains which focus on the stability, oscilla-
tion and existence results (see [30], [32], [15], [28] and references therein). Theory
of time scales enables researchers to combine differential and difference equations
under one theory called dynamic equations on time scales. For brevity we assume
reader is familiar with time scale calculus. For an excellent review on time scale
calculus, we refer to the pioneering work [8]. In order to study existence of periodic

2010 Mathematics Subject Classification. 34N05, 34K40, 34D09.
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Almost automorphic solutions of dynamic systems 129

solutions of dynamic equations on time scales, one has to assume that the time
scale is periodic.

D1. A time scale T is periodic if there exists p > 0 such that if t ∈ T then t±p ∈ T.

For T 6= R, the smallest positive p is called the period of the time scale (see
[16]).

Since there is another periodicity notion based on shifts on time scales (see [2]), it is
more suitable to call time scales satisfying (D1) additively periodic and to observe
that additively periodic time scales must be unbounded from above and below. In
addition, for any additively periodic time scale, the set

(1) T :=
{
p ∈ R : t± p ∈ T, ∀t ∈ T

}

is nonempty. For example, the time scales T = R, T = Z, T =hZ, and
T =

⋃
k∈Z

[2k, 2k + 1] are additively periodic. An additive periodic time scale may

have discrete, continuous or piecewise continuous structure. Hence, it may be more
perceptible to use the phrase “hybrid domain” instead of “additive periodic time
scale”. We refer the reader to [15], [16], [17], [28], [29] and [31] for studies handling
existence of periodic solutions or related topics of neutral dynamic equations on
hybrid domains. A more general approach to periodicity notion on time scales has
been introduced in [2] and applied to neutral dynamic systems in [3].

Periodicity may be a strong restriction in some specific real life models in-
cluding functions that are not strictly periodic but having values close enough to
each other at every different period. Many mathematical models (see e.g. [26],
and [27]) in signal processing require the use of almost periodic functions. Infor-
mally, a nearly periodic function means that any one period is virtually identical
to its adjacent periods but not necessarily similar to periods much further away in
time. The theory of almost periodic functions was first introduced by H. Bohr
and generalized by A. S. Besicovitch, W. Stepanov, S. Bochner, and J. von
Neumann at the beginning of 20th century. We have the following definitions.
A continuous function f : R → R is said to be almost periodic if the following
characteristic property holds:

D2. For any ε > 0, the set

E(ε, f(x)) :=
{
τ ∈ R : |f(x+ τ)− f(x)| < ε for all x ∈ R

}

is relatively dense in the real line R. That is, for any ε > 0, there exists a

number ℓ(ε) > 0 such that any interval of length ℓ(ε) contains a number in

E(ε, f(x)).

Afterwards, S. Bochner showed that almost periodicity is equivalent to the fol-
lowing characteristic property which is also called the normality condition:

D3. From any sequence of the form
{
f(x+ hn)

}
, where hn are real numbers, one

can extract a subsequence converging uniformly on the real line (see [6]).
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Theory of almost automorphic functions was first studied by S. Bochner
[7]. It is a property of a function which can be obtained by replacing convergence
with uniform convergence in normality definition D3. More explicitly, a continuous
function f : R → R is said to be almost automorphic if for every sequence {h′n}n∈Z+

of real numbers there exists a subsequence {hn} such that lim
m→∞

lim
n→∞

f(t + hn −

hm) = f(t) for each t ∈ R. For more reading on almost automorphic functions, we
refer to [14].

Almost automorphic solutions of difference equations have been investigated
in [5], [11] and [22]. In addition, C. Lizama and J. G. Mesquita generalized
the notion of almost automorphy in [21] by studying almost automorphic solutions
of dynamic equations on time scales that are invariant under translation. In [25]
Mishra et. al. investigated almost automorphic solutions to functional differential
equation

(2)
d

dt

(
x(t) − F1(t, x(t− g(t)))

)
= A(t)x(t) + F2

(
t, x(t), x(t − g(t))

)

using the theory of evolution semigroup. Note that almost periodic solutions of Eq.
(2) have also been studied in [1] by means of the theory of evolution semigroup.

In this study, we propose existence results for almost automorphic solutions
of the delayed neutral dynamic system

x∆(t) = A(t)x(t) +Q∆(t, x(t − g(t))) +G(t, x(t), x(t − g(t)))

by using fixed point theory. The highlights of the paper can be summarized as
follows:

• In the present paper, we use exponential dichotomy instead of theory of evolu-
tion semigroup since the conditions required by theory of evolution semigroup
are strict and not easy to check (for related discussion see [12]).

• We prove the uniqueness of projector of exponential dichotomy on hybrid
domains satisfying (D1) (see Theorem 3).

• In [21], the authors obtain the limiting properties of exponential dichotomy
by using the product integral on time scales (see [33]). This method requires

boundedness of inverse matrices A(t)−1 and
(
I + µ(t)A(t)

)−1
as compulsory

conditions. We obtain our limit results by using a different technique, includ-
ing uniqueness of projector of exponential dichotomy, which does not require

boundedness of inverse matrices A(t)−1 and
(
I + µ(t)A(t)

)−1
(see Theorem

4).

• Using a different approach we improve the existence results of [21]. Further-
more, our results also extend the results of [11] and [22] in the particular
time scale T = Z.
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2. ALMOST AUTOMORPHY NOTION ON TIME SCALES

This part of the paper is devoted to the discussion of almost automorphic
functions and their properties on time scales. Throughout the paper, we assume
that the reader is familiar with the theory of time scale calculus.

Definition 1 ([21]). Let X be a (real or complex) Banach space and T an additively

periodic time scale. Then, an rd-continuous function f : T →X is called almost

automorphic in T if for every sequence (α′
n) ∈ T , there exists a subsequence (αn)

such that

lim
n→∞

f(t+ αn) = f̄(t)

is well defined for each t ∈ T and

lim
n→∞

f̄(t− αn) = f(t)

for every t ∈ T, where T is defined in (1).

Remark 1. In particular cases T = R and T = Z, it is well known that every continuous
periodic function is almost periodic and every almost periodic function is almost auto-
morphic. This relationship is preserved on an additively periodic time scale T.

Hereafter, we denote by A(X ) the set of all almost automorphic functions on
an additively periodic time scale. Obviously, A(X ) is a Banach space when it is
endowed by the norm

‖f‖A(X ) = sup
t∈T

‖f(t)‖X ,

where ‖.‖X is the norm defined on X .

The following result summarizes the main properties of almost automorphic
functions on time scales:

Theorem 1 ([21]). Let T be an additively periodic time scale and suppose rd-

continuous functions f, g : T →X are almost automorphic. Then

i. f + g is almost automorphic function on time scales,

ii. cf is almost automorphic function on time scales for every scalar c,

iii. For each ℓ ∈ T, the function fℓ : T →X defined by fℓ(t) := f(ℓ+ t) is almost

automorphic on time scales,

iv. The function f̂ : T →X defined by f̂(t) := f(−t) is almost automorphic on

time scales,

v. Every almost automorphic function on a time scale is bounded, that is

‖f‖A(X ) <∞,
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vi. ‖f̄‖A(X ) ≤ ‖f‖A(X ), where

lim
n→∞

f(t+ αn) = f̄(t) and lim
n→∞

f̄(t− αn) = f(t).

The following definition is also necessary for our further analysis.

Definition 2 ([21]). Let X be a (real or complex) Banach space and T an additively

periodic time scale. Then, an rd-continuous function f : T×X →X is called almost

automorphic for t ∈ T for each x ∈ X , if for every sequence (α′
n) ∈ T , there exists

a subsequence (αn) such that

(3) lim
n→∞

f(t+ αn, x) = f̄(t, x)

is well defined for each t ∈ T, x ∈ X and

lim
n→∞

f̄(t− αn, x) = f(t, x)

for every t ∈ T and x ∈ X .

Remark 2. Almost automorphic functions of two or more variables have the similar prop-
erties of almost automorphic functions of one variable. If f, g : T× X →X are almost
automorphic, then f + g and cf (c is a constant) are almost automorphic. Furthermore,

∥

∥f(., x)
∥

∥

A(X)
= sup

t∈T

∥

∥f(t, x)
∥

∥

X
<∞ for each x ∈ X

and
∥

∥f̄(., x)
∥

∥

A(X)
= sup

t∈T

∥

∥f̄(t, x)
∥

∥

X
<∞ for each x ∈ X ,

where f̄ is as in (3).

Theorem 2 ([21]). Let T be an additively periodic time scale. Suppose that f :
T×X →X is an almost automorphic function in t for each x ∈ X and f(t, x)
satisfies Lipschitz condition in x uniformly in t, that is

∥∥f(t, x)− f(t, y)
∥∥
A(X )

≤ L‖x− y‖X ,

for all x, y ∈ X . Suppose that φ : T → X is almost automorphic, then the function

U : T → X defined by U(t) := f
(
t, φ(t)

)
is almost automorphic.

3. EXPONENTIAL DICHOTOMY AND LIMITING RESULTS

In this section, we use exponential dichotomy to obtain some convergence
results for principal fundamental matrix solution of the regressive linear nonau-
tonomous system

(4) x∆(t) = A(t)x(t), x(t0) = x0, t ∈ T

on an additively periodic time scale T.
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Let B(X ) be a Banach space of all bounded linear operators from X to itself
with the norm ‖.‖B(X ) given by

‖L‖B(X ) := sup
{
‖Lx‖X : x ∈ X and ‖x‖X ≤ 1

}
.

Then, the definition of exponential dichotomy is as follows:

Definition 3 (Exponential dichotomy, [21]). Let A(t) be an n× n rd-continuous

matrix valued function on T. We say that the linear system (4) has an exponential

dichotomy on T if there exist positive constants K1,2 and α1,2, and an invertible

projection P commuting with X(t), where X(t) is principal fundamental matrix

solution of (4) satisfying

(5)
∥∥X(t)PX−1(s)

∥∥
B(X )

≤ K1e⊖α1
(t, s), s, t ∈ T, t ≥ s,

and

(6)
∥∥X(t)(I − P)X−1(s)

∥∥
B(X )

≤ K2e⊖α2
(s, t), s, t ∈ T, t ≤ s,

where ⊖αi := −αi

(
1 + (σ(t)− t)αi

)−1
, i = 1, 2.

The following lemma can be proven in a similar way to [9, Lemma 1], hence
we omit its proof.

Lemma 1. The following two statements hold.

i. Suppose that −p ∈ R+, i.e. positively regressive, and t0 ∈ T. If

y∆(t) + p(t)y(t) ≤ 0 for all t0 ≥ t,

then

y(t0) ≤ e−p(t, t0)y(t) for all t0 ≥ t.

ii. Suppose that p is a positive valued function and t0 ∈ T. If

y∆(t)− p(t)−1y(t) ≥ 0 for all t ≥ t0,

then

y(t) ≥ ep−1(t, t0)y(t0) for all t ≥ t0.

Lemma 2. Suppose that the time scale T is unbounded from above and below. Let

Υ : T →(0,∞) and Ψ : T →(0,∞) be rd-continuous functions satisfying

(7) Υ(t)

∫ t

−∞

(
Υ(s)

)−1
∆s ≤ β, t ∈ T

and

(8) Ψ(t)

∫ ∞

t

(
Ψ(s)

)−1
∆s ≤ ν, t ∈ T
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where β, ν are positive constants. Then

Υ(t) ≤ ce⊖β−1(t, t0)

and

Ψ(t) ≤ c̃e⊖ν−1(t0, t).

Proof. Define u(t) :=
t∫

−∞

(
Υ(s)

)−1
∆s. Then by (7) we get u∆(t) =

(
Υ(t)

)−1
≥

β−1u(t), and hence,

u(t) ≥ eβ−1(t, t0)u(t0) for all t ≥ t0

by (ii) of Lemma 1. This implies

Υ(t) ≤ β
(
u(t)

)−1

≤ e⊖β−1(t, t0)
(
u(t0)

)−1
β

= ce⊖β−1(t, t0)

for c =
(
u(t0)

)−1
β. Similarly if we let z(t) :=

∞∫
t

(
Ψ(s)

)−1
∆s, then (8) implies

z∆(t) ≤ −ν−1z(t) ≤ ν−1z(t)

which along with (i) of Lemma 1 yields

z(t0) ≤ eν−1(t, t0)z(t) for all t0 ≥ t.

Then, we have

Ψ(t) ≤ ν
(
z(t)

)−1

≤ ν
(
z(t0)

)−1
eν−1(t, t0)

= c̃e⊖ν−1(t0, t)

for c̃ = ν
(
z(t0)

)−1
. The proof is complete.

Lemma 3 ([9, Lemma 2]). If p is nonnegative and −p is positively regressive, then

1−

∫ t

s

p(u)∆u ≤ e−p(t, s) ≤ exp

{
−

∫ t

s

p(u)∆u

}
for all t ≥ s.

Lemma 4. Assume that T is unbounded above and below. If the homogeneous

system (4) admits an exponential dichotomy, then x = 0 is the unique bounded

solution of the system.
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Proof. Let B0 be the set of initial conditions ϑ belonging to bounded solutions of

the system (4). Assume (I − P)ϑ 6= 0 and define
(
φ(t)

)−1
:=

∥∥X(t)(I − P)ϑ
∥∥
X
.

Using the equality (I − P)2 = I − P , we get

∫ ∞

t

X(t)(I − P)ϑφ(s)∆s =

∫ ∞

t

X(t)(I − P)X−1(s)X(s)(I − P)ϑφ(s)∆s.

Taking the norm on both sides, we obtain

(
φ(t)

)−1
∫ ∞

t

φ(s)∆s ≤

∫ ∞

t

∥∥X(t)(I − P)X−1(s)
∥∥
B(X )

∆s

≤ K2

∫ ∞

t

e⊖α2
(s, t)∆s

uniformly in t ∈ T. Setting p = − ⊖ α2 =
α2

1 + (σ(t)− t)α2
in Lemma 3 we can

conclude boundedness of the last integral. This means

lim inf
s∈[t,∞)∩T

φ(s) = 0,

and hence, ‖X(t) (I − P)ϑ‖X is unbounded.

Using a similar procedure with Pϑ 6= 0 and

∫ t

−∞

X(t)Pϑφ(s)∆s =

∫ t

−∞

X(t)PX−1(s)X(s)Pϑφ(s)∆s,

where
(
φ(t)

)−1
:=

∥∥X(t)Pϑ
∥∥
X
, we get

∫ t

−∞

φ(s)∆s <∞

and hence
lim inf

s∈(−∞,t]∩T

φ(s) = 0.

This shows that ‖X(t)Pϑ‖X is unbounded. Thus, the system (4) has a bounded
solution if B0 = {0}. Equivalently, if x is a bounded solution of the system (4),
then x = 0. The proof is complete.

Theorem 3. If the homogeneous system (4) admits an exponential dichotomy, then

the projection P of the exponential dichotomy is unique on additively periodic time

scales.

Proof. Assume that system (4) admits an exponential dichotomy. Define Υ(t) :=∥∥X(t)P
∥∥
B(X )

and consider

∫ t

−∞

X(t)PΥ(s)−1∆s =

∫ t

−∞

X(t)PX−1(s)X(s)PΥ(s)−1∆s.
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Taking the norm of both sides and employing Lemma 3, we obtain

Υ(t)

∫ t

−∞

(
Υ(s)

)−1
∆s ≤ Γ,

where Γ is a positive constant. By Lemma 2 we arrive at the following inequality

Υ(t) ≤ ce⊖Γ−1(t, t0) for t ≥ t0.

This shows that
∥∥X(t)P

∥∥
B(X )

is bounded. By repeating the same procedure, we

conclude that
∥∥X(t)(I − P)

∥∥
B(X )

is bounded for t ≤ t0.

Suppose that there exists another projection P̃ 6= P of exponential dichotomy of
the homogeneous system (4). Then by using the similar arguments we may find
positive constants N and N̂ such that

∥∥X(t)P
∥∥
B(X )

< N for t ≥ t0,

and ∥∥X(t)(I − P)
∥∥
B(X )

< N̂ for t ≤ t0.

Using (5) - (6), for any nonzero vector ϑ we get

∥∥X(t)P(I − P̃)ϑ
∥∥
X
=

∥∥X(t)PX−1(t0)X(t0)(I − P̃)ϑ
∥∥
X

≤ K1

∥∥(I − P̃)ϑ
∥∥
X

for t ≥ t0,

and

∥∥X(t)P(I − P̃)ϑ
∥∥
X
=

∥∥X(t)PX−1(t)X(t)(I − P̃)X−1(t0)X(t0)(I − P̃)ϑ
∥∥
X

≤ K1K2

∥∥(I − P̃)ϑ
∥∥
X

for t ≤ t0.

Thus, x(t) = X(t)P(I − P̃)ϑ is a bounded solution of (4). Similarly, x(t) =
X(t)(I − P)P̃ϑ is also a bounded solution of (4). It follows from Lemma 4 that
x = 0, and therefore, P̃ = PP̃ = P . This completes the proof.

Theorem 4. Let T be an additively periodic time scale and assume that the system

(4) admits exponential dichotomy with projection P and positive constants K1,2 and

α1,2. Let the matrix valued function A in (4) be almost automorphic. That is, for

any sequence {θ′k} in T there exists a subsequence {θk} such that lim
k→∞

A(t+ θk) :=

Ā(t) is well defined and lim
k→∞

Ā(t − θk) = A(t) for each t ∈ T and T is as in (1).

Then

(9) lim
k→∞

X(t+ θk)PX
−1

(
σ(s+ θk)

)
:= X̄(t)P̄X̄−1

(
σ(s)

)
, t ≥ σ(s)

and

(10) lim
k→∞

X(t+ θk)(I − P)X−1
(
σ(s+ θk)

)
:= X̄(t)(I − P̄)X̄−1(σ(s)), t ≤ σ(s)
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are well defined for each t ∈ T, and the limiting system

(11) x∆(t) = Ā(t)x(t), x(t0) = x0

admits an exponential dichotomy with the projection P̄ and the same constants. In

addition, for each t ∈ T we obtain

(12) lim
k→∞

X̄(t− θk)P̄ X̄
−1

(
σ(s− θk)

)
= X(t)PX−1

(
σ(s)

)
, t ≥ σ(s)

and

(13) lim
k→∞

X̄(t− θk)(I − P̄ )X̄−1
(
σ(s− θk)

)
= X(t)(I − P )X−1

(
σ(s)

)
, t ≤ σ(s).

Proof. First we show that X(t0 + θk)PX
−1

(
σ(t0 + θk)

)
is convergent. Sup-

pose the contrary that it is not convergent. Thus, there exist two subsequences
X(t0+ θkm

)PX−1
(
σ(t0 + θkm

)
)
and X(t0 + θk′

m

)PX−1
(
σ(t0 + θk′

m

)
)
converging to

two different numbers P̄ and P , respectively. From (5), we can write

∥∥X(t+ θkm
)PX−1(σ(s + θkm

))
∥∥
B(X )

≤ K1e⊖α1

(
t, σ(s)

)
for t ≥ σ(s),(14)

∥∥X(t+ θk′

m

)PX−1(σ(s + θk′

m

))
∥∥
B(X )

≤ K1e⊖α1

(
t, σ(s)

)
for t ≥ σ(s).(15)

Let Xkm
(t) and Xk

′

m

(t) denote the principal fundamental matrix solutions of the
following systems:

(16) x∆(t) = A(t+ θkm
)x(t), x(t0) = x0,

and
x∆(t) = A(t+ θk′

m

)x(t), x(t0) = x0,

respectively. Then

(17) X(t+ θkm
) = Xkm

(t)X(t0 + θkm
).

To see this, consider

[
X−1

km

(t)X(t+ θkm
)
]∆

=
[
X−1

km

(t)
]∆
Xσ(t+ θkm

) +X−1
km

(t)
[
X(t+ θkm

)
]∆

=
[
X−1

km

(t)
]∆[

X(t+ θkm
) + µ(t)X∆(t+ θkm

)
]

+X−1
km

(t)A(t+ θkm
)X(t+ θkm

)

=
[
X−1

km

(t)
]∆[

I + µ(t)A(t+ θkm
)
]
X(t+ θkm

)

+X−1
km

(t)A(t+ θkm
)X(t+ θkm

)

which along with

[
X−1

km

(t)
]∆

= −X−1
km

(t)A(t+ θkm
)
[
I + µ(t)A(t + θkm

)
]−1
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implies [
X−1

km

(t)X(t+ θkm
)
]∆

= 0.

This means X−1
km

(t)X(t+θkm
) is constant. Letting t = t0, we obtain (17). Similarly,

we have
X(t+ θk′

m

) = Xk
′

m

(t)X(θk′

m

).

Since
{
A(t+ θkm

)
}
converges to Ā(t) and

{
A(t+ θkm

)x(t)
}
converges to Ā(t)x(t),

we have
A(t+ θkm

)x(t) → Ā(t)x(t),

and
A(t+ θk′

m

)x(t) → Ā(t)x(t).

Thus the sequences Xkm
(t) and Xk

′

m

(t) converge to X̄(t) as m→ ∞ for each t ∈ T.

Now, the exponential dichotomy of the linear homogeneous system (4) plays an
important role. Using (17) along with (14) and (15), we get

(18)
∥∥Xkm

(t)X(t0 + θkm
)PX−1(t0 + θkm

)X−1
km

(σ(s))
∥∥
B(X )

≤ K1e⊖α1

(
t, σ(s)

)
,

for t ≥ σ(s) and

(19)
∥∥Xk

′

m

(t)X(t0 + θk′

m

)PX−1(t0 + θk′

m

)X−1
k
′

m

(σ(s))
∥∥
B(X )

≤ K1e⊖α1

(
t, σ(s)

)

for t ≥ σ(s). Taking the limit as m→ ∞, we obtain

∥∥X̄(t)P̄X̄−1
(
σ(s)

)∥∥
B(X )

≤ K1e⊖α1
(t, σ(s)) for t ≥ σ(s),(20)

∥∥X̄(t)PX̄−1(σ(s))
∥∥
B(X )

≤ K1e⊖α1

(
t, σ(s)

)
for t ≥ σ(s).(21)

Similarly, we have

∥∥X̄(t)(I − P̄)X̄−1
(
σ(s)

)∥∥
B(X )

≤ K2e⊖α2
(σ(s), t) for σ(s) ≥ t,(22)

∥∥X̄(t)(I − P)X̄−1(σ(s))
∥∥
B(X )

≤ K2e⊖α2
(σ(s), t) for σ(s) ≥ t.(23)

Inequalities (20)-(23) show that the limiting system of (16) admits an exponential
dichotomy. From uniqueness of projector of exponential dichotomy (Theorem 3),
we get that P̄ = P. This leads to a contradiction. Assume that

X(t0 + θk)PX
−1

(
σ(t0 + θk)

)
→ P̄ .

Let Xk(t) denote the principal fundamental matrix solution of the system

x∆(t) = A(t+ θk)x(t), x(t0) = x0.

Then Xk(t) → X̄(t) and X−1
k

(
σ(s)

)
→ X̄−1

(
σ(s)

)
as k → ∞ for each t, s ∈ T.

This means

X(t+ θk)PX
−1

(
σ(s + θk)

)
→ X̄(t)P̄X̄−1

(
σ(s)

)
for t ≥ σ(s),
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and similarly,

X(t+ θk)(I − P)X−1
(
σ(s + θk)

)
→ X̄(t)(I − P̄)X̄−1

(
σ(s)

)
for σ(s) ≥ t.

Furthermore, from (14) and (15), we arrive at the following inequalities:

∥∥X(t+ θk)PX
−1(σ(s + θk))

∥∥
B(X )

≤ K1e⊖α1
(t, σ(s)) for t ≥ σ(s),

and

∥∥X(t+ θk)(I − P)X−1(σ(s+ θk))
∥∥
B(X )

≤ K2e⊖α2
(σ(s), t) for σ(s) ≥ t.

Taking the limit as k → ∞, we show that the limiting system (11) admits exponen-
tial dichotomy with the projection P̄ and positive constants α1,2, K1,2. To prove
(12) and (13), we can follow the similar procedure that we used to get (9) and (10).
This completes the proof.

4. EXISTENCE RESULTS

In this section, we propose some sufficient conditions guaranteeing existence
of almost automorphic solutions of the following nonlinear neutral delay dynamic
system

(24) x∆(t) = A(t)x(t) +Q∆
(
t, x(t− g(t))

)
+G

(
t, x(t), x(t − g(t))

)
,

where g(t) is a scalar delay function, A(t) is regressive, rd-continuous n×n matrix
valued function, Q ∈ Crd(T×X ,X ), and G ∈ Crd(T×X × X ,X ). Henceforth, we
assume that the time scale T is additively periodic and we use the following fixed
point theorem in our further analysis.

Theorem 5 (Krasnoselskii). Let M be a closed, convex and nonempty subset of

a Banach space
(
B, ‖.‖

)
. Suppose that H1 and H2 maps M into B such that

i. x, y ∈ M implies H1x+H2y ∈ M,

ii. H2 is continuous and H2M contained in a compact set,

iii. H1 is a contraction mapping.

Then there exists z ∈ M with z = H1z +H2z.

Let ζ, ψ ∈ A(X ). We have the following list of assumptions:

A1 There exists a constant E1 > 0 such that

∥∥Q(t, ζ)−Q(t, ψ)
∥∥
X
≤ E1‖ζ − ψ‖A(X ) for all t ∈ T.
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A2 There exists a constant E2 > 0 such that

∥∥G(t, u, ζ)−G(t, u, ψ)
∥∥
X
≤ E2

(
‖u− v‖X + ‖ζ − ψ‖A(X )

)
for all t ∈ T

and for any vector valued functions u and v defined on T.

A3 Functions g(t), A(t), Q(t, u) and G(t, u, v) are almost automorphic in t.

A4 The linear homogeneous system (4) admits an exponential dichotomy with the
positive constants K1,2 and α1,2 and invertible projection P commuting with
X(t), where X(t) is principal fundamental matrix solution of (4).

The following result can be proven similar to [12, Lemma 2.4], hence we omit
it.

Lemma 5. If u, v : T → X are almost automorphic functions, then u
(
t− v(t)

)
is

also almost automorphic on time scale T.

Theorem 6. If (A4) holds, then the nonhomogeneous system

(25) x∆(t) = A(t)x(t) + f(t)

has a solution x(t) of the form

(26) x(t) =

∫ t

−∞

X(t)PX−1
(
σ(s)

)
f(s)∆s−

∫ ∞

t

X(t)(I − P)X−1
(
σ(s)

)
f(s)∆s,

where X(t) is the principal fundamental matrix solution of the system (4). More-

over, we have

‖x‖X ≤

(
K1

α1
+
K2

α2

)
‖f‖X .

Proof. It is trivial to show that x(t) given by (26) satisfies the equation (25). The
boundedness of x follows from the inequality

‖x‖X =

∥∥∥∥
∫ t

−∞

X(t)PX−1
(
σ(s)

)
f(s)∆s−

∫ ∞

t

X(t)(I − P)X−1
(
σ(s)

)
f(s)∆s

∥∥∥∥
X

≤

(∫ t

−∞

∥∥X(t)PX−1(σ(s))
∥∥
B(X )

∆s+

∫ ∞

t

∥∥X(t)(I − P)X−1(σ(s))
∥∥
B(X )

∆s

)
‖f‖X

≤

(∫ t

−∞

K1e⊖α1

(
t, σ(s)

)
∆s+

∫ ∞

t

K2e⊖α2

(
σ(s), t

)
∆s

)
‖f‖X

≤

(
K1

α1
+
K2

α2

)
‖f‖X ,
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where we used [8, Theorem 2.36] and [9, Remark 2] to get the inequalities

∫ t

−∞

K1e⊖α1
(t, σ(s))∆s = K1

∫ t

−∞

1

1 + µ(s)α1

(
1

α1
e⊖α1

(t, s)

)∆s

∆s(27)

≤
K1

α1
+ lim

s→−∞
e⊖α1

(t, s) =
K1

α1
+ lim

s→−∞

1

eα1
(t, s)

≤
K1

α1
+ lim

s→−∞

1

1 + α1(t− s)
=
K1

α1
,

and
∫ ∞

t

K2e⊖α2

(
σ(s), t

)
∆s = −

K2

α2

∫ ∞

t

(
1

eα2
(s, t)

)∆s

∆s(28)

=
K2

α2
−
K2

α2
lim
s→∞

1

eα2
(s, t)

≤
K2

α2
−
K2

α2
lim
s→∞

1

1 + α2(s− t)
=
K2

α2
.

The proof is complete.

Now, define the mapping H by

(Hx)(t) := (H1x)(t) + (H2x)(t),

where

(H1x)(t) := Q
(
t, x(t− g(t))

)
,(29)

(H2x)(t) :=

∫ t

−∞

X(t)PX−1
(
σ(s)

)
Λ(s, x)∆s(30)

−

∫ ∞

t

X(t)(I − P)X−1
(
σ(s)

)
Λ(s, x)∆s,

and

(31) Λ(s, x) :=
[
A(s)Q(s, x(s − g(s))) +G(s, x(s), x(s − g(s)))

]
.

Then the next result follows.

Lemma 6. The mapping H maps A(X ) into A(X ).

Proof. Suppose that x ∈ A(X ). First, we deduce by using (A1)-(A3) along with
Theorem 2 that the functions Q and G are almost automorphic. That is,

lim
n→∞

Q
(
t+ kn, x(t+ kn − g(t+ kn))

)
:= Q

(
t, x(t− g(t))

)
,

and

lim
n→∞

G
(
t+ kn, x (t+ kn) , x(t+ kn − g(t+ kn))

)
:= G

(
t, x(t), x(t− g(t))

)
,
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are well defined for each t ∈ T. Moreover,

lim
n→∞

Q
(
t− kn, x(t− kn − ḡ(t− kn))

)
= Q

(
t, x(t− g(t))

)
,

and

lim
n→∞

G
(
t− kn, x(t− kn), x(t− kn − g(t− kn))

)
= G

(
t, x(t), x(t − g(t))

)
,

for each t ∈ T.

As for the mapping H, we have

(Hx)(t + kn) = Q
(
t+ kn, x(t + kn − g(t+ kn))

)

+

∫ t

−∞

X(t+ kn)PX
−1

(
σ(s+ kn)

)
Λ(s+ kn, x)∆s

−

∫ ∞

t

X(t+ kn)(I − P)X−1
(
σ(s+ kn)

)
Λ(s+ kn, x)∆s.

Taking the limit n→ ∞ and employing Lebesgue convergence theorem, we conclude
that the mapping

(Hx)(t) := lim
n→∞

(Hx)(t+ kn) = Q
(
t, x(t− g(t))

)

+

∫ t

−∞

X(t)PX
−1(

σ(s + kn)
)
Λ(s, x)∆s

−

∫ ∞

t

X(t)(I − P)X
−1(

σ(s+ kn)
)
Λ(s, x)∆s

is well defined for each t ∈ T, where

Λ(s, x) := A(s)Q
(
s, x(s− g(s))

)
+G

(
s, x(s), x(s− g(s))

)
.

Applying similar procedure to the following

(Hx)(t− kn) = Q
(
t− kn, x(t− kn − g(t− kn))

)

+

∫ t

−∞

X(t− kn)PX
−1(

σ(s− kn)
)
Λ(s− kn, x)∆s

−

∫ ∞

t

X(t− kn)(I − P)X
−1(

σ(s− kn)
)
Λ(s− kn, x)∆s,

we get

lim
n→∞

(Hx)(t− kn) = (Hx)(t),

for each t ∈ T. This means Hx ∈ A(X ). This completes the proof.

The following lemma follows from (29) and (A1).
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Lemma 7. Assume (A1). If E1 < 1, then the mapping H1 given by (29) is a

contraction.

Lemma 8. Assume (A1)-(A4). Define the set

ΠM :=
{
x ∈ A(X ), ‖x‖A(X ) ≤M

}

where M is a fixed constant. The mapping H2 given by (30) is continuous and the

image H2(ΠM ) is contained in a compact set.

Proof. By (A4), (30), and Theorem 6, we have the following:

(32)
∥∥(H2x)(t)

∥∥
A(X )

≤
∥∥Λ(., x(.)

∥∥
A(X )

(
K1

α1
+
K2

α2

)
,

where Λ is defined by (31). To see that H2 is continuous, suppose ζ, ψ ∈ A(X )
and for any given ε > 0 define the number δ(ε) > 0 by

δ :=
ε

[
‖A‖E1‖ζ − ψ‖A(X ) + 2E2‖ζ − ψ‖A(X )

](K1

α1
+
K2

α2

) ,

where the norm of matrix function A is defined by

(33) ‖A‖ = sup
t∈T

|A(t)|,

and

∣∣A(t)
∣∣ := max

1≤i≤n

n∑

j=1

|aij(t)|.

If ‖ζ − ψ‖A(X ) < δ, then we have

∥∥H2(ζ)(t) −H2(ψ)(t)
∥∥
X
≤

∫ t

−∞

(∥∥X(t)PX−1(σ(s))
∥∥
B(X )

×
[
‖A‖ ‖Q(s, ζ(s− g(s)))−Q(s, ψ(s− g(s)))

∥∥
X

+ ‖G(s, ζ(s), ζ(s − g(s)))−G(s, ψ(s), ψ(s− g(s)))‖X
])

∆s

+

∫ ∞

t

(∥∥X(t)(I − P)X−1(σ(s))
∥∥
B(X )

×
[
‖A‖ ‖Q(s, ζ(s− g(s)))−Q(s, ψ(s− g(s)))‖X

+ ‖G (s, ζ (s) , ζ (s− g(s)))−G (s, ψ (s) , ψ (s− g(s)))‖X
])

∆s.
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By (A2)-(A4), we get

∥∥H2(ζ)(t) −H2(ψ)(t)
∥∥
X
≤

∫ t

−∞

K1e⊖α1
(t, σ (s))

×
[
‖A‖E1‖ζ − ψ‖A(X ) + 2E2‖ζ − ψ‖A(X )

]
∆s

+

∫ ∞

t

K2e⊖α2

(
σ(s), t

)[
‖A‖E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

]
∆s

≤
[
‖A‖E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

](K1

α1
+
K2

α2

)
< ε,

which shows that H2 is continuous.

Now, we show that H2(ΠM ) is contained in a compact set. For any ζ, ψ ∈ ΠM

we have
∥∥G(t, ζ(t), ψ(t − g(t)))

∥∥
X

≤
∥∥G(t, ζ(t), ψ(t − g(t))) −G(t, 0, 0)

∥∥
X
+
∥∥G(t, 0, 0)

∥∥
X

≤ E2

(
‖ζ‖A(X ) + ‖ψ‖A(X )

)
+ a

≤ 2ME2 + a,

and
∥∥Q(t, ζ(t− g(t)))

∥∥
X
≤

∥∥Q(t, ζ(t− g(t)))−Q(t, 0)
∥∥
X
+ ‖Q(t, 0)‖X

≤ E1‖ζ‖A(X ) + b

≤ E1M + b

where a :=
∥∥G(t, 0, 0)

∥∥
X

and b :=
∥∥Q(t, 0)

∥∥
X
. This implies

∥∥H2(ζn)(t)
∥∥
A(X )

≤
[
‖A‖(E1M + b) + 2E2M + a

](K1

α1
+
K2

α2

)

for any sequence {ζn} in ΠM . Moreover, from (A1),(A4) and (32), we deduce that

(
H2(ζn(t))

)∆
= A(t)

(
H2(ζn(t))

)
+A(t)Q

(
t, ζn(δ−(τ, t))

)
+G

(
t, ζn(t), ζn(δ−(τ, t))

)

is bounded. That is, H2(ζn) is uniformly bounded an equicontinuous. Employing
the Arzela-Ascoli theorem, we conclude that H2(ΠM ) is contained in a compact
set.

Theorem 7. Assume (A1)-(A4). Let M0 be a constant satisfying the following

inequality

E1M0 + b+
[
‖A‖(E1M0 + b) + 2E2M0 + a

](K1

α1
+
K2

α2

)
≤M0,

where E1 ∈ (0, 1) and

a :=
∥∥G(t, 0, 0)

∥∥
X
, b :=

∥∥Q(t, 0)
∥∥
X
.

Then the equation (24) has an almost automorphic solution in ΠM0
.
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Proof. For ψ ∈ ΠM0
, we have

∥∥H1(ψ(t)) +H2(ψ(t))
∥∥
A(X )

≤
∥∥Q(t, ψ(t− g(t))) −Q(t, 0)

∥∥
X
+
∥∥Q(t, 0)

∥∥
X

+

∫ t

−∞

( ∥∥X(t)PX−1(σ(s))
∥∥
B(X )

×
∥∥A(s)Q(s, x(s − g(s))) +G(s, ψ(s), ψ(s− g(s)))

∥∥
X
∆s

)

+

∫ ∞

t

(∥∥X(t)(I − P)X−1(σ(s))
∥∥
B(X )

×
∥∥A(s)Q(s, x(s − g(s))) +G(s, ψ(s), ψ(s− g(s)))

∥∥
X
∆s

)

≤ E1M0 + b+
[
‖A‖ (E1M0 + b) + 2E2M0 + a

](K1

α1
+
K2

α2

)
≤M0

which means H1(ψ)+H2(ψ) ∈ ΠM0
. Consequently, all conditions of Theorem 5 are

satisfied. Thus, there exists a x ∈ ΠM0
such that x(t) = H1(x(t)) +H2(x(t)).

Example 1. Let T = Z and consider the discrete system given by

∆x(t) =

[ 1

3
sgn(cos 2πtθ)− 1 0

0
1

3
sgn(cos 2πtθ)− 1

]

x(t)(34)

+
1

10
∆x(t− τ ) +

[

sin
π

2
t+ sin

π

2
t
√
2

cosπt+ cosπt
√
2

]

+
1

20
x(t− τ ),

where θ is an irrational number, τ is a positive integer with t > τ and Banach space
X = R. In this case,

A(t) =

[ 1

3
sgn(cos 2πtθ)− 1 0

0
1

3
sgn(cos 2πtθ)− 1

]

,

Q(t, x(t− g(t))) =





1

10
x1(t− τ )

1

10
x2(t− τ )



 ,

and

G(t, x(t), x(t− g(t))) =





sin
π

2
t+ sin

π

2
t
√
2 +

1

20
x1 (t− τ )

cosπt+ cos πt
√
2 +

1

20
x2(t− τ )



 .

In [34], it is shown that sgn(cos 2πtθ) is an almost automorphic function for t ∈ Z and θ is
irrational. Hence, the matrix function A(t) is discrete almost automorphic. Furthermore,
the functions Q and G are discrete almost automorphic in t for x ∈ A(R). Then assumption
(A3) is satisfied. For any ς, ψ ∈ M, we have

∣

∣Q(t, ς(t− g(t)))−Q(t, ψ(t− g(t)))
∣

∣ ≤ 1

10
‖ς − ψ‖A(R)

and
∣

∣G(t, ς(t), ς(t− g(t)))−G(t, ψ(t), ψ(t− g(t)))
∣

∣ ≤ 1

20
‖ς − ψ‖

A(R) .
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Then (A1-A2) hold with E1 =
1

10
, E2 =

1

20
, a = 2 and b = 0.

Then the principal fundamental matrix solution of the homogeneous system

x(t+ 1) =
1

3
sgn(cos 2πtθ)x(t)I

can be written as

X(t) =











3−t

( t−1
∏

j=0

sgn(cos 2πjθ)

)

0

0 3−t

( t−1
∏

j=0

sgn(cos 2πjθ)

)











,

and with projections P0 = I2×2 and P1 = 02×2 the following inequality

∣

∣

∣

∣

3s−t

( t−1
∏

j=s

sgn(cos 2πjθ)

)∣

∣

∣

∣

= 3s−t ≤ K1(1 + α1)
s−t for t ≥ s

is satisfied forK1 = 1 and α1 = 1, the homogeneous system admits exponential dichotomy,
as desired in (A4). Moreover, we may assume α1 = α2 and K1 = K2 since P1 = 02×2.

That is, all assumptions of Theorem 7 hold. Hence, we conclude that the system (34) has
an almost automorphic solution in ΠM0

whenever M0 satisfies the inequality

1

10
M0 +

4

10
M0 +

3

10
M0 + 6 ≤M0

or equivalently
30 ≤M0.

The following theorem is useful for our next examples:

Theorem 8 ([36, Theorem 5.1]). If A(t) is uniformly bounded, rd-continuous n×n
matrix valued function on T, and there exists δ > 0 such that

(35) |aii(t)| −
∑

j 6=i

|aij(t)| − 1

2
µ(t)

( n
∑

j=1

|aij(t)|
)2

≥ 2δ + δ
2
µ(t), t ∈ T, i = 1, 2, . . . , n,

then the regressive homogeneous system

x∆(t) = A(t)x(t), t ∈ T

admits an exponential dichotomy.

Example 2. The time scale T̂ =
⋃

k∈Z

[2k, 2k+1] is an important time scale for mathematical

models in biomathematics. In particular, a prey-predator model can be constructed on the
time scale T̂. For example, two insect prey-predator populations living on nonoverlapping
intervals and dying between two consecutive intervals while their eggs are incubating can
be an applicable scenario on T̂. Now, consider

(36) x
∆(t) =

[

1 +
sinπt

2
0

0 1

]

x(t) + c1x
∆(t− τ ) + c2x(t− τ ), t ∈ T̂,
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where c1 < 1 and c2 are real constants, τ is constant delay and the abstract Banach space
X= R. If we compare system (36) with (24), we have

A(t) =

[

1 +
sinπt

2
0

0 1

]

, Q
(

t, x(t− g(t))
)

= c1x (t− τ )

and

G(t, x(t), x(t− g(t))) = c2x (t− τ ) .

The matrix function A is periodic (consequently almost automorphic) and satisfies condi-
tion (35) for all t ∈ T̂. Then, by Theorem 8, the regressive homogeneous system

x
∆(t) =

[

1 +
sinπt

2
0

0 1

]

x(t)

admits an exponential dichotomy and suppose that dichotomy constants are denoted by
K̂1,2 and α̂1,2. Furthermore, for x ∈ A (R) assumptions (A1-A3) hold with E1 = c1, E2 =
c2 and a = b = 0. Then Theorem 7 implies that system (36) has an almost automorphic
solution in ΠM̂0

:=
{

x ∈ A(R), ‖x‖A(R) ≤ M̂0

}

whenever the inequality

c1M̂0 +
[

c1M̂0 + 2c2M̂0

]

(

K1

α1
+
K2

α2

)

≤ M̂0

holds.

The following existence result is given in [22].

Theorem 9 ([22, Theorem 4.3]). Suppose that A(k) is discrete almost automorphic

and a non-singular matrix and the set
{
A−1(k)

}
k∈Z

is bounded. Also, assume that

the homogeneous system U(k + 1) = A(k)U(k), k ∈ Z, admits an exponential

dichotomy on Z with positive constants η, ν, β, α and the function f : Z × En →
En is discrete almost automorphic in k for each u in En, satisfying the following

condition :

1. There exists a constant 0 < L <
(1− e−α)(eβ − 1)

η(eβ − 1) + ν(1− e−α)
such that

‖f(k, u)− f(k, v)‖ ≤ L ‖u− v‖

for every u, v ∈ En and k ∈ Z. Then the system

U(k + 1) = A(k)U(k) + f
(
k, u(k)

)
, k ∈ Z

has a unique almost automorphic solution.

In the following example we use Theorem 7 to obtain existence of almost
periodic solutions of a discrete system for which [22, Theorem 4.3] is invalid.
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Example 3. Consider the function ϕ : Z → R defined by

ϕ(0) = 2, ϕ(1) = 1, ϕ(−2) =
3

2
, ϕ(−1) =

1

2
,

...

ϕ(t) := ϕ(t+ 22i−1)− 1

22i−1
if t ∈

[

−
i

∑

k=1

22k−1
,−

(

1 +

i−1
∑

k=1

22k−1

)]

∩ Z for i ∈ N

ϕ(t) := ϕ(t− 22i)− 1

22i
if t ∈

[

2 +
i−1
∑

k=1

22k, 1 +
i

∑

k=1

22k
]

∩ Z for i ∈ N

see [35, Example 2.19]. Obviously, the function ϕ never vanishes on Z. It is proven in [35,
Theorem 1.16] that the function ϕ is discrete almost periodic (and hence, discrete almost
automorphic) and that

lim
i→∞

ϕ
(

20 − 21 + 22 − 23 + · · ·+ (−2)i
)

= 0.

We construct the following discrete system

(37) x(t+ 1) =

[

ϕ(t) 0
0 ϕ(t)

]

x(t) + f(t, x), t ∈ Z

for any discrete almost automorphic function f satisfying

‖f (t, ξ)− f (t, ψ)‖X ≤ E ‖ξ − ψ‖A(X)

for a sufficiently small positive constant E and ξ, ψ ∈ A(X ). In this case the discrete
almost automorphic matrix function A(t) = ϕ(t)I2×2 is invertible and has unbounded
inverse. Furthermore, we can say that the homogeneous part of (37) admits an discrete
exponential dichotomy by using discrete counterpart of Theorem 8. Then the assumptions
of Theorem 7 are satisfied and the sysem (37) has a discrete almost automorphic solution.
However, [22, Theorem 4.3] is invalid for the system (37) since the matrix A(t) has no
bounded inverse.

One may repeat the same procedure in the last section by replacing A(X )
with AP(X ), the space of all almost periodic functions on X , and the assumption
(A3) with the following

A3′ Functions A(t), g(t), Q(t, u) and G(t, u, v) are almost periodic in t

to arrive at the following result:

Theorem 10 (Almost periodic solutions of the system (24)). Assume (A3′) and

(A2)-(A4). Let M0 be a constant satisfying the following inequality

E1M0 + b+
[
‖A‖ (E1M0 + b) + 2E2M0 + a

] (K1

α1
+
K2

α2

)
≤M0,

where E1 ∈ (0, 1) and

a := ‖G(t, 0, 0)‖X , b := ‖Q(t, 0)‖X .



Almost automorphic solutions of dynamic systems 149

Then the equation (24) has an almost periodic solution in

Π̃M0
:=

{
x ∈ AP(X ), ‖x‖AP(X ) ≤M0

}
.
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