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Abstract

Fixed point theorem of Krasnosel’skii is used as the primary mathematical tool
to study the boundedness of solutions of certain Volterra type equations. These
equations are studied under a set of assumptions on the functions involved in the
equations. The equations will be called almost linear when these assumptions hold.
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1 Introduction
Consider the following scalar equations:

x′(t) = a(t)h(x(t)) +

∫ t

0

C(t, s)g(x(s))ds, x(0) = x0, t ≥ 0, (1.1)

and

x(t) = a(t) +

∫ t

0

C(t, s)g(x(s))ds, t ≥ 0. (1.2)

We assume that the functions h and g are continuous and that there exist positive con-
stants H , H∗, G, G∗ such that

|h(x)−Hx| ≤ H∗, (1.3)
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and
|g(x)−Gx| ≤ G∗. (1.4)

Throughout this paper we assume a(t) is continuous for t ≥ 0 and C(t, s) is continuous
for 0 ≤ s ≤ t <∞.

Equations (1.1) and (1.2) will be called almost linear if (1.3) and (1.4) hold. In
[4] the authors used this concept of almost linear equations and studied boundedness
and periodicity properties. In that paper, the authors used the resolvent to obtain the
boundedness of solutions of (1.2). In the present paper, we obtain the bounded solutions
of (1.1) and (1.2) employing the fixed point theorem of Krasnosel’skii [6, 9].

Krasnosel’skii’s theorem continues to receive attention in terms of both extensions
[2], and applications [5]. To the best of our knowledge, it has not been applied to
Volterra Integro-differential equations or integral equations on unbounded domains to
study the existence of bounded solutions. The use of (1.3) and (1.4) into (1.1) and then
inverting to an integral equation problem leads to the presence of an integral term which
may involve a completely continuous operator, and another term which may involve a
contraction operator, provides a natural environment for applying the Krasnosel’skii’s
fixed point theorem. Recall that an operator is completely continuous if it is continuous
and maps bounded sets into relatively compact sets. Normally, Arzela–Ascoli theorem
is used to obtain the compactness. But in our case in the present paper, Arzela–Ascoli
theorem does not apply because the domain is unbounded. To overcome theses difficul-
ties, we resort to a theorem (Theorem 2.3) which can be found in [1] and [5].

2 Bounded Solutions of (1.1)

In this section we employ Krasnosel’skii’s fixed point theorem and show, in Theorem
2.5, the existence of a continuous bounded solution of (1.1).

Theorem 2.1. [9] LetK be a closed convex subset of a Banach space (M, ‖·‖). Suppose
that

(i) the mapping A : K →M is completely continuous;

(ii) the mapping B : K → K is a contraction;

(iii) Au+Bv ∈ K for all u, v ∈ K.

Then the mapping A+B has a fixed point in K.

For convenience, we write (1.1) as

x′(t) = −a(t)h(x(t)) +
∫ t

0

C(t, s)g(x(s))ds, x(0) = x0, t ≥ 0. (2.1)
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Now we rewrite it as

x′(t) +Ha(t)x(t) = Ha(t)x(t)− a(t)h(x(t))

+

∫ t

0

C(t, s)(g(x(s))−Gx(s))ds+
∫ t

0

C(t, s)Gx(s)ds,

from which we get

x(t) = x0e
−H

∫ t
0 a(s)ds +

∫ t

0

e−H
∫ t
u a(s)dsa(u)[Hx(u)− h(x(u))]du

+

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

C(u, s)[g(x(s))−Gx(s)]dsdu

+

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

C(u, s)Gx(s)dsdu.

Assume
a : [0,∞)→ [0,∞), (2.2)

and for some positive constant L,

0 ≤
∫ u

0

|C(u, s)| ds ≤ La(u) for all u ∈ [0,∞), (2.3)

such that ∫ ∞
0

a(s)ds <∞. (2.4)

Moreover, we assume

sup
t≥0

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

G|C(u, s)|dsdu ≤ α < 1, (2.5)

and

sup
t≥0

∫ t

0

e−H
∫ t
u a(s)ds

[
a(u)H∗ +

∫ u

0

G∗|C(u, s)|ds
]
du ≤ β <∞. (2.6)

Finally, choose a constant m > 0 such that

|x0|e−H
∫ t
0 a(s)ds + αm+ β ≤ m (2.7)

for all t ≥ 0.
Let M be the Banach space of bounded continuous functions φ : [0,∞) → R with

the supremum norm. Let

K = {ψ ∈M,ψ(0) = x0 : ||ψ|| ≤ m}.

Then K is a closed convex subset of M.
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Define mappings A : K →M and B : K → K as follows.

(Aφ)(t) =

∫ t

0

e−H
∫ t
u a(s)dsa(u)[Hφ(u)− h(φ(u))]du (2.8)

+

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

C(u, s)[g(φ(s))−Gφ(s)]dsdu,

and

(Bφ)(t) = x0e
−H

∫ t
0 a(s)ds (2.9)

+

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

GC(u, s)φ(s)dsdu.

Clearly, both (Aφ)(t) and (Bφ)(t) are continuous in t.

Lemma 2.2. Assume (2.2), (2.5) and (2.7). The map B is a contraction from K into K.

Proof. Let B be given by (2.9). Then for φ ∈ K, we get from (2.5) and (2.7) that

|(Bφ)(t)| ≤ |x0|e−H
∫ t
0 a(s)ds + αm ≤ m.

Also, for φ, ψ ∈ K, we obtain

|(Bφ)(t)− (Bψ)(t)| ≤ α||φ− ψ||.

This proves that B is a contraction mapping from K into K.

Recall that the mapping is called completely continuous if it is continuous and maps
bounded sets into relatively compact sets. We rely on the following theorem for the
relative compactness criterion.

Theorem 2.3. [1] Let M be the space of all bounded continuous (vector-valued) func-
tions on [0,∞) and S ⊂ M . Then S is relatively compact in M if the following condi-
tions hold:

(i) S is bounded in M ;

(ii) the functions in S are equicontinuous on any compact interval of [0,∞);

(iii) the functions in S are equiconvergent, that is, given ε > 0, there exists a T =
T (ε) > 0 such that ‖φ(t)− φ(∞)‖Rn < ε, for all t > T and all φ ∈ S.

By making use of (1.3), (1.4), (2.2) and (2.3) we arrive at

|(Aφ)(t)| ≤ H∗ + LG∗

H

∫ t

0

d

du

(
e−H

∫ t
u a(s)ds

)
du (2.10)

=
H∗ + LG∗

H

(
1− e−H

∫ t
0 a(s)ds

)
, for all t ∈ [0,∞) and φ ∈ K.
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Lemma 2.4. A(K) is relatively compact.

Proof. Proving relative compactness of A(K) is equivalent to showing that all three
conditions of Theorem 2.3 hold. That is,

1. A(K) is uniformly bounded,

2. A(K) is equicontinuous,

3. A(K) is equiconvergent.

To see that A(K) is uniformly bounded, we use (2.10) to obtain

|(Aφ)(t)| ≤ H∗ + LG∗

H

(
1− e−H

∫ t
0 a(s)ds

)
≤ H∗ + LG∗

H
:= Q for all t ∈ [0,∞) and φ ∈ K.

To show equicontinuity of A(K), without loss of generality, we let t1 > t2 for t1,t2 ∈
[0,∞) and use the notations

F (φ(u)) = a(u)[Hφ(u)− h(φ(u))],

and
J(φ(u)) =

∫ u

0

C(u, s)[g(φ(s))−Gφ(s)]ds.

Then, we may write

(Aφ)(t) =

∫ t

0

e−H
∫ t
u a(s)ds[F (φ(u)) + J(φ(u))]du.

Hence we have

|(Aφ)(t1)− (Aφ)(t2)| =
∣∣∣∣∫ t1

0

e−H
∫ t1
u a(s)ds[F (φ(u)) + J(φ(u))]du

−
∫ t2

0

e−H
∫ t2
u a(s)ds[F (φ(u)) + J(φ(u))]du

∣∣∣∣
=

∣∣∣∣∫ t2

0

[e−H
∫ t1
u a(s)ds − e−H

∫ t2
u a(s)ds][F (φ(u)) + J(φ(u))]du

∣∣∣∣
+

∣∣∣∣∫ t1

t2

e−H
∫ t1
u a(s)ds[F (φ(u)) + J(φ(u))]du

∣∣∣∣
=

∫ t2

0

|e−H
∫ t2
u a(s)ds − e−H

∫ t1
u a(s)ds||F (φ(u)) + J(φ(u))|du

+

∫ t1

t2

e−H
∫ t1
u a(s)ds|F (φ(u)) + J(φ(u))|du
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≤ HQ

∫ t2

0

[e−H
∫ t2
u a(s)ds − e−H

∫ t1
u a(s)ds]a(u)du

+Q[1− e−H
∫ t1
t2

a(s)ds]

≤ Q[2− 2e−H
∫ t1
t2

a(s)ds − e−H
∫ t2
0 a(s)ds + e−H

∫ t1
0 a(s)ds]

≤ 2Q[1− e−H
∫ t1
t2

a(s)ds]→ 0 as t2 → t1.

This shows that A(K) is equicontinuous.
To see that A(K) is equiconvergent, we have

|(Aφ)(∞)− (Aφ)(t)| =
∣∣∣∣∫ ∞

0

e−H
∫∞
u a(s)ds [F (φ(u)) + J(φ(u))] du

−
∫ t

0

e−H
∫ t
u a(s)ds [F (φ(u)) + J(φ(u))] du

∣∣∣∣
≤
∣∣∣∣∫ t

0

[
e−H

∫∞
u a(s)ds − e−H

∫ t
u a(s)ds

]
[F (φ(u)) + J(φ(u))] du

∣∣∣∣
+

∣∣∣∣∫ ∞
t

e−H
∫∞
u a(s)ds [F (φ(u)) + J(φ(u))] du

∣∣∣∣
≤
∫ t

0

∣∣∣e−H ∫∞
u a(s)ds − e−H

∫ t
u a(s)ds

∣∣∣ |F (φ(u)) + J(φ(u))| du

+

∫ ∞
t

e−H
∫∞
u a(s)ds |F (φ(u)) + J(φ(u))| du

≤ HQ

∫ t

0

[
e−H

∫ t
u a(s)ds − e−H

∫∞
u a(s)ds

]
a(u)du

+Q
[
1− e−H

∫∞
t a(s)ds

]
≤ Q

[
2− 2e−H

∫∞
t a(s)ds + e−H

∫∞
0 a(s)ds − e−H

∫ t
0 a(s)ds

]
≤ 2Q

[
1− e−H

∫∞
t a(s)ds

]
→ 0 as t→∞,

where we used (2.4) which yields lim
t→∞

∫ ∞
t

a(u)du = 0.

We are now ready to use the fixed point theorem of Krasnosel’skii (Theorem 2.1)
to show the existence of a bounded continuous solution of (1.1), which is equivalent to
(2.1).

Theorem 2.5. Assume (1.3), (1.4), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) hold. Then
(1.1) has a bounded continuous solution.

Proof. For φ, ψ ∈ K, we get

|(Aφ)(t) + (Bψ)(t)| ≤ |x0|e−H
∫ t
0 a(s)ds + αm+ β ≤ m,
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which proves that Aφ + Bψ ∈ K. Moreover, Lemma 2.2 and Lemma 2.4 satisfy the
requirements of Krasnosel’skii’s fixed point theorem and hence there exists a function
x(t) ∈ K such that

x(t) = Ax(t) +Bx(t).

This proves that (1.1) has a bounded continuous solution x(t).

3 Bounded Solutions of (1.2)

Now, we turn our attention to the integral equation given by (1.2). We employ the same
method as we did in the previous section. To set up our mappings, we rewrite (1.2),

x(t) = a(t) +

∫ t

0

C(t, s)[g(x(s))−Gx(s)]ds+
∫ t

0

C(t, s)Gx(s)ds. (3.1)

Let M be the Banach space of bounded continuous functions φ : [0,∞) → (−∞,∞)
with the supremum norm. Let

K = {ψ ∈M : ||ψ|| ≤ m},

where m is a constant defined later in (3.2). Then K is a closed convex subset of M.
Using (3.1), we define mappings A : K →M and B : K → K as follows.

(Aφ)(t) =

∫ t

0

C(t, s)[g(φ(s))−Gφ(s)]ds,

and

(Bφ)(t) =

∫ t

0

GC(t, s)φ(s)ds+ a(t).

Clearly, both (Aφ)(t) and (Bφ)(t) are continuous in t. Choose m such that

(G∗ +mG)

∫ t

0

|C(t, s)| ds+ |a(t)| ≤ m. (3.2)

Finally, to prove the map B is a contraction, we ask that there exists an α ∈ (0, 1) such
that

G

∫ t

0

|C(t, s)| ds ≤ α, for all t ≥ 0. (3.3)

It is obvious that condition (3.3) implies the map B is a contraction on K.

Lemma 3.1. A(K) is relatively compact.
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Proof. By (3.2), A(K) is uniformly bounded. For showing A(K) is equicontinuous,
we let t1 > t2 for t1, t2 ∈ [0,∞). Then,

|(Aφ)(t1)− (Aφ)(t2)| ≤
∫ t2

0

|C(t1, s)− C(t2, s)||g(ϕ(s)))−Gϕ(s)|ds

+

∫ t2

t1

|C(t1, s)||g(ϕ(s)))−Gϕ(s)|ds

≤ G∗[

∫ t2

0

|C(t1, s)− C(t2, s)|ds+
∫ t2

t1

|C(t1, s)|ds].

Due to the continuity of C, we have |C(t1, s)−C(t2, s)| → 0, as t2 → t1. Also, due to

(3.2), we have
∫ t2

t1

|C(t1, s)|ds→ 0 as t2 → t1. Thus,

|(Aφ)(t1)− (Aφ)(t2)| → 0, as t2 → t1.

Now, we show
|(Aφ)(∞)− (Aφ)(t)| → 0, as t→∞.

Using condition (3.2) and the continuity of C, we obtain

|(Aφ)(∞)− (Aφ)(t)| ≤ G∗[

∫ ∞
0

|C(∞, s)− C(t, s)|ds+
∫ ∞
t

|C(t, s)|ds]

→ 0 as t→∞.

Theorem 3.2. Assume (1.4), (3.2) and (3.3). Then (1.2) has a bounded continuous
solution.

The proof of Theorem 3.2 is very similar to the proof of Theorem 2.5, and hence we
omit it.

4 An Example
Consider the Volterra integro-differential equation

x′(t) =
1

(t+ 1)2
h(x(t)) +

∫ t

0

1

(t+ s+ 1)3
g(x(s))ds, x(0) = x0, t ≥ 0, (4.1)

where the functions h and g satisfy conditions (1.3) and (1.4), respectively. Let H , G,

H∗, and G∗ be positive constants with
G

2
< 1. We choose a constant m > 0 such that

for any initial point x0, the inequality

|x0|e−H +m
G

2
+ (H∗ +G∗) ≤ m
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holds. Then, (4.1) has a continuous bounded solution x(t) satisfying

||x|| ≤ m.

To see this, we let a(t) =
1

(t+ 1)2
, and C(t, s) =

1

(t+ s+ 1)3
. A simple calculation

leads to ∫ u

0

|C(u, s)|ds =
1

2(u+ 1)2
− 1

2(2u+ 1)2

≤ 1

2(u+ 1)2
+

1

2(2u+ 1)2

≤ 1

(u+ 1)2
.

This shows that condition (2.3) is satisfied with L = 1. It is an easy exercise to see that
(2.4) holds. Next, we verify (2.5).

sup
t≥0

∫ t

0

e−H
∫ t
u a(s)ds

∫ u

0

G|C(u, s)|dsdu ≤ sup
t≥0

∫ t

0

∫ u

0

G|C(u, s)|dsdu

≤ sup
t≥0

G

∫ t

0

( 1

2(u+ 1)2
− 1

2(2u+ 1)2
)
du

≤ sup
t≥0

G

2

∫ t

0

1

(u+ 1)2
du

≤ G

2
< 1.

Now, we verify (2.6).

sup
t≥0

∫ t

0

e−H
∫ t
u a(s)ds

[
a(u)H∗ +

∫ u

0

G∗|C(u, s)|ds
]
du

≤ sup
t≥0

∫ t

0

(
H∗a(u) +G∗

1

(u+ 1)2
)
du

= (H∗ +G∗) sup
t≥0

∫ t

0

1

(u+ 1)2
du

≤ (H∗ +G∗).

Thus, as an application of Theorem 2.5, we see that (4.1) has a continuous bounded
solution x(t) satisfying

||x|| ≤ m.
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