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Optimal control analysis of Ebola disease
with control strategies of quarantine and
vaccination
Muhammad Dure Ahmad1*†, Muhammad Usman2, Adnan Khan3 and Mudassar Imran4

Abstract

Background: The 2014 Ebola epidemic is the largest in history, affecting multiple countries in West Africa. Some
isolated cases were also observed in other regions of the world.

Method: In this paper, we introduce a deterministic SEIR type model with additional hospitalization, quarantine and
vaccination components in order to understand the disease dynamics. Optimal control strategies, both in the case of
hospitalization (with and without quarantine) and vaccination are used to predict the possible future outcome in
terms of resource utilization for disease control and the effectiveness of vaccination on sick populations. Further, with
the help of uncertainty and sensitivity analysis we also have identified the most sensitive parameters which effectively
contribute to change the disease dynamics. We have performed mathematical analysis with numerical simulations
and optimal control strategies on Ebola virus models.

Results: We used dynamical system tools with numerical simulations and optimal control strategies on our Ebola
virus models. The original model, which allowed transmission of Ebola virus via human contact, was extended to
include imperfect vaccination and quarantine. After the qualitative analysis of all three forms of Ebola model,
numerical techniques, using MATLAB as a platform, were formulated and analyzed in detail. Our simulation results
support the claims made in the qualitative section.

Conclusion: Our model incorporates an important component of individuals with high risk level with exposure to
disease, such as front line health care workers, family members of EVD patients and Individuals involved in burial of
deceased EVD patients, rather than the general population in the affected areas. Our analysis suggests that in order for
R0 (i.e., the basic reproduction number) to be less than one, which is the basic requirement for the disease elimination,
the transmission rate of isolated individuals should be less than one-fourth of that for non-isolated ones. Our analysis
also predicts, we need high levels of medication and hospitalization at the beginning of an epidemic. Further, optimal
control analysis of the model suggests the control strategies that may be adopted by public health authorities in
order to reduce the impact of epidemics like Ebola.
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Background
Ebola hemorrhagic fever, commonly known as Ebola virus
disease (EVD), is presumed to have started during the
mid seventies in Guinea. As a result of this outbreak,
3000 cases and 1500 deaths were confirmed in Guinea,
Liberia, Nigeria and Sierra Leone. During the period, two
separate outbreaks involving 284 cases (with 280 deaths)
centered in Nzara, Sudan and 318 cases (280 deaths)
in Yambuka (near the Ebola river), Democratic Republic
of Congo (formally known as Zaire) were also reported.
Since these original cases, there were approximately 20
major outbreaks through the year 2013 [24]. The recent
outbreak, which began in Guinea during early 2014 and
later on spread to Liberia and Sierra Leone, is the longest,
largest and most widespread Ebola outbreak and there-
fore on August 08, 2014, World Health Organization
(WHO) declared the epidemic to be a Public Health Emer-
gency of International Concern (PHEIC) [23]. According
to the WHO report, as of November 2nd, 2014, a total
of 13042 suspected cases and 4818 confirmed deaths
were recorded. Among these deaths, 4791 (approximately
99.5 %) occurred in west African countries [4].
The causative agent of Ebola virus is an RNA virus of

family Filoviridae and genus Ebola virus which includes 3
genera: Cueva-virus, Marburg-virus, and Ebola virus. So
far, five species of Ebola virus strains have been identi-
fied, named as Zaire, Bundibugyo, Sudan, Reston and Tai
Forest. The recent wide spread outbreak of EVD in west-
ern Africa was due to the first three, Bundibugyo Ebola
virus, Zaire Ebola virus, and Sudan Ebola virus, and in par-
ticular, the current outbreak of 2014 belongs to the Zaire
species [7, 11].
Ebola virus is generally introduced into the human pop-

ulation through close contact with the blood, secretions,
organs or other bodily fluids of infected animals such as
chimpanzees, gorillas, fruit bats, monkeys, forest ante-
lope and porcupines found ill or dead or in the rainforest.
Later on human to human transmission can occur only via
direct contact with the blood or other bodily fluid from an
infected person as well as by contact with objects recently
contaminated by an actively ill infected individual [11].
Since the people remain infectious as long as their blood
and body fluids contain the virus, burial ceremonies in
which mourners have direct contact with the body of the
deceased person can also play a role in the transmission of
disease.
The Ebola incubation period can be as short as 2 days

and as long as 21 days [13]. On average the symptoms
of Ebola, such as, fever fatigue, muscular pain, vomiting

and diarrhoea, can appear within four to six days after
a person becomes infected with the Ebola virus. Recent
results showed a promising breakthrough in a vaccina-
tion, [8], but we are still far behind its availability and
usage for the common people. However in the absence of
treatment through vaccination, these specific early symp-
toms of EVD and supportive care-rehydration with oral
or intravenous fluids can improve the survival rate. In
general, the transmission of the disease is less likely to
occur during the incubation period and the transmissi-
bility increases with the duration of disease and direct
contact with the patients during the late stage of illness.
The objective of this paper is to understand the Ebola

disease dynamics through the lens of Mathematical mod-
eling and to predict the possible future outcome in terms
of resource utilization for the disease control and the
effectiveness of the future vaccination on sick population.
Since economic resources are limited, epidemiological
models have started taking into consideration the eco-
nomic constraints imposed by limited resources when
analyzing control strategies. The successful eradication of
the emerging diseases, like Ebola, not only depends on the
availability of medical infrastructures but also on the abil-
ity to understand the transmission dynamics of the disease
as well as the application of optimal control strategies
and the implementation of logistic policies. Therefore, in
this paper, we presented a mathematical model to address
these issues and discuss various optimal strategies for
detection, prevention and control of the disease.
During recent years, a variety of computational and

statistical models have been documented in literature to
characterize and resolve the mechanisms underlying the
trends in the growth of EVD, see for instance [3, 9, 14] and
[15]. The models, we presented in this paper explain dif-
ferent aspects of the disease dynamics. Ourmodel is based
on the SEIR type formulation, along with an extended
susceptible class (SL- low risk susceptibles and SH-high
risk susceptibles) and an additional class of hospitalized
patients. We used heuristic arguments that was developed
on the foundation of deterministic approach rather than
stochastic one to discuss the disease control strategies.
The reasons were very obvious, as the material proper-
ties of the model variables and parameters are well known,
(i.e. deterministic) and the applied control measures (like
isolation, quarantine etc) are also well established. Fur-
ther, this deterministic approach is sufficient to model
the dynamics of different population groups in the case
where the infected population is much smaller in size
as compared to the total population (as in the case of
Ebola). Finally, as a matter of fact, the expected value of
the stochastic model and the deterministic models pos-
sess a similar asymptotic behaviour in this case. To analyze
and understand the EVD transmission dynamics, we per-
form stability and steady state analysis and also calculated
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the effective reproduction number R0, that measures the
average number of secondary cases generated by a typical
primary case at a given time. The numerical value of R0,
based on the parameter values documented in literature,
helps us to assess the current status of the evolving epi-
demic outbreak and upward (when R0 > 1) or downward
(R0 < 1) trend of the disease.
In the second part, we introduce a new quarantine class

along with hospitalization in order to assess the impact
of quarantine and isolation in combatting the spread of
diseases. We define the quarantine as the removal of
individuals suspected of being exposed to EVD from the
general population. We perform optimal control analysis
to predict and suggest the optimal strategies to over-
come the epidemic in this scenario. In the last section, we
include a vaccination class and again use the optimal con-
trol method to suggest howminimal resources can be used
to eradicate the disease.

Method
Our proposed epidemic model of the Ebola virus dis-
ease is similar to our previous model discussed in [1].
The total population is divided into six mutually exclusive
compartments which are classified as, low risk suscepti-
ble (SL), high risk susceptible (SH ), exposed (E), infected
(I), hospitalized (H) and recovered (R). High risk suscepti-
ble are individuals having high rate of acquiring infection
ψH > 1. Usually high risk includes the women, children,
health care units and doctors. The rest of the population
is included in the low risk susceptible section. Also all

newborns are assumed to be low risk susceptible as there
is no vertical transmission of the infection. The flow dia-
gram depicted in Fig. 1 explains the procedure of model
formulation and our complete model describing the Ebola
dynamics is given below.

dSL
dt

= �(1 − p) − λSL − μSL
dSH
dt

= �p − ψHλSH − μSH , ψH > 1

dE
dt

= λ(SL + ψH SH) − (α + μ)E (1)

dI
dt

= αE − (τ + θI + δI + μ)I

dH
dt

= τ I − (θH + δH + μ)H

dR
dt

= θI I + θHH − μR

where

λ = β(I + ηH)

N

The variables and parameters used in our model along
with their description and values used in the manuscript
are listed in Tables 1 and 2. The parameter values we
used have been well documented in the literature, see for
instance [6, 9, 18] and [1]. Further, it is common practice
to use the case definition of EVD hospitalization in public,
therefore we use the same values of hospitalization rate.

Fig. 1 Flow diagram of the main model
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Table 1 Description of the variables of the model

Variable Description

NH Total human population

SH Population of high risk susceptible individuals

SL Population of low risk susceptible individuals

E Population of exposed individuals

I Population of infected individuals

H Population of hospitalized individuals

R Population of recovered individuals

Stability of equilibria and Reproduction Number
Disease Free equilibrium: It can be easily seen that our
model-1 satisfies all the conditions of the positivity and
boundness theorem (see Theorem A-4 of [12]), so the
solution of the model is unique and is bounded for all
non-negative time. Further the disease free equilibrium is
given by

E0 = (S∗
L, S∗

H ,E∗, I∗,H∗,R∗) = (
S∗
L, S∗

H , 0, 0, 0, 0,
)
,

with,

S∗
L = �(1 − p)

μ
and S∗

H = �p
μ

.

Following [5], the linear stability of E0 can be established
using the next generation operator method on system-(1).
Reproduction number: The basic reproduction num-

ber R0 is the number of individuals infected by a sin-
gle infected individual during the infectious period in
the entire susceptible population. By using the next

Table 2 Description of the parameters of the model

Parameter Description Value

� Recruitment rate 1.7

1/μ Average life of human 63

β Transmission rate of disease 0.20–0.39

ψH Modification parameter for infection rate

of high risk susceptible individuals 1.2–2

δI Disease-induced death rate of infected individuals 0.10

δH Disease-induced death rate of hospitalized

individuals 0.5

θI Recovery rate of infected individuals 0.10

θH Recovery rate of hospitalized individuals 0.20

α Rate at which latent individuals become infectious 0.10

τ Hospitalization rate for infected individuals 0.16

η Modification parameter for relative infectiousness

of hospitalized individuals 1.0–1.5

generation matrix approach [1, 20, 22], the expression of
R0 leads to

R0 = αβ�

{
1

(α+μ)(θI+δI+μ)+τ(α+μ)
+ τ

(α+μ)(θI+δI+μ)+τ(α+μ)

η

K3

}
,

= R1 + R2

(2)

Here R1 denotes strands for the continuation of infec-
tious individuals from the community and R2 represents
the strand from the hospital community. The epidemio-
logical significance of the reproduction number, R0, which
represents the average number of new cases generated
by a primary infectious individual in a population where
some susceptible individuals are at high risk, and some
infected individuals go to hospital, is that the Ebola pan-
demic can be effectively controlled by reducing the num-
ber of high risk individuals and by decreasing the contacts
of hospitalized individuals with other individuals that may
include relatives and health care workers. This can bring
the threshold quantity (R0) to a value less than unity.
Biologically, the following Lemma implies that the Ebola
pandemic can be eliminated from the population (when
R0 < 1) if the initial sizes of the sub-populations in various
compartments of the model are in the basin of attraction
of the DFE (E0).

Lemma. The DFE, E0, of the model 1, is locally asymp-
totically stable (LAS) if R0 < 1, and unstable if R0 > 1.
Figure 2 clearly depict the results of the above lemma.

Endemic Equilibrium: Let (S∗
L, S∗

H ,E∗, I∗,R∗) represents
any arbitrary endemic equilibrium of the model-(1), such
thatN∗ = S∗

L+S∗
H+E∗+I∗+R∗. Their values are obtained

by solving our system and are given by

E∗ = λ∗(S∗
L + ψ∗

HS∗
H)

k1
(3)

I∗ = αλ∗(S∗
L + ψ∗

HS∗
H

k1k2
(4)

H∗ = ατ

k1k2k3
λ∗(S∗

L + ψ∗
HS∗

H) (5)

R∗ = P1λ∗(S∗
L + ψ∗

HS
∗
H) (6)

where k1 = μ + α, k2 = τ + θI + δI + μ & k3 =
μ + θH + δH , and

P1 =
[

θIα

k1k2
+ θHτα

k1k2k3

]
1
μ

Now substituting these expressions in λ∗ = β(I∗+ηH∗)
N∗ ,

we get

λ∗2 [
(X + Y + Z + P1)(S∗

L + ψ∗S∗
H)

] − λ∗[
β(X + ηY )(S∗

L + ψ∗S∗
H) + S∗

L
] + S∗

H = 0,
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Fig. 2 Time series Graphs for R0 < 1 (Left Panel) and R0 > 1 (Right Panel)

where

X = α

k1k2
, Y = τα

k1k2k3
, and Z = 1

k1
.

It is clear from the last equation that λ∗2 can have at
most two solutions, depending on the values of parameter
used.

Uncertainty and sensitivity analysis
The prevalence of a disease in any population can be
determined by the threshold quantity, basic reproduction
number R0, as given by equation (2). Since our model is
deterministic in nature, the only sources of uncertainty are
the model parameters and the initial conditions. The basic
reproductive ratio R0 would usually be estimated by the
input of specific parameter values; however, factors such
as natural variation, errors in measurements and lack of
measuring techniques contribute towards the associated
uncertainty of the model parameters. In such a scenario, it
is more appropriate to treat each parameter as a random
variable, distributed according to an appropriate prob-
ability distribution. We use Latin Hypercube sampling,
independently from each of the parameter distributions.
These samples are then randomly permuted to form the
input parameter vectors. These samples are then used to
calculate the distribution for values of R0 [1].
In general, uncertainty analysis quantifies the degree

of confidence in the parameter estimates by producing
95 % confidence intervals (CI) which can be interpreted
as intervals containing 95 % of future estimates when the
same assumptions are made and the only noise source is
observation error. Additionally, sensitivity analysis identi-
fies critical model parameters and quantifies the impact
of each input parameter on the value of an output. In
this section, we shall perform uncertainty and sensitivity
analysis of the basic reproduction number R0. A detailed
description of the history andmethodology of uncertainty
and sensitivity analysis is given in [16].

Since we lack any concrete information about probabil-
ity distributions of the model parameters, we assume that
ourmodel parameters are normally distributed although it
is quite possible that some parameters are skewed towards
a particular value. The parameters used for uncertainty
and sensitivity analysis are given in Table 3, and we assume
that the recruitment rate � is constant. Results of uncer-
tainty and sensitivity analysis are presented in Figs. 3
and 4.
Uncertainty analysis yields 95 % confidence interval for

the value of the basic reproduction number R0 to be (2.73,
2.97) with the standard deviation of 2.46.
Sensitivity of values of R0 to the uncertainty in the

parameter values is assessed next; we identify crucial
model parameters by computing partial rank correlation
coefficient (PRCC) which is a measured impact of each
input parameter on the output, i.e., R0. PRCC reduces the
non-linearity effects by rearranging the data in ascend-
ing order, replacing the values with their ranks and then
providing the measure of monotonicity after the removal
of the linear effects of each model parameter keeping all
other parameters constant [16]. The horizontal lines in

Table 3 Parameter values used in uncertainty and sensitivity
analysis

Parameter Mean value Standard deviation

β 0.88 0.2

η 0.5 0.200595

δH 0.8 0.595029

τ 0.8 0.0999323

θH 2.0 0.19709

α 0.2 0.142107

θI 0.3 0.0149564

δI 0.5 0.050117

ψH 0.99 1.9891

μ 0.00003 1.99 × 10−6
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Fig. 3 Uncertainty analysis of R0

Fig. 4 represent the significant range of correlation, i.e.,
|PRCC| > 0.5. The sensitivity analysis suggests that the
most significant parameters are ψH and δH and hence,
these parameters should be estimated with precision to
accurately capture the dynamics of the infection.

Optimal control analysis
Pontryagin and Boltyanskii [19] formulated optimal con-
trol theory for models with underlying dynamics defined
by a system of ordinary differential equations. Since its
discovery, this algorithm has progressed considerably. In
particular, recently their procedure has been employed
widely to make decisions involving epidemic and biolog-
ical models. See for instance [2, 10, 17]. The basis of this
theory is to find a control law for a given system which
undergoes the aforementioned optimality criterion. The

Pontryagin’s Maximum Principle allows us to adjust the
control in a model to achieve the desired results. The
control parameters are mostly functions of time, mainly
appearing as the coefficients in the model. A typical
problem includes a cost functional consisting of control
and state variables and the aim is to minimize the cost
functional.
In this paper, we will use Pontryagin’s maximum prin-

ciple on two variations of our original model to optimize
the cost and resources. In the first case, we modified
our model for the case of Hospitalization and Quaran-
tine, while in the second case, we perform optimal con-
trol strategies on Hospitalization and Vaccination. These
modifications in our models along with the mathemat-
ical formulation of the optimal control procedure are
explained in the last section of the paper. In this paper,

Fig. 4 Sensitivity analysis of the basic reproduction number R0
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we have worked on the analytical side of the optimal the-
ory as well as we used numerical techniques to supported
our claims. These results are discussed in the following
sections.

Case 1: hospitalization and quarantine
Since Ebola virus disease is very severe, a common way
to control the spread of the disease is to employ isola-
tion/quarantine. In order to introduce this clause in our
model, the original model described above is modified
and exposed individuals are now quarantined at a rate
ξ . Further we assume that these quarantined individuals
are also hospitalized at a rate τQ. Quarantined individ-
uals can also die at a natural death rate μ. Therefore
by using these assumptions the updated model is given
as

dSL
dt

= �(1 − p) − λSL − μSL

dSH
dt

= �p − ψHλSH − μSH

dE
dt

= λ(SL + ψH SH) − (α + μ)E − ξE

dQ
dt

= ξE − (τQ + μ)Q (7)

dI
dt

= αE − (τ + θI + δI + μ)I

dH
dt

= τ I + τQQ − (θH + δH + μ)H

dR
dt

= θI I + θHH − μR

where

λ = β(I + ηH)

N
.

To find an optimal hospitalization and quarantine strat-
egy to control Ebola, we assume that the control set is
given as

U = [
ξ(t), τQ(t), τ(t) : 0 ≤ ξ(t), τQ(t), τ(t) ≤ ζi,

0 ≤ t ≤ T , 0 < ζi ≤ 1, (i = 1, 2, 3)] .
(8)

Our aim is to minimize the cost function given as:

J[ ξ , τQ,τ ]=
∫ T

0[
I + Q + 1

2
W1ξ

2 + 1
2
W2τ

2
Q(t) + 1

2
W3τ

2(t)
]
dt.

(9)

Our objective is to find an optimal control for the quar-
antine rate ξ∗(t), and hospitalization rates τ ∗

Q(t), τ ∗(t)
such that J[ ξ∗, τ ∗

Q, τ
∗]= min

(ξ ,τQ ,τ∈U)
J[ ξ , τQ, τ ].

Case 2: hospitalization and vaccination
We assume that there exists some vaccination to prevent
individuals from the Ebola virus disease. To take account
of the vaccination effect, low and high risk susceptible are
vaccinated at the rate of γ1 and γ2 respectively. Hence the
updated model is given as

dSL
dt

= �(1 − p) − λSL − γ1SL − μSL
dSH
dt

= �p − ψHλSH − γ2SH − μSH
dV
dt

= γ1SL + γ2SH − λ(1 − ε)V − μV

dE
dt

= λ(SL + ψH SH) + λ(1 − ε)V − (α + μ)E (10)

dI
dt

= αE − (τ + θI + δI + μ)I

dH
dt

= τ I − (θH + δH + μ)H

dR
dt

= θI I + θHH − μR

where

λ = β(I + ηH)

N
.

To find an optimal hospitalization and vaccination strat-
egy to control Ebola, let the control set is given as

U = [γ1(t), γ2(t), τ(t) : 0 ≤ γ1(t), γ2(t), τ(t) ≤ ζi,
0 ≤ t ≤ T , 0 < ζi ≤ 1, (i = 1, 2, 3)] .

(11)

Our aim is to minimize the cost function given as:

J[ γ1, γ2, τ ]=
∫ T

0

[
I + 1

2
W1γ

2
1 + 1

2
W2γ

2
2 (t) + 1

2
W3τ

2(t)
]
dt.

(12)

Similar to the quarantine case, again our objective is to
find an optimal control for vaccination rates γ ∗

1 (t), γ ∗
2 (t),

and hospitalization rate τ ∗(t) such that J[ γ ∗
1 , γ ∗

2 , τ ∗]=
minγ1,γ2,τ∈U J[ γ1, γ2, τ ].
The formulation of the Hamiltonian and its adjoint

system along with the procedure of finding the optimal-
ity conditions for these two cases are discussed in the
Appendix.

Simulation results
In this section, numerical solutions of the given systems
along with the adjoint systems of both of the cases (Hos-
pitalization and Quarantine, and Hospitalization and Vac-
cination) are provided. The system is integrated using the
Runge-Kutta method using the Matlab platform. Further
the value of J, the cost functional that had to beminimized,
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is calculated numerically and graphed (again for the hospi-
talization and quarantine section). Further, simulations of
the population of infected individuals from optimal con-
trol and constant control are compared. Finally, the opti-
mal control solutions of the control variables are provided
for several values of β .

Hospitalization and quarantine
Figure 5a shows the comparison between the optimal con-
trol path and constant control path of the cost of disease
control. The upper limit of ζ in the optimality condition
is taken to be 0.6. It is the plot of the numerical solution
of the cost functional J, mentioned in the analysis section
(given in the Appendix). The figure clearly depicts a sound
decrease in the cost total cost with the same efficacy level
when compared to constant control factor. The effective-
ness can be viewed from the difference between the cost
values of each individual graphs with the optimal control
path.
Panel (B) of Fig. 5 shows the comparison between the

population of infected individuals using constant control
and optimal control. The upper limit of ζ in the optimality
condition is taken to be 0.6. It is the plot of the numerical
solution of the infected population compartment, men-
tioned in the analysis section. The figure clearly depicts
a sound decrease in the number of infected individuals
when hospitalization and quarantine is applied optimally
rather than constantly; the efficacy is evident from the
results of the graph. The effectiveness can be viewed from
the difference between the peaks of the two graphs.
Finally, in panel (C), the solution of the control vari-

ables for optimal path are depicted. Observe that as the
values of β increase, the graphs translate horizontally to
right. This is important because it yields the optimum rate
of hospitalization at a given time, resulting in minimiz-
ing the overall cost. These graphs are the solutions to the
cost functionals mentioned in the equation of J in analysis
portion.

Hospitalization and vaccination
Simulation results of this case are depicted in Fig. 6. Panel
(A) of the figure shows the comparison between the opti-
mal control path and constant control path of the cost of
disease control (see Appendix for the model equations).
The upper limit of ζ in the optimality condition is taken to
be 0.6. The figure clearly depicts a sound decrease in the
total cost with the same efficacy level when compared to
constant control factor. The effectiveness can be viewed
from the difference between the cost values of each indi-
vidual graphs with the optimal control path. The different
values of constants of variables γ1, γ2 and τ are provided
for making effective comparisons.
The comparison between the population of infected

individuals using constant control and optimal control
is depicted in Panel (B) of Fig. 6. The upper limit of ζ

in the optimality condition is again taken to be 0.6. The
figure clearly shows a sound decrease in the number of
infected individuals when hospitalization and vaccination
is applied optimally rather than constantly; the efficacy is
evident from the results of the graph. The effectiveness
can be viewed from the difference between the peaks of
the two graphs.
In panel (C), the solution of the control variables for

optimal path are shown. These results are important
because they yield the optimum rate of hospitalization at a
given time, resulting in minimizing the overall cost. These
graphs are the solutions to the cost functionals mentioned
in the equation of J in the analysis portion for the hos-
pitalization variable (See Appendix) and for the case of
vaccination in the “Low-risked susceptible”. It is clear that
these functions do not vary a lot when the value of β is
changed but there is a slight increase whenever β encoun-
ters a positive change. It can also be viewed that the
optimality conditions being applied very early in the solu-
tion as the graphs dips down from 0.6, the upper bound,
and starts giving lower values for the remaining part of
time. Finally, similar results are obtained for the case of

Fig. 5 Optimal control case of hospitalization and quarantine
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Fig. 6 Optimal control case of hospitalization and vaccination

vaccination in the “High-risked susceptible individuals”. as
shown in panel (D). Further, if we compare these results
with the “Low-risked susceptible”, it can be viewed that
the vaccination function of high risked individuals is con-
trolled optimally better than that of low risked individuals,
and this is what was desired as a higher portion of high
risked individuals are to be vaccinated in a given time due
to higher risks.

Conclusion
In this paper we presented deterministic ordinary differ-
ential equations models to understand the Ebola virus
disease dynamics. Our basic model incorporates a very
important factor of individuals with high risk level with
exposure to disease than the general population in the
affected areas. These include front line health care work-
ers, family members of EVD patients and Individuals
involved in burial of deceased EVD patients. We perform
mathematical analysis and computational simulations to
suggest the possible methods to avoid and effectively
control Ebola disease.

In the first part of the paper, we looked at the effect of
interventions in order to control the outbreak. Our anal-
ysis suggests that in order for R0 to be less than one,
the transmission rate of isolated individuals should be
less than one-fourth of that for non-isolated ones. This
means that strict protocols should be followed at treat-
ment facilities. Further analysis of the model also leads to
the conclusion that the fraction of high-risk individuals
has to be controlled and must be brought to a significantly
lower level in order to bring R0 less than one to effectively
control the outbreak.
Sensitivity analysis was performed to ascertain the rela-

tive importance of various parameters used in our model.
This would help epidemiologists and public health offi-
cials to focus on the more important parameters in for-
mulating a disease control policy. Our analysis led to the
observations that two parameters θH and ψH have signifi-
cant contribution to the disease dynamics and need to be
calculated precisely for an accurate outcome.
Second part of the paper was devoted to optimal control

analysis and we employed Pontryagin’s Maximal principle
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and suggest the optimal strategies for controlling the dis-
ease. In our analysis we assumed a quadratic cost function
due to the obvious non linearity of the cost, as briefly
discussed in the optimal control section, and the fact
that convexity of the function allows one to apply estab-
lished results from optimal control theory, as has been
done in similar work in the literature. Since recently, a
new vaccination was found to be very effective for the
disease treatment [8], we introduced two variations in
our original model with “Hospitalization andQuarantine”
and second with “Hospitalization and Vaccination”. Our
analysis suggested that an optimal control (rather than a
high constant control) is preferable, where the quaran-
tining rate of infected individuals is a function of time.
That is, the proportion that is quarantined optimally with
respect to time has a higher favorable impact (as com-
pared to implementing a high but constant quarantine
rate) in keeping the cost of disease control low. Simi-
larly, in the second variation, our analysis successfully
demonstrate the effectiveness of vaccination to control the
outbreak.
It must be noted that optimal strategies while theoret-

ically justified may be hard to implement in practice. As
our analysis showed, we need high levels of medication
and hospitalization at the beginning of an epidemic. This
is problematic due to two reasons: first, it may not be feasi-
ble due to the availability and costs incurred in medicating
and/or hospitalizing a significant fraction of the total sus-
ceptible population; second, the control strategies need to
be at a maximum at the beginning of the epidemic. This
is hard to implement as there is bound to be a time lag
between the onset of an epidemic and when the public
health authorities realize it is in progress, moreover even
after such a realization it would take time to implement
the strategies. But in spite of all the hurdles, these opti-
mal strategies may be used by public health authorities
to determine quasi-optimal strategies they might want to
adopt and the relative impact of such strategies on the
epidemic.

Appendix: optimal control analysis
Case 1: hospitalization and quarantine
We use Pontrygain’s Maximum Principle on our model
system (4), and the Hamiltonian is given by

H∗ = I + Q + 1
2
W1ξ

2 + 1
2
W2τ

2
Q(t) + 1

2
W3τ

2(t)

+ φ1
[
�(1 − p) − λSL − μSL

] + φ2
[
�p − ψHλSH − μSH

]
+ φ3

[
λ(SL + ψH SH) − (α + μ)E − ξE

]
+ φ4

[
ξE − (τQ + μ)Q

]
+ φ5 [αE − (τ + θI + δI + μ)I] + φ6[

τ I + τQQ − (θH + δH + μ)H
]

+ φ7 [θI I + θHH − μR]

Claim There exist unique optimal controls ξ∗(t), τ ∗
Q(t)

and τ ∗(t) which minimize J over U. Also there exists an
adjoint system of φi’s such that the optimal treatment
control is characterized as

ξ∗(t) = min
[
ζ1,max

(
0,

E(φ3 − φ4)

W1

)]
(13)

τ ∗
Q(t) = min

[
ζ2,max

(
0,

Q(φ4 − φ6)

W2

)]
(14)

τ ∗(t) = min
[
ζ3,max

(
0,

I(φ4 − φ5)

W3

)]
(15)

Applying the first condition of the Pontrygain’s Maxi-
mum Principle we get the adjoint system.

∂H∗

∂ξ
= 0 ⇒ ξ =

(
E(φ3−φ4)

W1

)
(16)

∂H∗

∂τQ
= 0 ⇒ τQ =

(
Q(φ4−φ6)

W2

)
(17)

∂H∗

∂τ
= 0 ⇒ τ =

(
I(φ4−φ5)

W3

)
(18)

Similarly applying the second condition

dφ1
dt

= − ∂H∗
∂SL (19)

dφ2
dt

= − ∂H∗
∂SH (20)

...
... (21)

dφ7
dt

= − ∂H∗
∂R (22)

The adjoint system is given as

dφ1
dt

= (λ + μ) φ1 − λφ2 (23)

dφ2
dt

= ψHλφ2 + μφ2 − ψHλφ3 (24)

dφ3
dt

= (α + μ + ξ)φ3 − ξφ4 − ξφ5 (25)

dφ4
dt

= −1 + (τQ + μ)φ4 − τQφ6 (26)

dφ5
dt

= −1 +
(

β
N

)
SLφ1 +

(
β
N

)
SHψHφ2 −

(
β
N

)
(27)

×(SL + SHψH)φ3

+(τθI + δI + μ)φ5 − τφ6 − θIφ7 (28)
dφ6
dt

=
(

βη
N

)
SLφ1 +

(
βη
N

)
SHψHφ2 −

(
βη
N

)
(29)

×(SL + SHψH)φ3

+(θH + δH + μ)φ6 − θHφ7 (30)
dφ7
dt

= μφ7 (31)
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The above adjoint system also satisfies the transversality
condition, {φi(T) = 0 : i = 1, 2, · · · , 7}.

Case 2: hospitalization and vaccination
Again using Pontrygain’s Maximum Principle on system
(5), the Hamiltonian is given as

H∗ = I + 1
2W1γ

2
1 + 1

2W2γ
2
2 (t) + 1

2W3τ 2(t) (32)
+φ1

[
�(1 − p) − λSL − γ1SL − μSL

]
(33)

+φ2
[
�p − ψHλSH − γ2SH − μSH

]
(34)

+φ3 [γ1SL + γ2SH − λ(1 − ε)V − μV ] (35)
+φ4

[
λ(SL + ψH SH) + λ(1 − ε)V − (α + μ)E

]
(36)

+φ5 [αE − (τ + θI + δI + μ)I] (37)
+φ6 [τ I − (θH + δH + μ)H] (38)

+φ7 [θI I + θHH − μR] (39)

Claim There exist unique optimal controls γ ∗
1 (t), γ ∗

2 (t)
and τ ∗(t) which minimize J over U. Also there exists an
adjoint system of φi’s such that the optimal treatment
control is characterized as

γ ∗
1 (t) = min

[
ζ1,max

(
0, SL(φ1−φ3)

W1

)]
(40)

γ ∗
2 (t) = min

[
ζ2,max

(
0, SH (φ2−φ3)

W2

)]
(41)

τ ∗(t) = min
[
ζ3,max

(
0, I(φ5−φ6)

W3

)]
(42)

Applying the first condition of the Pontrygain’s Maxi-
mum Principle

∂H∗

∂γ1
= 0 ⇒ γ1 =

(
SL(φ1−φ3)

W1

)
(43)

∂H∗

∂γ2
= 0 ⇒ γ2 =

(
SH (φ2−φ3)

W2

)
(44)

∂H∗

∂τ
= 0 ⇒ τ =

(
I(φ5−φ6)

W3

)
(45)

Similarly applying the second condition

dφ1
dt

= − ∂H∗
∂SL (46)

dφ2
dt

= − ∂H∗
∂SH (47)

...
... (48)

dφ7
dt

= − ∂H∗
∂R (49)

The adjoint system is given as

dφ1
dt

= (λ + μ + γ1) φ1 − λφ4 − γ1φ3 (50)

dφ2
dt

= (ψHλ + γ2 + μ) φ2 − γ2φ2 − λφ4 (51)

dφ3
dt

= (λ(1 − ε) + μ) φ3 − (λ(1 − ε)) φ4 (52)

dφ4
dt

= (α + μ)φ4 − αφ5 (53)

dφ5
dt

= −1 +
(

β
N

)
SLφ1 +

(
β
N

)
SHψHφ2 +

(
β
N

)
(54)

×(1 − ε)Vφ3

−
[(

β
N

)
(SL + SHψH) +

(
β
N

)
(1 − ε)V

]
φ4 (55)

+(τ + θI + δI + μ)φ5 − τφ6 − θIφ7 (56)
dφ6
dt

=
(

βη
N

)
SLφ1 +

(
βη
N

)
SHψHφ2 +

(
βη
N

)
(57)

×(1 − ε)Vφ3

−
[(

βη
N

)
(SL + SHψH) +

(
βη
N

)
(1 − ε)V

]
φ4 (58)

+(θH + δH + μ)φ6 − θHφ7 (59)
dφ7
dt

= μφ7 (60)

The above adjoint system also satisfies the transversality
condition, {φi(T) = 0 : i = 1, 2, · · · , 7}.
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