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Abstract

The objective of this paper is to study the periodicity properties of functions
that arise in quantum calculus, which has been emerging as an important branch
of mathematics due to its various applications in physics and other related fields.
The paper has two components. First, a relation between two existing periodicity
notions is established. Second, the existence of periodic solutions of a q-Volterra
integral equation, which is a general integral form of a first order q-difference
equation, is obtained. At the end, some examples are provided. These examples
show the effectiveness of the relation between the two periodicity notions that is
established in this paper.

AMS Subject Classifications: 39A13, 39A20, 39A23, 39A12.
Keywords: Periodic solution, q-Volterra integral equation, fixed point, Krasnosel’skii.

1 Introduction
In the last decades, there has been a remarkable interest on periodicity notion on time
scales (nonempty closed subsets of reals), due to its tremendous applications in engi-
neering, biology, biomathematics, chemistry etc. There is a vast literature on periodic
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solutions of several types of dynamic and integro-dynamic equations on additively peri-
odic domains (see [2,6,7,9,12,13,16] and the references therein). A time scale, denoted
by T, is said to be additively T -periodic if there exists a T > 0 such that t± T ∈ T for
all t ∈ T (see [11]). A function f on additively periodic domain T with period T is said
to be periodic with period P if there exists an n ∈ N such that P = nT , f(t±P ) = f(t)
for all t ∈ T, and P is the smallest number such that f(t ± P ) = f(t). Notice that the
set of reals R, the set of integers Z and the set hZ := {ht : t ∈ Z} are all examples
of additively periodic time scales, while the set qN0 := {qn : n = 0, 1, 2...} is not.
Hence, we cannot define periodicity on qN0 in a same way we do on additively periodic
domains.

But it is very important to develop a theory on the periodicity on qN0 because the two
important fields of mathematical physics, namely, quantum calculus and the theory of q-
difference equations, are constructed on a class of functions defined on the set qN0 . For
a comprehensive review of basic theory on quantum calculus, we refer to [10]. Theory
of q-difference equations based on q-derivative has became a popular research field
recently due to the close relationship between q-difference equations and differential
equations. It is stated in [14] that “in the p-adic context, q-difference equations are
not simply a discretization of solutions of differential equations, but they are actually
equal.” We may also refer to [4] for further discussion about the equivalence between
q-difference equations and differential equations and [8] for a study on the existence of
q-difference equations.

Because of the close relationship between conventional calculus and quantum cal-
culus, it is reasonable to ask for the availability of periodicity notion on qN0 . To the best
of our knowledge, the first periodicity notion on qN0 has been introduced by Bohner and
Chieochan in [5]. They defined a P -periodic function on qN0 as follows:

Definition 1.1 (See [5]). Let P ∈ N. A function f : qN0 → R is said to be P -periodic if

f(t) = qPf
(
qP t
)

for all t ∈ qN0 . (1.1)

Afterwards, Adivar [1] (see also [3]) introduced a more general periodicity notion on
time scales that are not necessarily additively periodic. On qN0 , this is defined as follows:

Definition 1.2 (See [1]). Let P ∈ N. A function f : qN0 → R is said to be P -periodic if

f
(
qP t
)

= f(t) for all t ∈ qN0 .

In accordance with the periodicity notion on the continuous domain R, Definition 1.2 re-
gards a periodic function to be the one repeating its values after a certain number of steps
on qN0 . On the other hand, Definition 1.1 resembles the periodicity on R in geometric
meaning. Periodicity in Definition 1.1 is based on the equality of areas lying below the
graph of the function at each period. For example, the function h(t) = (−1)

ln t
ln q on qN0

is a 2-periodic function according to Definition 1.2, since h(q2t) = h(t) holds. On the
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other hand, the function g(t) = 1/t is 1-periodic with respect to Definition 1.1 since it
satisfies qg(qt) = g(t).

First, we show, in Section 2, that the periodicity notions introduced in Definitions
1.1 and 1.2 are closely related. This linkage provides an easy way for the construction of
relationship between coefficients of equations whose solutions are periodic with respect
to Definitions 1.1 and 1.2, respectively. Two examples that we have provided at the end
of the paper show the effectiveness of this linkage.

Then, in Section 3, we study the existence of P -periodic solutions of the q-Volterra
integral equation

x̃(t) = g̃ (t, x̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, x̃ (s)) dqs,

which is a general integral form of the first order q-difference equation (2.1) given be-
low. In the process of obtaining the periodic solutions of the above q-Volterra integral
equation, we employed Banach’s contraction mapping principle and Krasnosel’skii’s
fixed point theorem.

2 Comparison of two Periodicity Notions
This section is devoted to a comparison of two q-periodicity notions given in Definitions
1.1 and 1.2. Now, we list the following observations establishing a linkage between
these two periodicity definitions.

Proposition 2.1. Let f : qN0 → R. Then f is periodic with respect to of Definition 1.1 if
and only if f̃ (t) = tf (t) is periodic with respect to Definition 1.2 with the same period.

Proposition 2.2. The function x is a P -periodic solution of the following first order
q-difference equation

Dqx(t) + a(t)xσ(t) = f (t, tx (t)) , t ∈ qN0 , (2.1)

with respect to Definition 1.1 if and only if x̃(t) := tx(t) is a P -periodic solution of the
first order q-difference equation

Dqx̃(t) + ã(t)x̃σ(t) = f̃ (t, x̃ (t)) , t ∈ qN0 , (2.2)

where

ã(t) :=
ta (t)− 1

qt
,

and f̃ (t, x̃ (t)) = tf (t, tx (t)), with respect to Definition 1.2. Here, Dqf represents the
q-derivative of f defined by

(Dqf) (t) =
f(qt)− f(t)

(q − 1)t
, t ∈ qN0 . (q-derivative)
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Proof. Let x be a solution of (2.1). Then

tDqx(t) + xσ(t)− xσ(t) + ta(t)xσ(t) = tf (t, tx (t)) ,

which implies

Dq(tx(t)) +
ta(t)− 1

qt
qtxσ(t) = tf(t, tx(t)).

This implies x̃ solves (2.2). The proof that x̃ solves (2.2) implies x solves (2.1) is similar.
Proposition 2.1 implies that x is P -periodic with respect to Definition 1.1 if and only if
x̃ is P -periodic with respect to Definition 1.2.

Suppose that a : qN0 → R is a function with (1 + (q − 1)ta(t)) 6= 0 for all t ∈ qN0 .
Based on the function a, we define the functions

ea(q
n, qm) :=

n−1∏
k=m

(1 + (q − 1)qka(qk))

and
e	a (qn, qm) := ea(q

n, qm)−1.

Multiplying both sides of equation (2.1) by ea (t, 1) gives

ea(t, 1)Dqx(t) + a(t)ea(t, 1)xσ(t) = ea(t, 1)f(t, tx(t)). (2.3)

But

Dq[ea(·, 1)x](t) = ea(t, 1)Dqx(t) + a(t)ea(t, 1)xσ(t)

= ea(t, 1)[Dqx(t) + a(t)xσ(t)]

= ea(t, 1)f(t, tx(t)).

We integrate (2.3) from t to qP t to obtain

ea(q
P t, 1)x(qP t)− ea(t, 1)x(t) =

∫ qP t

t

ea(s, 1)f(s, sx(s))dqs,

which implies

ea(q
P t, 1)x(qP t) = ea(t, 1)x(t) +

∫ qP t

t

ea(s, 1)f(s, sx(s))dqs.

Multiplying both sides of the equation by qP yields

ea(q
P t, 1)qPx(qP t) = qP ea(t, 1)x(t) + qP

∫ qP t

t

ea(s, 1)f(s, sx(s))dqs.
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Assuming qPx(qP t) = x(t) and then dividing by ea(qP t, 1), we arrive at

x(t) = qP e	a
(
qP t, t

)
x (t) + qP

qP t∫
t

e	a
(
qP t, s

)
f (s, sx (s)) dqs. (2.4)

Similarly, multiplying both sides of equation (2.2) by eã(t, 1), integrating from t to qP t
and assuming x(qP t) = x(t) gives

x̃(t) = e	ã
(
qP t, t

)
x̃ (t) +

qP t∫
t

e	ã
(
qP t, s

)
f (s, x̃ (s)) dqs, (2.5)

for t ∈ qN0 . Here the q-integral is defined by∫ qn

qm
f(s)dqs := (q − 1)

n−1∑
k=m

qkf(qk). (q-integral)

Next, the generalizations of (2.4) and (2.5) have the form of q-Volterra integral equations
as follows:

x(t) = g (t, tx (t)) +

qP t∫
t

C (t, s) f (s, sx (s)) dqs, (2.6)

and

x̃(t) = g̃ (t, x̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, x̃ (s)) dqs, (2.7)

where g, g̃, f, f̃ : qN0 × R→ R are continuous in their second variable and C, C̃ :
qN0 × qN0 → R,

C̃ (t, s) =
t

s
C (t, s) , (2.8)

f̃ (t, x̃ (t)) = tf (t, tx (t)) , (2.9)

and
g̃ (t, x̃ (t)) = tg (t, tx (t)) . (2.10)

Similar to the Proposition 2.2, we can establish a linkage between two periodicity
notions in terms of periodic solutions of the integral equations (2.6) and (2.7).

Proposition 2.3. Assume that C, f, g and x satisfy

C
(
qP t, qP s

)
= C(t, s), (2.11)

qPf
(
qP t, qP tx

(
qP t
))

= f (t, tx (t)) , (2.12)

qPg
(
qP t, qP tx

(
qP t
))

= g (t, tx (t)) . (2.13)
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Then x(t) is a P -periodic solution of (2.6) with respect to Definition 1.1 if and only if
x̃ (t) = tx (t) is a P -periodic solution of (2.7) with respect to Definition 1.2.

Proof. Assume (2.11)-(2.13) hold and suppose that x(t) solves (2.6) and is P -periodic
with respect to Definition 1.1. Let us multiply both sides of (2.6) by t, i.e.,

tx(t) = tg (t, tx (t)) +

qP t∫
t

tC (t, s) f (s, sx (s)) dqs,

or

tx(t) = tg (t, tx (t)) +

qP t∫
t

t

s
C (t, s) sf (s, sx (s)) dqs.

By employing (2.8)-(2.10), we get

x̃(t) = g̃ (t, x̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, x̃ (s)) dqs. (2.14)

Notice that x̃(t) is a P -periodic solution of (2.14) with respect to Definition 1.2. To
show this, consider

x̃(qP t) = qP tx
(
qP t
)

= g̃
(
qP t, x̃

(
qP t
))

+

q2P t∫
qP t

C̃
(
qP t, s

)
f̃ (s, x̃ (s)) dqs

= g̃
(
qP t, x̃

(
qP t
))

+

qP t∫
t

C̃
(
qP t, qP s

)
f̃
(
qP s, x̃

(
qP s
))
dqs

= qP tg
(
qP t, qP tx

(
qP t
))

+

qP t∫
t

qP t

qP s
C
(
qP t, qP s

)
qP s f

(
qP s, qP sx

(
qP s
))
dqs.

Using (2.11)-(2.13) we get

x̃(qP t) = tg (t, tx (t)) +

qP t∫
t

t

s
C (t, s) s f (s, sx (s)) dqs

= g̃ (t, x̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, x̃ (s)) dqs.

The proof of the necessity part can be done by following a similar procedure used in the
sufficiency part, hence, we omit it.
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Remark 2.4. The above results reveal the basic linkage between two periodicity given
in Definitions 1.1 and 1.2. In particular, Proposition 2.2 and Proposition 2.3 show the
relationship between q-difference equations having periodic solutions with respect to
Definitions 1.1 and 1.2. This provides a procedure for the rearrangement of an existence
result based on Definition 1.2 to obtain an existence result based on Definition 1.1, and
vice versa.

3 Existence Results
In this section, we study the existence of periodic solutions of the following type q-
Volterra integral equations

x̃(t) = g̃ (t, x̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, x̃ (s)) dqs, (3.1)

which is a general integral form of the first order q-difference equation (2.1). By taking
the advantage of relationship between two periodicity notions, hereafter we adopt Def-
inition 1.2 to our analysis for convenience. Let P be the set of all functions defined on
qN0 which are P -periodic. Then (P, ‖·‖) is a Banach space endowed with the norm

‖x‖ = max
t∈[1,qP ]

qN0

|x(t)| ,

where
[
1, qP

]
qN0

:=
[
1, qP

]
∩ qN0 and the set

ΠM := {ϕ ∈ P : ‖ϕ‖ ≤M} (3.2)

is a bounded, closed and convex subset of P for a positive constant M.
Since we are dealing with the existence of periodic solutions of (3.1), it is natural to

have the following periodicity assumptions:

K1 g̃ satisfies
g̃
(
qP t, x̃

)
= g̃ (t, x̃) ,

for all t ∈ qN0;

K2 C̃ satisfies
C̃
(
qP t, qP s

)
= C̃ (t, s) ,

for all (t, s) ∈ qN0 × qN0; and

K3 f̃ satisfies
qP f̃

(
qP t, x̃

)
= f̃ (t, x̃) ,

for all t ∈ qN0 .
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Lemma 3.1. Assume (K1-K3) and for ϕ̃ ∈ P define the operator Q as

(Qϕ̃) (t) := g̃ (t, ϕ̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, ϕ̃ (s)) dqs. (3.3)

Then Q : P→ P.

Proof. Suppose that (K1-K3) hold and ϕ̃ ∈ P. Then

(Qϕ̃)
(
qP t
)

= g̃
(
qP t, ϕ̃

(
qP t
))

+

q2P t∫
qP t

C̃
(
qP t, s

)
f̃ (s, ϕ̃ (s)) dqs

= g̃ (t, ϕ̃ (t)) +

qP t∫
t

C̃
(
qP t, qP s

)
qP f̃

(
qP s, ϕ̃

(
qP s
))
dqs

= g̃ (t, ϕ̃ (t)) +

qP t∫
t

C̃ (t, s) f̃ (s, ϕ̃ (s)) dqs

= (Qϕ̃) (t) ,

and this completes the proof.

Next, we use the contraction mapping principle to show the existence of a unique
solution of (3.1). We assume for every x̃, ỹ ∈ P and t ∈ [1, qP ]qN0 ,

K4 |g̃ (t, x̃)− g̃ (t, ỹ)| ≤ a1 |x̃− ỹ| , a1 ∈ (0, 1); and

K5
∣∣∣f̃ (t, x̃)− f̃ (t, ỹ)

∣∣∣ ≤ a2 |x̃− ỹ| , a2 ∈ R+.

We define
C̄ := max

(t,s)∈[1,qP ]
qN0×[t,q

P t]
qN0

∣∣∣C̃(t, s)
∣∣∣ . (3.4)

Theorem 3.2. Assume (K1-K5). If

a := a1 + qP (qP − 1)C̄a2 < 1, (3.5)

then (3.1) has a unique solution.

Proof. Let ϕ̃, ψ̃ ∈ P. Then for every t ∈ [1, qP ]qN0 ,

|Qϕ̃−Qψ̃|(t) ≤ |g̃(t, ϕ̃(t))− g̃(t, ψ̃(t))|+
∫ qP t

t

|C̃(t, s)||f̃(s, ϕ̃(s))− f̃(s, ψ̃(s))|dqs

≤ a1|ϕ̃(t)− ψ̃(t)|+ qP (qP − 1)C̄a2‖ϕ̃− ψ̃‖
≤ (a1 + qP (qP − 1)C̄a2)‖ϕ̃− ψ̃‖.
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So ‖Qϕ̃ − Qψ̃‖ < a‖ϕ̃ − ψ̃‖ with a < 1. Thus Q has a unique fixed point in P , and
(3.1) has a unique P -periodic solution with respect to Definition 1.2.

Next we state Krasnosel’skii’s fixed point theorem which we employ for showing
the existence of a periodic solution of (3.1).

Theorem 3.3 (Krasnosel’skii, [15]). Let M be a closed convex nonempty subset of a
Banach space (B, ‖·‖) . Suppose that A and B map M into B such that

(i) x, y ∈M implies Ax+By ∈M,

(ii) A is a contraction mapping, and

(iii) B is a compact and continuous mapping.

Then there exists z ∈M with z = Az +Bz.

Now, the operator Q given in (3.3) can be written as

(Qϕ̃) (t) := (Aϕ̃) (t) + (Bϕ̃) (t) ,

where
(Aϕ̃) (t) := g̃ (t, ϕ̃ (t)) , (3.6)

and

(Bϕ̃) (t) :=

qP t∫
t

C̃ (t, s) f̃ (s, ϕ̃ (s)) dqs. (3.7)

Lemma 3.4. Suppose (K4) holds. Then A : P→ P is a contraction mapping.

Define the function F̄ : R→ R by

F̄ (m) = sup
(t,x)∈[1,qP ]

qN0×[−m,m]

|f̃(t, x)|. (3.8)

Lemma 3.5. Assume (K1-K3) hold. ThenB : P→ P is a continuous compact mapping.

Proof. Let B be defined as in (3.7). Since f̃ is continuous in the second variable, given
ε > 0, there exists a δ > 0 such that ‖ϕ̃− ψ̃‖ < δ implies |f̃(τ, ϕ̃(τ))− f̃(τ, ψ̃(τ))| <

ε

C̄qP (qP − 1)
for each τ ∈ [1, q2P ]qN0 . Thus for ‖ϕ̃ − ψ̃‖ < δ and for t ∈ [1, qP ]qN0 ,

s ∈ [1, q2P ], we have

|Bϕ̃−Bψ̃|(t) ≤
∫ qP t

t

|C̃(t, s)||f̃(s, ϕ̃(s))− f̃(s, ψ̃(s))|dqs

<
ε

C̄qP (qP − 1)
C̄

∫ qP t

t

dqs ≤ ε.
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Thus for ‖ϕ̃− ψ̃‖ < δ, ‖Bϕ̃−Bψ̃‖ < ε. Therefore B is continuous.
In order to show that B is compact, consider the set ΠM which is defined in (3.2).

For compactness of BΠM , we will use the sequential criterion, which states that the
metric space BΠM is compact if and only if every sequence in BΠM has a subse-
quence converging to an element inBΠM . Consider a sequence of P -periodic functions{
ξ̃n

}
⊂ ΠM . At first, we will show

{
Bξ̃n

}
is uniformly bounded.

To show that B is uniformly bounded, we obtain, for t ∈ [1, qP ]qN0 ,

|Bξ̃n(t)| ≤
∫ qP t

t

|C̃(t, s)||f̃(s, ξ̃n(s))|dqs

≤ qP (qP − 1)C̄F̄ (M). (3.9)

Therefore
‖Bξ̃n‖ ≤ qP (qP − 1)C̄F̄ (M),

which implies that
{
Bξ̃n

}
is uniformly bounded.

Notice that for each t ∈ qN0 , since
{
Bξ̃n

}
is uniformly bounded,

{
(Bξ̃n)(t)

}
is a bounded sequence of real numbers. Therefore, at the first point, q0 := t1 ∈
qN0 , by the Bolzano–Weierstrass theorem, there is a subsequence {(Bξ̃)n1j

} such that

{(Bξ̃)n1j
(t1)} converges as j →∞. Again, we choose a subsequence of n1j which we

call n2j such that sequence {(Bξ̃)n2j
(t2)} converges at the next point, q1 := t2 ∈ qN0 .

Proceeding with this method inductively, we obtain a subsequence nkj of the sequence
n(k−1)j such that {(Bξ̃)nkj

(tk)} converges at the next point, qk−1 := tk ∈ qN0 . Note

that by our construction process, it is guaranteed that {(Bξ̃)nkj
(r)} converges for all

r ∈ [1, tk]qN0 . Now let nj = njj , i.e., we pick the ‘diagonal sequence’. Clearly,
{(Bξ̃)nj

(r)} converges for all r ∈ [1, tk]qN0 . Therefore, we obtain the required sub-
sequence {(Bξ̃)nj

} ⊂ BΠM such that (Bξ̃)nj
(t) → Bξ̃(t) as j → ∞, uniformly for

all t ∈ qN0 . But Bξ̃ = {Bξ̃(t1), Bξ̃(t2), ..., Bξ̃(tk), ...}, where Bξ̃(tk) is the limit of
(Bξ̃)nj

(tk) as j → ∞. Since the operator B is continuous, and each {(Bξ̃)nj
} is in

BΠM , then the limit Bξ̃ ∈ BΠM . This concludes that BΠM is compact.

Theorem 3.6. Assume (K1-K4). If there exists a positive constant M0 such that

α + C̄F̄ (M0)q
P (qP − 1)

1− a1
≤M0, (3.10)

where C̄ as in (3.4) and α = ‖g(t, 0)‖, then equation (3.1) has a P -periodic solution in
ΠM0 := {ϕ ∈ P : ‖ϕ‖ ≤M0} with respect to Definition 1.2.

Proof. For ϕ̃, ψ̃ ∈ ΠM0 , we have, for t ∈ [1, qP ]qN0 ,

|Aϕ̃+Bψ̃|(t) ≤ |g̃(t, ϕ̃(t))|+

∣∣∣∣∣
∫ qP t

t

C̃(t, s)f̃(s, φ̃(s))dqs

∣∣∣∣∣ . (3.11)
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Notice that for t ∈ [1, qP ]qN0 ,

|g̃(t, ϕ̃(t))| ≤ |g̃(t, ϕ̃(t))− g̃(t, 0)|+ |g(t, 0)|
≤ a1|ϕ̃(t)|+ α

≤ a1‖ϕ̃‖+ α

≤ a1M0 + α. (3.12)

Therefore by (3.9), (3.10), (3.11), and (3.12), we obtain, for t ∈ [1, qP ]qN0 ,

|Aϕ̃+Bψ̃|(t) ≤ a1M0 + α + C̄F̄ (M0)q
P (qP − 1) ≤M0.

Therefore, for ϕ̃, ψ̃ ∈ ΠM0 , ‖Aϕ̃ + Bψ̃‖ ≤ M0. So Aϕ̃ + Bψ̃ ∈ ΠM0 , which proves
condition (i) of Theorem 3.3. Notice Lemma 3.4 and Lemma 3.5 prove conditions (ii)
and (iii) of Theorem 3.3. Therefore there exists a P -periodic solution of (3.1) with
respect to Definition 1.2.

4 Examples
Example 4.1. Consider the following Volterra equation constructed on 2N0 ,

x̃(t) =
1

2
+

1

6
(−1)

ln t
ln 2 x̃(t) +

4t∫
t

1

96t
cos

(
ln s

ln 2
π

)
x̃(s)d2s. (4.1)

Comparing (4.1) with (3.1) gives

g̃ (t, x̃ (t)) =
1

2
+

1

6
(−1)

ln t
ln 2 x̃(t),

C̃ (t, s) =
s

t
,

and

f̃ (t, x̃ (t)) =
1

96t
cos

(
ln t

ln 2
π

)
x̃(t).

Then, one may easily check that conditions (K1-K5) are satisfied with positive constants
a1 = 1/6, a2 = 1/96 and C̄ = 4. Then, since a1 + qP (qP − 1)C̄a2 = 2/3 < 1, by
employing Theorem 3.2, we deduce that the equation (4.1) has a unique 2-periodic
solution with respect to Definition 1.2.

Remark 4.2. Motivated by the discussions given in the first section and using Proposi-
tion 2.2 and (2.8)-(2.10), we have the following modified q-Volterra equation

x (t) =
1

2t
+

1

6
(−1)

ln t
ln 2 x(t) +

4t∫
t

1

96t2
cos

(
ln s

ln 2
π

)
sx(s)d2s. (4.2)
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Observe that (4.1) and (4.2) are correlated by Proposition 2.3. We emphasize that by
proving the existence of a unique 2-periodic solution of (4.1) in the sense of Definition
1.2, we also prove the existence of a unique 2-periodic solution of (4.2) with respect to
Definition 1.1.

Example 4.3. Consider the equation

x̃(t) =
1

2
cos

(
ln t

ln 2
π

)
x̃(t) +

1

48e4

4t∫
t

exp
(s
t

)
Λ̃ (s) x̃(s)d2s, t ∈ 2N0 . (4.3)

Comparing (4.3) to (3.1), we get that

g̃ (t, x̃ (t)) =
1

2
cos

(
ln t

ln 2
π

)
x̃(t),

C̃ (t, s) = exp
(s
t

)
,

and

f̃ (t, x̃ (t)) =
1

48e4
Λ̃ (t) x̃(t),

where

Λ̃ (t) =

{
1/t, if log2 t is odd
2/t, if log2 t is even

is a function satisfying (1.1) [5, Example 3.5] with P = 2. Observe that assumptions
(K1 − K3) are satisfied, and the function g̃ satisfies the Lipschitz condition (K4) with
constant a1 = 1/2. From (3.4) and (3.8), we obtain C̄ = e4 and F̄ (M0) = (1/e424)M0,
respectively. Also, α = 0. Then, the inequality (3.10) is satisfied for any positive
constant M0. By Theorem 3.6, we conclude that the equation (4.3) has a 2-periodic
solution with respect to Definition 1.2. Observe that Theorem 3.2 does not work for
concluding existence of periodic solutions of (4.3) since a2 = 1/24e4 and

a1 + qP (qP − 1)C̄a2 = 1

(i.e., condition (3.5) does not hold).

Remark 4.4. Since (4.3) has a 2-periodic solution with respect to Definition 1.2, then
the integral equation

x(t) =
1

2
cos

(
ln t

ln 2
π

)
x(t) +

1

48e4

∫ 4t

t

1

t
exp

(s
t

)
Λ̃(s)sx(s)d2s, (4.4)

has a 2-periodic solution with respect to Definition 1.1.
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