
University of Dayton
eCommons

Mathematics Faculty Publications Department of Mathematics

2013

An Implicit Interface Boundary Integral Method for
Poisson’s Equation on Arbitrary Domains
Catherine Kublik
University of Dayton, ckublik1@udayton.edu

Nicolay M. Tanushev
Terra Inc.

Richard Tsai
University of Texas at Austin

Follow this and additional works at: https://ecommons.udayton.edu/mth_fac_pub

Part of the Applied Mathematics Commons, Mathematics Commons, and the Statistics and
Probability Commons

This Article is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in
Mathematics Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Kublik, Catherine; Tanushev, Nicolay M.; and Tsai, Richard, "An Implicit Interface Boundary Integral Method for Poisson’s Equation
on Arbitrary Domains" (2013). Mathematics Faculty Publications. 32.
https://ecommons.udayton.edu/mth_fac_pub/32

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mth_fac_pub?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mth?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mth_fac_pub?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mth_fac_pub/32?utm_source=ecommons.udayton.edu%2Fmth_fac_pub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

An Implicit Interface Boundary Integral Method for Poisson’s

Equation on Arbitrary Domains

Catherine Kublik∗, Nicolay M. Tanushev†, and Richard Tsai‡

Abstract

We propose a simple formulation for constructing boundary integral methods to solve Pois-
son’s equation on domains with piecewise smooth boundaries defined through their signed dis-
tance function. Our formulation is based on averaging a family of parameterizations of an
integral equation defined on the boundary of the domain, where the integrations are carried
out in the level set framework using an appropriate Jacobian. By the coarea formula, the algo-
rithm operates in the Euclidean space and does not require any explicit parameterization of the
boundaries. We present numerical results in two and three dimensions.

Keywords: Integral equations, level set methods, elliptic problems.

1 Introduction

We consider applications which involve the solution of Poisson’s equation on evolving domains
that can change shapes, merge, and split up. Such applications include multiphase fluid com-
putations [5], Mullins-Sekerka type free boundary problems [37, 52] and iterative solutions to
certain inverse problems, e.g. [7]. In these applications, one of the main challenges is to accu-
rately capture the evolution of the domain boundaries which depends on the solution of Poisson’s
equation on the evolving domain with appropriate boundary conditions. For such type of appli-
cations, the level set method [39] is widely used to track the evolution of the boundary. With
all these considerations in mind, we propose a novel technique based on integral equations for
solving Poisson’s equation with a class of boundary conditions defined on the interface. We
concentrate on {

∆u(x) = ψ0(x) in Ω

u(x) = f(x) or ∂u(x)
∂nx

= g(x) on ∂Ω,
(1)

for a fixed domain Ω, but we will keep in mind that Ω may depend on some other variables,
for example time in our target applications. Various numerical methods have been proposed
to solve elliptic problems such as (1), including finite element methods [4, 14, 23, 24, 26],
finite difference techniques [5, 10, 19, 27, 28, 30], the immersed interface method [30, 31] and
boundary integral methods [3, 25]. The theory of finite element methods for elliptic problems
is well established, and there are sophisticated and highly accurate algorithms for solving such
problems. In addition, finite element based methods can handle the variable coefficient version
of (1) and therefore many other elliptic problems. On the other hand, finite element methods
require an explicit representation (e.g. triangulation) of the domain which makes these types of

∗Department of Mathematics, University of Dayton, Dayton, OH 45469.
†Z-Terra Inc., Houston, TX 77094.
‡Department of Mathematics and ICES, University of Texas at Austin, Austin, TX 78712.

1

methods less tractable in the case of an evolving domain. Indeed, if the domain is changing in
time it will be necessary to constantly remesh it in order to track its shape and movement, and
frequent remeshings can be costly, particularly if the domain is subject to large deformations or
topological changes.

In [5], the authors present a second order accurate method for solving elliptic problems
on irregular domains. Their approach is to use a hybrid finite difference-element method and
embed the domain in a cartesian grid. The solution is then obtained by minimizing an energy
functional. They also use a polygonal representation of the domain boundary which leads
to extra computations when finding intersection points between the boundary and the grid.
One of the main benefits of this technique, outside its second order accuracy, is its ability
to handle variable coefficient elliptic equations. In addition, this numerical scheme is natural
for Neumann boundary conditions in the sense that the resulting linear system can be solve
efficiently. However, the extension of the method to Dirichlet boundary conditions is not as
natural and extra care has to be taken to solve the linear system efficiently.

Finite difference techniques are also popular choices for solving (1) in applications of the
level set methods [20, 32]. In the work of Gibou and Fedkiw [19], the domain boundary is
described implicitly by a level set function and the elliptic operator discretized using a finite
difference scheme. On grid nodes away from the interface a standard centered finite difference
stencil is used. For grid nodes near the interface, the parts of the finite difference stencil that
lie outside of the domain are replaced by values that are constructed by extrapolation using the
boundary condition at the interface and the grid nodes inside the domain. The accuracy of this
scheme depends on the order of the stencil used in the finite difference method and on the order
of the extrapolation method. The authors can achieve fourth order accuracy by using a fourth
order stencil and a cubic extrapolation. This scheme can solve elliptic equations with variable
coefficients and is natural for the interior problem with Dirichlet boundary conditions but is likely
more involved if Neumann boundary conditions need to be imposed or if the equation needs
to be solved on the exterior of the domain. In the work of Min etal. [36] the authors propose
a second-order finite difference scheme for solving the variable coefficient Poisson’s equation
on regular domains using non-graded adaptive grids (i.e., grids for which the difference in size
between two adjacent cells is not constrained). For numerical efficiency, they use quadtrees (in
2D) and octrees (in 3D) to represent the Cartesian grid. This scheme is extended in the work
of Chen etal. [8] to irregular domains and the heat equation. Using these schemes the solution
of Poisson’s equation and the heat equation is obtained efficiently on locally adaptive grids. We
note that most of the finite difference based schemes described above (except for the work of
Min etal. [36] and Chen etal. [8] which are already on locally adaptive grids) may be difficult
to extend to local level set methods in which the grids are created only in narrow bands around
the interface.

The Immersed Interface Method (IIM) [30, 31] is a popular technique for solving elliptic
equations on arbitrary domains, particularly if the coefficients in the equation are discontinuous.
This technique uses an adaptive finite difference scheme with a locally adaptive stencil. When
the stencil is applied at points near the interface, it may be necessary to use points that lie
outside of the domain. The method adaptively assigns values to these points based on the jump
conditions of the coefficients or sources along the interface. Unlike finite element methods, the
immersed interface method can be used with an implicit representation of the domain boundary.

In contrast with the schemes described above, boundary integral methods use an integral
representation of the solution, namely the solution is defined by an integral of a suitable potential
over the interface. Boundary integral methods could be restrictive however, since they are
only practical on problems where the fundamental solution of the PDE can be conveniently
calculated. Consequently, it is not convenient to solve variable coefficient elliptic problems using
these formulations. Nevertheless, boundary integral methods provide a powerful and accurate
technique for the solution of linear boundary value problems with constant coefficients, which

2

arise in many applications including sonar, cell phone and radio antenna design. In addition,
these methods enable boundary conditions to be treated automatically, including boundary
conditions at infinity. For instance, if Dirichlet boundary data are given, boundary integral
methods reformulate the problem as an integral equation of the form

f(x) =

∫
∂Ω

γ(y(s))K(x, y(s))ds+ γ(x), x ∈ ∂Ω, (2)

where K is a kernel that relates to the fundamental solution of (1) and y(s) is a parameterization
of ∂Ω. To obtain the solution of (2), we first solve for the unknown density function γ defined
on the domain boundary ∂Ω and then construct the solution u as

u(x) =

∫
∂Ω

γ(y(s))K̃(x, y(s))ds, x ∈ Ω,

where K̃ may be a different kernel related to the fundamental solution of (1). Numerical schemes
based on boundary integral equations typically use high order quadratures on smooth explicitly
parameterized boundaries, and may be made computationally more efficient through various
techniques such as Fast Multipole Methods, e.g. [17, 22, 41], the hierarchical matrix framework
[6], wavelet based techniques [12, 34] and multidirectional algorithms [16].

In this paper we present a formulation for computing integrals of the form
∫
∂Ω
v(x(s))ds

in the level set framework, and with it we propose a boundary integral method where the
domain boundary is described by its signed distance function to the boundary and an equivalent
integral equation is formulated on a thin tubular neighborhood around the boundary. Within
the tubular neighborhood of the boundary, the integral is discretized directly by the underlying
grid. Typically in a level set method, to evaluate an integral of the form

∫
∂Ω
v(x(s))ds where ∂Ω

is the zero level set of a continuous function ϕ, it is necessary to extend the function v defined
on the boundary ∂Ω to Rn, such that its restriction onto ∂Ω coincides with v. The extension
of v, denoted ṽ, is typically a constant extension of v. The integral is then approximated by an
integral involving a regularized Dirac-δ function concentrated on ∂Ω, namely∫

∂Ω

v(x(s))ds ≈
∫
Rn
ṽ(x)δε(ϕ(x))|∇ϕ(x)|dx.

Various numerical approximations of this delta function have been proposed, see e.g. [15, 45,
47, 51]. In this paper, by parameterizing integrals over ∂Ω using nearby level sets of ϕ and
averaging over these different parameterizations, we derive the identity∫

∂Ω

v(x(s))ds =

∫
Rn
ṽ(x)J(x)δε(ϕ(x))|∇ϕ(x)|dx,

where J(x) on the right hand side is the Jacobian that accounts for the change of variables made
in each parameterization of the integral on the left hand side. With this formulation, we propose
a numerical method based on integral equation formulations for solving the Poisson problem
with constant coefficients, subject to Dirichlet, Neumann, Robin or mixed boundary conditions.
Our formulation involves projecting grid nodes located nearby the domain boundary onto their
closest points on the boundary. As a result, our algorithm is simple, solves both the interior
and exterior problem, handles moving boundaries easily and is applicable to various different
meshes without the need to approximate the interface by finding the intersection points between
the boundary and the grid. In addition, since our algorithm does not rely on uniform grids, it
can be naturally used in applications that utilize different narrow banding, local level set, or
adaptive gridding techniques [1, 35, 40, 46]. We note that the formulation we propose here gives
an exact formulation for computing boundary integrals in the level set framework, and provides
a natural way of defining and computing boundary integrals in applications using the closest
point formulations [33, 43].

3

The paper is organized as follows. In Section 2, we present the integral equations we shall
solve in this paper and give a brief description of previous numerical methods that have been
developed for solving these types of integral equations. We describe our new formulation in
Section 3 and introduce the corresponding algorithm in Section 4. We finish by presenting some
numerical results in two and three dimensions in Section 5 and conclude in Section 6.

2 Boundary integral methods for the Poisson problem

We present below the boundary integral formulations most relevant to this paper. For simplicity,
we limit our presentation to the solution of Poisson’s equation in the interior of a bounded
domain Ω. The solution of the exterior problem can be derived accordingly. We note that in
this paper, the exterior problem describes Poisson’s equation on an unbounded domain with
adequate boundary conditions. In Appendix B, the reader can find a detailed derivation of
these formulations.

2.1 Integral equation formulations for Poisson’s equation

We begin by considering the Dirichlet problem for Poisson’s equation,{
∆u(x) = ψ0(x) in Ω,
u(x) = f(x) on ∂Ω.

(3)

Since Dirichlet boundary conditions are imposed, we introduce an unknown density β defined on
the boundary ∂Ω and represent the solution u of (3) using the double layer potential formulation

u(x) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy, x ∈ Ω,

where Φ is the fundamental solution of Laplace’s equation defined in (48) in Appendix B. The
Dirichlet problem is solved as follows:

1. Find the density β defined on ∂Ω such that∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

1

2
β(x) = f(x)−

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ ∂Ω. (4)

2. Reconstruct the solution u in Ω using the double layer potential formulation

u(x) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

We now consider the Neumann problem{
∆u(x) = ψ0(x) in Ω,
∂u(x)
∂nx

= g(x) on ∂Ω such that
∫
∂Ω
g(x(s))ds =

∫
Ω
ψ0(x)dx.

(5)

We observe that ∫
Ω

∆u(x)dx =

∫
∂Ω

∂u(x(s))

∂nx
ds =

∫
Ω

ψ0(x)dx.

Thus, in order for the Neumann problem (5) to have a solution, it is necessary to impose the
compatibility condition ∫

∂Ω

g(x(s))ds =

∫
Ω

ψ0(x)dx (6)

4

on g. Let us note also that the solution to the Neumann problem is not unique. As a result, it is
necessary to prescribe additional conditions on the solution u in order to make it unique. In fact
the number of conditions that need to be imposed on u is the number of connected components
of the domain Ω. In this work we choose to impose that the solution u takes specific values at
a few chosen points inside Ω, namely if the domain Ω has m connected components, we pick
m points such that each point lies inside a different connected component. We shall solve the
Neumann problem using the single layer potential formulation. Unlike the Dirichlet problem
where both formulations may be used (see Appendix B), the single layer potential formulation is
the only practical representation of the solution of the Neumann problem. The steps for solving
the Neumann problem are as follows:

1. Find the density α defined on the domain boundary ∂Ω such that∫
∂Ω

α(y(s))
∂Φ(x, y(s))

∂nx
ds− 1

2
α(x) = g(x)−

∫
Ω

∂Φ(x, y)

∂nx
ψ0(y)dy, for x ∈ ∂Ω. (7)

2. Reconstruct the solution u in Ω using the single layer potential formulation

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

Remark: Our algorithm also solves Poisson’s equation subject to boundary conditions of
the form

σ(x)u(x) + ρ(x)
∂u(x)

nx
= g(x), (8)

where x ∈ ∂Ω, and σ and ρ are functions in L1(∂Ω,R). Note that if σ and ρ are constant we re-
cover Robin boundary conditions. In addition, if σ(x) = σ0(x)1Γ0

(x) and ρ(x) = ρ0(x)1∂Ω\Γ0
(x)

where Γ0 is a subset of ∂Ω and 1Γ0
(·) is the characteristic function of Γ0, we recover the mixed

boundary conditions u(x)
∣∣
Γ0

= σ0(x) and ∂u(x)
∂n

∣∣∣
∂Ω\Γ0

= ρ0(x). For the general boundary con-

ditions (8), the algorithm becomes

1. Find the density α defined on the domain boundary ∂Ω such that∫
∂Ω

(
σ(x)Φ(x, y(s)) + ρ(x)

∂Φ(x, y(s))

∂nx

)
α(y(s))ds− ρ(x)

2
α(x)

= g(x)−
∫

Ω

(
σ(x)Φ(x, y) + ρ(x)

∂Φ(x, y)

∂nx

)
ψ0(y)dy, for x ∈ ∂Ω.

2. Reconstruct the solution u in Ω using the single layer potential formulation

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

2.2 A brief overview of numerical methods for Boundary Integral
Methods

For each of the boundary integral equations obtained in the previous section, we need to solve a
Fredholm equation of either the first or second kind. In other words, we need to find a function
γ defined on ∂Ω, such that

q(x) =

∫
∂Ω

γ(y(s))K(x, y(s))ds+ C0γ(x),

where C0 is a constant and K is either the fundamental solution of Laplace’s equation or its
normal derivative to ∂Ω. To solve these equations numerically it is necessary to discretize the

5

above integrals. Three discretization methods are typically used: the Nyström method [2, 38],
the collocation method [2] and the Galerkin method [2, 11]. In the Nyström method, the bound-
ary ∂Ω is described by a set of quadrature nodes, thus enabling the integral to be discretized
using a quadrature rule. The resulting solution γ is first found at the set of quadrature nodes,
and then extended to all points in Ω by means of an interpolation formula. The collocation
method uses subspace approximations, namely a finite-dimensional space of basis functions de-
fined on the boundary ∂Ω. Additionally, a set of points on the boundary, called collocation
points, are chosen such that the solution, expressed as a linear combination of the basis func-
tions, satisfies the given equation at each of the collocation points. The Galerkin method is a
collocation method with an orthogonal basis. Each of these discretization methods leads to a
discrete system of the form

(I + KΛ)γ = q,

where I is the identity matrix, K is a dense matrix, Λ is a diagonal matrix (for example containing
the quadrature weights of the Nyström method), γ is the vector of unknowns, and q is a known
vector obtained from the boundary conditions. Since K is dense this system is usually solved using
an iterative procedure. In addition, low rank approximations may be constructed to improve the
efficiency of the numerical solver. One very successful approach is the Fast Multipole Method
introduced by Greengard and Rokhlin in 1987 [22]. The idea is to expand the fundamental
solution using a multipole expansion in order to group sources that lie close together, and treat
them as a single source. The use of hierarchical matrices [6] to solve this dense system is also
popular. In this case the dense matrix is partitioned into subblocks based on a hierarchical
subdivision of the points where the off-diagonal blocks are compressed in low rank forms, while
the diagonal and the next-to-diagonal blocks are stored densely. Finally, a different approach
to solving the dense system is to consider the dense matrix as a two dimensional image and
compress it using wavelets [12, 34]. In the appropriate wavelet basis or frame, dense matrices
may have sparse wavelet coefficients which can be used to perform matrix multiplications in the
wavelet domain at a much lower cost and higher efficiency. The solution of the original system
is then obtained by inverting the solution found in the wavelet domain. For more information
on numerical methods for boundary integral equations we refer the reader to Atkinson’s book
[2]. Even though these numerical methods are quite efficient for solving integral equations, they
all rely on a discretization of the explicitly parameterized interface.

In this paper, we propose an implicit boundary integral method that does not require an
explicit parameterization of the domain boundary. Instead, the boundary is described by a
level set function, thus enabling us to perform all the computations on a fixed grid regardless
of the location of the boundary. Should the interface evolve in time, all computations will be
performed on the mesh that is used by the level set function at each time step. This makes our
algorithm easy to implement for evolving interfaces in two and three dimensions. In addition,
computational techniques such as Fast Multipole Methods (FMM) [21, 22] may be incorporated
into our algorithm to improve its computational speed.

3 Boundary Integral equations using signed distance func-
tions

In this section we rewrite the boundary integral equations (4) and (7) in Section 2.1 as integrals
over the embedding Euclidean space with appropriate delta measures, see (16).

6

3.1 Derivation

We use the signed distance function d defined as

d(x) :=

{
infy∈Ωc |x− y| if x ∈ Ω,
− infy∈Ω |x− y| if x ∈ Ω̄c.

We recall a few properties of the signed distance function that will be important in the imple-
mentation of our algorithm. These properties hold more generally in Rn, (see e.g. [13, 18]).
First, if ∂Ω is sufficiently smooth, then d is smooth in some tubular neighborhood T of ∂Ω and
linear with slope one along the normals to the boundary:

|∇d| = 1 for all x ∈ T, with boundary condition d|x∈∂Ω = 0. (9)

Second, if ∂Ω is sufficiently smooth, the Laplacian of d at a point x gives up to a multiplicative
constant the mean curvature of the isosurface of d passing through x:

∆d(x) = (1− n)H(x), (10)

where H(x) denotes the mean curvature of the level set {ξ : d(ξ) = d(x)} and n is the number of
dimensions. Given a general domain Ω, we will need to compute its signed distance function to
its boundary. A common approach is to choose a level set function which is positive inside Ω and
negative outside (e.g. 1Ω(·)) and then apply a “redistancing” process to obtain d at least locally
near the boundary ∂Ω. Since we only need d near the boundary we will use this approach. This
redistancing step is computationally efficient since there exist fast algorithms for constructing
signed distance functions (O(N logN) where N is the total number of grid points) such as fast
marching, fast sweeping, etc. [9, 42, 44, 48, 49, 50].

Given a domain Ω described by its signed distance function constructed as explained above,
we project all grid nodes located inside an ε tubular neighborhood of the boundary ∂Ω onto
the boundary ∂Ω. This operation is easily performed using the signed distance function and its
gradient, see (11). We let Tε be the ε tubular neighborhood of ∂Ω defined as

Tε := {x : |d(x)| ≤ ε} ,

where ε > 0. For x in the tubular neighborhood Tε, we consider its projection x∗ onto ∂Ω (its
closest point on the boundary) obtained using the equation

x∗ = x− d(x)∇d(x). (11)

We note that the idea of using the closest point mapping for solving partial differential equations
has been previously used by Ruuth etal. in [33, 43].

We now continue with the single layer potential formulation. The result for the double layer
potential is obtained similarly. For clarity in the upcoming derivations, we define the following
quantities: we let ∂Ωη be the η level set of d defined as

∂Ωη := {x : d(x) = η},

for η ∈ [−ε, ε] and define

Jη := Jη(y(sη)) =

{
1 + ηκη if n = 2,
1 + 2ηHη + η2Gη if n = 3,

where κη is the curvature of the curve ∂Ωη at y(sη), Hη is the mean curvature of the surface ∂Ωη

at y(sη) (Hη =
κ(1)
η +κ(2)

η

2 with κ
(i)
η its ith principal curvature), and Gη is the Gaussian curvature

7

of the surface ∂Ωη at y(sη). Using the change of variable described in detail in Appendix A we
write the single layer potential integral equation as∫

∂Ω

α(z(s))Φ(x, z(s))ds =

∫
∂Ωη

α(y∗(sη))Φ(x, y∗(sη))Jηdsη, (12)

where z(s) is a parameterization of ∂Ω and y∗(sη) is the projection of y(sη) ∈ ∂Ωη onto ∂Ω.
We remark that (12) still holds in the case where ∂Ω is a hypersurface in Rn (n ∈ N∗). In that
case the Jacobian Jη is an nth order polynomial in η (see (46) in Appendix (A.2)).

Let δε(η) be a regularized delta function (or averaging kernel) compactly supported in [−ε, ε]
satisfying the moment conditions∫

R
δε(η)dη =

∫ ε

−ε
δε(η)dη = 1, (13)

and ∫
R
ηjδε(η)dη = 0 for 1 ≤ j ≤ p, (14)

for p ∈ N∗. By the moment condition (13) we have∫ ε

−ε
δε(η)

∫
∂Ω

α(y∗(s))Φ(x, y∗(s))dsdη =

∫
∂Ω

α(y∗(s))Φ(x, y∗(s))ds,

since the interior integral does not depend on η. Using such a delta function δε as a weight we
average (12) in η and obtain∫

∂Ω

α(y∗(s))Φ(x, y∗(s))ds =

∫ ε

−ε
δε(η)

∫
∂Ωη

α(y∗(sη))Φ(x, y∗(sη))Jηdsηdη. (15)

Using the coarea formula, and Equations (9) and (10), we rewrite the right-hand side of (15) as∫ ∞
−∞

δε(η)

∫
{y:d(y)=η}

α(y∗(sη))Φ(x, y∗(sη))Jηdsηdη =

∫
Rn
α(z∗)Φ(x, z∗)δε(d(z))J(z)|∇d(z)|dz

=

∫
Rn
α(z∗)Φ(x, z∗)δε(d(z))J(z)dz, (16)

with z∗ = z − d(z)∇d(z) for z ∈ Rn and

J(z) =

{
1− d(z)∆d(z) if n = 2,
1− d(z)∆d(z) + d(z)2〈∇d, adj(Hess(d))∇d〉 if n = 3,

(17)

where 〈·, ·〉 is the Euclidean inner product and adj(Hess(d)) is the adjugate matrix of the Hessian
of d. Combining (15) and (16) we obtain for x ∈ Ω,∫

∂Ω

α(z(s))Φ(x, z(s))ds =

∫
Rn
α(z∗)Φ(x, z∗)δε(d(z))J(z)dz. (18)

For the double layer potential formulation similar calculations can be made to obtain the identity∫
∂Ω

β(z(s))
∂Φ(x, z(s))

∂ny
ds =

∫
Rn
β(z∗)

∂Φ(x, z∗)

∂nz∗
δε(d(z))J(z)dz, (19)

In fact, the result is general and can be summarized in the following theorem:

8

Theorem 3.1 Consider a C2 compact hyper surface Γ ⊂ Rn and let d be the signed distance
function to Γ. Define δε : R 7→ R to be a regularized delta function compactly supported in [−ε, ε]
satisfying the moment conditions (13) and (14). If v is a continuous function defined on Γ, then
for sufficiently small ε > 0 we have∫

Γ

v(x(s))ds =

∫
Rn
v(z − z∇d(z))δε(d(z))J(z)dz,

where J(z) is defined in (17) for n = 2, 3 and in (46) in higher dimensions.

Equations (18) and (19) are particular cases of Theorem 3.1 for the single and double layer
potentials.

3.2 Truncation of the Jacobian polynomials

In this section we investigate the error made when evaluating (16) using a truncated Jacobian.
We assume that x ∈ Rn is sufficiently distant from the boundary so that α, β,Φ, and ∂Φ

∂n are
smooth and bounded. Therefore in the following discussion, we shall replace the integrant αΦ
or β ∂Φ

∂n by a smooth function f . As shown in the Appendix A.3 Rn, the Jacobian Jη is a d− 1

degree polynomial in η. We look at the error made when Jη is replaced by the polynomial J
(m)
η

where only the first m terms in Jη are kept. We have∫ ε

−ε
δε(η)

∫
∂Ωη

f(y∗(sη))Jηdsηdη −
∫ ε

−ε
δε(η)

∫
∂Ωη

f(y∗(sη))J (m)
η dsηdη

=

∫ ε

−ε
δε(η)

∫
∂Ωη

f(y∗(sη))ηm+1Q(n−(m+1))
η dsηdη

=

∫ ε

−ε
ηm+1δε(η)I(η)dη,

whereQ
n−(m+1)
η is a polynomial in η of degree n−(m+1) and I(η) =

∫
∂Ωη

f(y∗(sη))Q
(n−(m+1))
η dsη.

Writing I(η) in its Taylor series around zero

I(η) = a0(x) + a1(x)η + a2(x)η2 + · · · ,

it follows that if the kernel, i.e. δε, has p vanishing moments, we have∣∣∣∣∫ ε

−ε
ηδε(η)I(η)dη

∣∣∣∣ =

∣∣∣∣∣
∫ ε

−ε
ηδε(η)

∞∑
i=0

ai(x)ηidη

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑

i=max(0,p−m)

ai(x)

∫ ε

−ε
δε(η)︸ ︷︷ ︸
=O(1

ε)

ηi+1dη

∣∣∣∣∣∣∣
=

{
O(εm+1) if p < m,
O(εp+1) if p ≥ m.

Thus if the kernel has the same (or a higher) number of vanishing moments than the order of the
approximation of the Jabobian, the error will be governed by the number of vanishing moments
in ε. In this case, it actually does not matter which approximations of the Jacobian is used as
long as its order m is smaller than the number of vanishing moments. On the other hand, if
the number of vanishing moments is smaller than the order of the approximation, the error is

9

dominated by the order of approximation of Jη. In this case, it is advantageous to use the best
approximation to Jη.

The above estimates suggest that in the two dimensional case the maximum error made

by the use of J
(0)
η scales like εp+1 for any moment p of the averaging kernel. In other words,

for symmetric δε, it suffices to use J
(0)
η in the computation. In the three dimensional case

the maximum error resulting from the use of J
(0)
η scales similarly to the two dimensional case,

namely εp+1. On the other hand, if J
(1)
η is used, the error scales like εp+1 if p ≥ 1 and ε2 if

p = 0. Consequently in three dimensions, if the averaging kernel has moment 1 or higher, the

error incurred by the either approximation J
(0)
η or J

(1)
η will be the same.

3.3 Algorithms

The Dirichlet problem (3) with the double layer potential formulation can be solved using the
following procedure:

Solution of the Dirichlet problem (3) with the double layer potential formulation.
Let Ω be a bounded set in Rn (n = 2, 3) with boundary ∂Ω defined through its signed
distance function d(x).

1. Find the density β defined on ∂Ω such that∫
Rn
β(z∗)

∂Φ(x, z∗)

∂nz∗
δε(d(z))J(z)dz +

1

2
β(x) = f(x)−

∫
Ω

Φ(x, y)ψ0(y)dy, (20)

where z∗ = z − d(z)∇d(z) and J is defined in (17).

2. Reconstruct u in Ω using

u(x) =

∫
Rn
β(z∗)

∂Φ(x, z∗)

∂nz∗
δε(d(z))J(z)dz +

∫
Ω

Φ(x, y)ψ0(y)dy.

The Neumann problem can be solved with the single layer potential formulation by the fol-
lowing procedure:

Solution of the Neumann problem (5) with the single layer potential formulation.
Let Ω be a bounded set in Rn (n = 2, 3) with boundary ∂Ω defined through its signed
distance function d(x).

1. Find the density α defined on ∂Ω such that∫
Rn
α(z∗)

∂Φ(x, z∗)

∂nx
δε(d(z))J(z)dz − 1

2
α(x) = g(x)−

∫
Ω

∂Φ(x, y)

∂nx
ψ0(y)dy, (21)

where z∗ = z − d(z)∇d(z) and J is defined in (17).

2. Reconstruct u in Ω using

u(x) =

∫
Rn
α(z∗)Φ(x, z∗)δε(d(z))J(z)dz +

∫
Ω

Φ(x, y)ψ0(y)dy.

Note that the integrals in (20) and (21) are now over a tubular neighborhood around ∂Ω
rather than over the boundary ∂Ω. These integrals are very easily discretized on a mesh that
embeds the boundary ∂Ω.

10

4 Discretization

In this section we present the discretization of (20) and (21) and introduce the full algorithm.
We focus mainly on (20) and (21) since the double layer potential formulation for the Dirichlet
problem leads to a discrete system with a better condition number than the one obtained with
the single layer potential. However, the single layer potential is needed to solve the Dirichlet
problem when the more general boundary conditions (8) are used.

We embed the domain Ω into the rectangleR = [a, b]n, where n = 2, 3, and a, b ∈ R are chosen
so that Ω lies completely inside R. The rectangle R constitutes our computational domain. For
simplicity in the presentation of our algorithm, we work with a uniform discretization of R and
let h = b−a

N denote the grid size in each of the coordinate directions, however we note that
our algorithm can be used on any non uniform discretization of the computational grid. We
compute the projected points x∗i ∈ ∂Ω as

x∗i = xi − di∇hdi,

where xi ∈ Tε, di = d(xi) and ∇h is the centered discrete gradient operator operating on d at
grid node i, namely

∇hdi = (Dc
1,hdi, · · · , Dc

n,hdi),

where

Dc
j,hdi =

di+ej − di−ej
h

=
di1,··· ,ij+1,··· ,in − di1,··· ,ij−1,··· ,in

2h

is the central difference quotient in the jth coordinate direction, for 1 ≤ j ≤ n. We define the
following quantities

f∗i := f(x∗i)− hn
∑
j

Φ(x∗i , yj)ψ0(yj)H(dj),

where H is the Heaviside function,

Φ∗i,j := Φ(x∗i , x
∗
j),

δi := δε(d(xi)),

α∗i := α(x∗i),

and

Ji =

{
1− di∆hdi if n = 2,
1− di∆hdi + d2

i 〈∇hdi, adj(Hess(di))∇hdi〉 if n = 3,

where ∆h is the discrete Laplacian operator defined as

∆hdi :=

n∑
j=1

D+
j,hD

−
j,hdi,

with

D+
j,hdi :=

di+ej − di
h

=
di1,··· ,ij+1,··· ,in − di1,··· ,in

h
,

and

D−j,hdi :=
di − di−ej

h
=
di1,··· ,in − di1,··· ,ij−1,··· ,in

h
,

are forward and backward difference quotients respectively in the jth coordinate direction, for
1 ≤ j ≤ n. In the rest of this section, ∇m,h (m = 1, 2) will denote the discrete centered gradient
with respect to the mth variable. We discretize the integral in (20) using the Riemann sum

hn
∑
j

∂Φ∗i,j
∂n∗j

δjJjβ
∗
j ,

11

where
∂Φ∗

i,j

∂n∗
j

= ∇2,hΦ(x∗i , x
∗
j) ·nx∗

j
. Since d is the signed distance function to ∂Ω, we can express

the normal nx∗
j

as −∇hd(x∗j) = −∇hd∗j . It follows that
∂Φ∗

i,j

∂n∗
j

= −∇2,hΦ∗i,j · ∇hd∗j . However,

since d (and thus ∇hdj) is only known on the regular grid, we compute ∇hd∗j at the projected
points by interpolating the values of ∇hdj from the regular nodes to the projected points. We
use a bilinear interpolation technique in two dimensions and a trilinear interpolation in three
dimensions. It follows that the discretization of (20) becomes

f∗i = −hn
∑
j

(
∇2,hΦ∗i,j · ∇hd∗j

)
δjJjβ

∗
j +

1

2
β∗i ,

or in matrix form (
B +

1

2
I

)
β∗ = f∗, (22)

where Bi,j = −hn
(
∇2,hΦ∗i,j · ∇hd∗j

)
δjJj and I is the identity matrix. The final solution u is

obtained by computing

u = Ãβ∗ + hn
∑
j

Φ(xi, yj)ψ0(yj)H(dj),

where Ãi,j = −hn ∂Φi,j
∂n∗

j
δjJj and

∂Φi,j
∂n∗

j
=

∂Φ(xi,y
∗
j)

∂n∗
j

.

In a similar fashion, we discretize the integral in the left-hand side of (21) as

hn
∑
j

(
∇1,hΦ∗i,j · nx∗

i

)
δjJjα

∗
j .

We remark that

∇1,hΦ∗i,j · nx∗
i

= ∇1,hΦ(x∗i , x
∗
j) · nx∗

i

= −∇2,hΦ(x∗i , x
∗
j) · nx∗

i
, using Theorem (B.1) in Appendix B

= ∇2,hΦ(x∗j , x
∗
i) · nx∗

i

=
(
∇2,hΦ∗j,i · nx∗

i

)
=

((
∇2,hΦ∗i,j · nx∗

j

)
i,j

)T
.

Thus, we can write the discrete system for (21) as

g∗i = −hn
∑
j

(
∇2,hΦ∗j,i · ∇hd∗i

)
δjJjα

∗
j −

1

2
α∗i ,

or in matrix form (
C − 1

2
I

)
α∗ = g∗, (23)

where Ci,j = −hn
((
∇2,hΦ∗i,j · nx∗

j

)
i,j

)T
δjJj and g∗i = g(x∗i)− hn

∑
j

∂Φ(x∗i , yj)

∂nx∗
i

ψ0(yj)H(dj),

with H the Heaviside function. The solution u is constructed using

u = Āα∗ + hn
∑
j

Φ(xi, yj)ψ0(yj)H(dj),

where Āi,j = −hnΦ(xi, y
∗
j)δjJj .

12

The matrix Ā derived above typically has a very bad condition number that increases as
the density of the projected points increases. This is caused by the singularity of the gradient
of Φ(x, y) as x approaches y. It is therefore necessary to regularize ∂Φ

∂n when x and y are too close.

Remark: When solving the Neumann problem, it is necessary to impose additional condi-
tions on the solution in order to make it unique. As described in Section 2.1, we impose that
the solution takes specific values at a few chosen points inside Ω, where the number of points
selected depends on the number of connected components of Ω. For convenience, we write Ω as
the union of its connected components Ω =

⋃m
i=1 Ωi such that any two Ω̄i and Ω̄j (i 6= j) are

disjoint. For each Ωi we impose an extra condition by selecting a point inside Ωi and a value
vi ∈ R, and prescribe

u(xi) =

∫
∂Ω

α(y(s))Φ(xi, y(s))ds+

∫
Ω

Φ(xi, y)ψ0(y)dy = vi, for i = 1, · · · ,m,

which discretized becomes

hn
∑
j

Φ(xi, y
∗
j)δjJjαj∗ = vi − hn

∑
j

Φ(xi, yj)ψ0(yj)H(dj), for i = 1, · · · ,m. (24)

These conditions are used to replace m rows of the matrix C − 1
2I defined in (23). For the

best condition number, we select the rows that correspond to the m farthest grid points xi to
the interface. Additionally, we scale (24) in order to keep C − 1

2I diagonally dominant. To be
explicit, if the ri-th row of the matrix C − 1

2I is to be replaced (i ranging from 1 to m), we
replace it using the left-hand side of the following equation

Sihn
∑
j

Φ(xi, y
∗
j)δjJjαj∗ = Si

vi − hn∑
j

Φ(xi, yj)ψ0(yj)H(dj)

 , (25)

where Si = −1
2hnΦ(xi,y∗ri

)δriJri
. The scaling factor Si ensures that the rith term in the rith row

(a diagonal term in the matrix) is still − 1
2 . This ensures that all diagonal terms in the modified

version of C − 1
2I are − 1

2 as they all were before the modification. This choice ensures that the
new matrix is still diagonally dominant.

4.1 Regularization of the normal derivative of the fundamental solu-
tion

In this section we describe our regularization for ∂Φ(x,y)
∂ny

. The same regularization applies to
∂Φ(x,y)
∂nx

.

Two dimensions

In two dimensions we have

∂Φ(x, y)

∂ny
= ∇yΦ(x, y) · ny = − 1

2π

x− y
|x− y|2 · ny,

where ny is the outward unit normal at the point y on the boundary ∂Ω. To understand the

behavior of ∂Φ(x,y)
∂ny

we assume that x is on the osculating circle of ∂Ω at y. To further simplify

our calculations, we consider a local frame such that the osculating circle is a circle of radius

13

R centered at (0, 0), y is the fixed point (R, 0) and x = (R cos θ,R sin θ) for θ ∈ [0, 2π]. In this
case the normal derivative becomes

∂Φ(x, y)

∂ny
= − 1

2πR

(cos θ − 1)

(cos θ − 1)2 + sin2 θ
=

1

4πR
.

Thus, regardless of the location of the point x on the circle, ∂Φ(x,y)
∂ny

has a constant value when

the two points x and y are both on the circle. For a general smooth boundary, we consider the
approximation of the boundary locally around a point y by its osculating circle, and obtain, for
sufficiently close x, y ∈ ∂Ω,

∂Φ(x, y)

∂ni
=
κi
4π

+O(|x− y|`),

where i = x, y for x, y ∈ ∂Ω, κi is the curvature of the osculating circle at i, ` = 1 for a general
curve and ` = 2 if y is a vertex, namely the contact order between the curve at y and its
osculating circle is at least 4 (see Appendix C.1).

Thus we regularize
∂Φ∗i,j
∂n∗j

as follows:

∂Φ∗i,j
∂n∗j reg

=


1

4π
κ∗j if |x∗i − x∗j | < τ,

∂Φ∗i,j
∂n∗j

else ,

(26)

where κ∗j is the curvature of the interface at the point x∗j and τ is taken to be O(h), with h
denoting the mesh size.

Three dimensions

In three dimensions the expression of the normal derivative of the fundamental solution is

∂Φ(x, y)

∂ny
= ∇yΦ(x, y) · ny = − 1

4π

x− y
|x− y|3 · ny,

where ny is the outward unit normal at the point y on the boundary ∂Ω. Unlike the two
dimensional case, in three dimensions the pointwise limit of ∂Φ

∂ny
(x, y) as y → x does not exist.

We therefore look at the full integral

I(x;α) :=

∫
∂Ω

∂Φ

∂ny
(x, y)α(y)dS(y), x ∈ ∂Ω,

where α : R3 7→ R is a smooth function. We write I(x;α) as∫
∂Ω\U(x;τ)

∂Φ

∂ny
(x, y)α(y)dS(y) +

∫
U(x;τ)

∂Φ

∂ny
(x, y)α(y)dS(y),

and approximate ∂Φ
∂ny

(x, y) weakly locally in a small neighborhood U(x; τ) ⊂ ∂Ω of x and assume

that
sup

y∈U(x;τ)

m∂Ω(x, y) ≤ τ,

where m∂Ω(x, y) is the geodesic distance between x and y on ∂Ω. We replace ∂Φ
∂ny

(x, y) by a

function K(x, y) = KU(x;τ)(x, y) for y ∈ U(x; τ) such that∫
U(x;τ)

∂Φ

∂ny
(x, y)α(y)dS(y) ≈ Ĩτ (x;α) :=

∫
U(x;τ)

KU(x;τ)(x, y)α(y)dS(y).

14

Expanding α around x we have∫
U(x;τ)

∂Φ

∂ny
(x, y)α(y)dS(y)

= α(x)

∫
U(x;τ)

∂Φ

∂ny
(x, y)dS(y) +∇α(x) ·

∫
Ux

∂Φ

∂ny
(x, y) (y − x)dS(y) + · · ·

We may therefore seek a function K(x, y) that satisfies the following conditions∫
U(x;τ)

K(x, y)dS(y) =

∫
U(x;τ)

∂Φ

∂ny
(x, y)dS(y), (27)

and ∫
U(x;τ)

K(x, y)yνdS(y) =

∫
U(x;τ)

∂Φ

∂ny
(x, y)yνdS(y), (28)

where yν = Π3
j=1y

νj
j , for y = (y1, y2, y3) ∈ U(x; τ) and ν = (ν1, ν2, ν3) ∈ R3 with νj ≥ 0,

j = 1, 2, 3. Since the interface ∂Ω is not known explicitly, it is difficult to carry out the
integrations (27) and (28). Instead we approximate the interface near x ∈ ∂Ω by a surface, the
equation of which is known, and carry out the above integrations analytically on that surface.
In this paper we only use the first moment condition (27) and choose K to be

K(x, y) = Kτ (x) :=
1

|Ũ(x; τ)|

∫
Ũ(x;τ)

∂Φ

∂ny
(x, y)dS(y),

where Ũ(x; τ) is a neighborhood of x on the approximate surface.
The simplest strategy is to approximate the interface near x by its tangent plane T at

x ∈ ∂Ω. In this case,

Kτ (x) =
1

|Ū(x; τ)|

∫
Ū(x;τ)

∂Φ

∂ny
(x, y)dS(y) = 0,

(see Appendix C.2), where Ū(x; τ) is a local neighborhood of x on the tangent plane T . This
regularization amounts to throwing out the points that are too close to x, for each x ∈ ∂Ω. Even
though this approximation gives decent results, the accuracy resulting from this regularization
can be further ameliorated.

Here, we propose one convenient improvement: We approximate the interface near x by its
osculating paraboloid at x ∈ ∂Ω. In this case, we obtain

Kτ (x) =
1

8πτ
(κ1 + κ2)− 1

π

(
5

512

(
κ3

1 + κ3
2

)
+

25

1536
κ1κ2 (κ1 + κ2)

)
τ +O(τ3), (29)

where κ1 and κ2 are the two principal curvatures of the surface ∂Ω at x ∈ ∂Ω and τ is the
Euclidean distance from x computed on the tangent plane to the surface ∂Ω at x. With this
choice of kernel we have∫
U(x;τ)

∂Φ(x, y)

∂ny
α(y)dS(y) =α(x)

(
1

8πτ
(κ1 + κ2)− 1

π

(
5

512

(
κ3

1 + κ3
2

)
+

25

1536
κ1κ2 (κ1 + κ2)

)
τ

)
+O(τp),

where p = 2 in general and p = 3 if x is a vertex. More details on the relevant calculations
are presented in Appendix C.2. Using this regularization we implement the discrete normal

15

derivative
∂Φ∗i,j
∂n∗j

in 3D as follows:

∂Φ∗i,j
∂n∗j reg

=


Kτ (x∗j) if |x∗i − x∗j |Pxi∗ < τ,

∂Φ∗i,j
∂n∗j

else ,
(30)

where Kτ is given by (29), τ is a small tolerance and |.|Px is the Euclidean distance computed
on the tangent plane to the surface at x ∈ ∂Ω . Once regularized, we solve the discrete systems
(22) and (23) using a bi-conjugate gradient stabilized solver.

4.2 Algorithms

Algorithm 1 Solution of Poisson’s equation with Dirichlet boundary conditions on Ω,
namely {

∆u(x) = ψ0(x), in Ω,
u(x) = f(x), on ∂Ω,

using the double layer potential.
Given Ω defined through its signed distance function d(x) and ε > 0,

1. Define tubular neighborhood Tε and project points from Tε onto ∂Ω:

x∗i = xi − di∇hdi, xi ∈ Tε.

2. Form the matrix A = (B + 1
2I) where

Bi,j = −hnδjJj
∂Φ∗i,j
∂n∗j reg

,

and the vector f∗ such that

f∗i = f(x∗i)− hn
∑
j∈L

Φ(x∗i , yj)ψ0(yj)H(dj), xi ∈ Tε.

Here
∂Φ∗

i,j

∂n∗
j reg

is defined in (26) and (30) for the two dimensional and three dimensions

cases respectively.

3. Solve the system Aβ∗ = f∗ using a bi-conjugate gradient method.

4. Form the matrix Ã such that

Ãi,j = −hnδjJj
∂Φi,j
∂n∗j reg

, xi ∈ [a, b]n, xj ∈ Tε.

5. Construct the solution u as u = Ãβ∗.

16

Algorithm 2 Solution of Poisson’s equation with Neumann boundary conditions on Ω where
Ω =

⋃m
i=1 Ωi such that the intersection of any two Ω̄i, Ω̄j, i 6= j is empty,

∆u(x) = ψ0(x), in Ω,
∂u(x)
∂ns

= g(x), on ∂Ω,∫
∂Ω
g(x(s))ds =

∫
Ω
ψ0(x)dx,

using the single layer potential.
Given Ω defined through its signed distance function d(x) and ε > 0,

1. Define tubular neighborhood Tε and project the points from Tε onto ∂Ω:

x∗i = xi − di∇hdi, xi ∈ Tε.

2. Form the matrix A = (C − 1
2I) where

Ci,j = −hnδjJj
(
∂Φ∗i,j
∂n∗j reg

)T
,

and the vector g∗ such that

g∗i = g(x∗i)− hn
∑
j∈L

∂Φ(x∗i , yj)

∂nx∗
i

ψ0(yj)H(dj), xi ∈ Tε.

Here
∂Φ∗

i,j

∂n∗
j reg

is defined in (26) and (30) for the two dimensional and three dimensions

cases respectively.

3. Replace m rows of the matrix A according to (25) and form the new matrix Am.

4. Solve the system Amα
∗ = g∗ using a bi-conjugate gradient method.

5. Form the matrix Ã such that

Āi,j = −hnδjJjΦ(xi, y
∗
j) for xi ∈ [a, b]n, xj ∈ Tε.

6. Construct the solution u as u = Āα∗.

Remark: In practice, the matrices A, Am, Ã and Ā are never assembled since their storage
requires a significant amount of memory which will limit the size of the problem that can
be computed. Instead, only the matrix-vector products Aβ∗ and Amα

∗ are evaluated in the
iterative solver for the inversion, and Ãβ∗ and Āα∗ in the reconstruction of the solution. These
computations can be further sped up with the use of Fast Multipole Methods.

In the next section we present our numerical results on various domains in two and three
dimensions.

5 Numerical results

In this section we investigate the convergence of our numerical quadrature in the integration of
(19), as well as the convergence of the complete algorithm in two and three dimensions. In the
computations we use two different averaging kernels:

δcosε (x) =

{
1
2ε

(
1 + cos(πxε)

)
if |x| ≤ ε,

0 else,
(31)

17

and

δhatε (x) =

{
1
ε −

|x|
ε2 if |x| ≤ ε,

0 else.
(32)

Both of these kernels have one vanishing moment.

5.1 Convergence studies

We start by presenting convergence studies of the numerical quadrature used in the evaluation
of integral (19). The convergence of the numerical evaluation of integral (18) is similar. In the
study we use the exact density β and compare the accuracy of the numerical integration using

various approximations of the Jacobian Jη. We denote J
(0)
η = 1, J

(1)
η = 1 + ηHη where Hη is

the mean curvature at a point on the η level set of d. In three dimensions we should further

consider J
(2)
η = 1 + 2ηHη + η2Gη, where Gη is the Gaussian curvature at a point on the η level

set of d. We first present the convergence of the numerical integration for a fixed width ε of the
tubular neighborhood Tε. We then present the errors produced by the numerical integration on
a fixed grid as the width of the tubular neighborhood increases. In the numerical integration
the solution is evaluated at one point far away from the boundary and compared with the value
of the exact solution at that same point.

Eventually we focus on the complete algorithm presented in Section 4. We present the
convergence of the density β, which is the solution of the integral equation, as the grid size
increases using various Jacobians. We also present the accuracy of computed solutions to a
few Poisson’s equations. To see the behavior of our algorithm using extremely thin tubular
neighborhoods around the interface, in most of the computations listed below we use ε that
scales as

ε = 2|∇d|1h, (33)

where d is the signed distance function to the interface, h is the grid size, and | · |1 denotes the
`1 norm of a vector in Rn. This choice of width for the tubular neighborhood is motivated by
the results of Engquist etal. [15] on convergent approximation of surface integrals on Cartesian
grids. We present our convergence studies in two and three dimensions. In each of the studies we
measure the relative error between the exact and computed solution inside the domain Ω, as well
as the relative error between the exact and computed density α or β. In all the computations
we use the double layer potential formulation to obtain the solution of the Dirichlet problem.
All the computations with the complete algorithm use the exact Jacobian in the integrations.

In the following presentation, the computational results are obtained using uniform grids on
[−1, 1]n for n = 2, 3, and the relative errors computed by the proposed algorithm are reported.

Two dimensions

Most of the numerical experiments presented in this section involve the exact solution to
Laplace’s equation on a circle with Dirichlet and Neumann boundary conditions. For clar-
ity in the exposition of our results, we describe the calculations of the exact solution and the
exact density for Laplace’s equation on a circle with Dirichlet and Neumann boundary condi-
tions. We first start with the exact solution to Laplace’s equation on a circle with Dirichlet
boundary conditions. The exact solution is obtained using separation of variables and expressed
in polar coordinates for a circle centered at (0, 0) as

ue(r, θ) = a0 +

∞∑
n=1

rn (an cos(nθ) + bn sin(nθ)) , (34)

where an, bn are real numbers. In the general case where the circle is centered at c = (cx, cy)
the solution for x, y ∈ R2 is obtained using (34) with x = cx + r cos θ, and y = cy + r sin θ. In

18

this simple case the double layer solution vdl is obtained from the expression of ue in (34) as

vdl(r, θ) = −
∞∑
n=1

(
R2

r

)n
(an cos(nθ) + bn sin(nθ)) ,

for an, bn given in (34). The exact density βe is given by

βe(x) = ue(x)− vdl(x). (35)

In the computations presented in this paper, we use a0 = 0, a1 = −7, b1 = 2,
a2 = 15, b2 = 13, a3 = 19, b3 = 16, a4 = −14, b4 = −9, and an = bn = 0 for n > 4.

The exact solution to the Neumann problem is also given by (34) but since we are solving
the Neumann problem we use the single layer potential formulation. In this simple case the
exact exterior solution vsl is expressed as

vsl(r, θ) =

∞∑
n=1

(
R2

r

)n
(an cos(nθ) + bn sin(nθ)) = −vdl(r, θ),

for an, bn given in (34). The exact density αe is given by

αe(x) =
∂vsl(x)

∂nx
− ∂ue(x)

∂nx
, (36)

where nx is the outward unit normal to the circle at the point x. In Example 5.5 we use the
same values for the constant an and bn as the ones chosen in Example 5.4.

Example 5.1 Convergence of the numerical integration of (19)

We present the convergence of our numerical quadrature when, (a) the width of the tubular
neighborhood Tε is fixed and the number of grid points is increasing, and (b) the grid size is
fixed but the width of the tubular neighborhood is increasing. For this study we use a circle as
the interface, and the solution is computed at one point away from the boundary. The solution
is obtained using the exact value for the density β given in (35), as well as the exact normal
derivative of the fundamental solution ∂Φ

∂ny
. In the computations we take δε to be the cosine

kernel given in (31). The results are displayed in Figure 1 and Table 1 where we compare the

errors using J
(0)
η and J

(1)
η . The errors are very similar between using J

(0)
η and J

(1)
η and this is due

to the fact that the cosine kernel has moment one therefore making any first order contribution
in η irrelevant. We have observed numerically that in two dimensions the contribution of the
curvature correction does not make much of a difference, but it does lower the errors slightly in
the complete algorithm.

Example 5.2 Study of the condition numbers for the inversion step

In this example we demonstrate the effect of the regularization of the normal derivative of the
fundamental solution on the condition number of the matrices that are assembled in Algorithms 1
and 2. The results are displayed in Table 2 when the interface is a circle. We see that the
regularization lowers the condition number of the matrix significantly.

Example 5.3 Convergence of the density β

We present the convergence of the density β obtained for a circle using the double layer potential
formulation. For this study we use the exact normal derivative of the fundamental solution ∂Φ

∂ny
.

In the computations we use a constant width of the tubular neighborhood ε and take the

averaging kernel δε to be the cosine function (31). In Figure 2 we see that the errors with J
(0)
η

and J
(1)
η are very similar. This is due to the fact that the averaging kernel has moment one.

19

Example 5.4 Solution of Laplace’s equation on a circle with Dirichlet boundary conditions

We present the convergence of Algorithm 1 for the solution of Laplace’s equation on a circle
subject to Dirichlet boundary conditions. The convergence results on this example are presented
in Figure 3. Figure 5(a) shows the computed solution of Laplace’s equation on a circle of radius
R = 0.7 centered at (0.0061, 0.0061) subject to Dirichlet boundary conditions.

Example 5.5 Solution of Laplace’s equation on a circle with Neumann boundary conditions

We present the convergence of Algorithm 2 for the solution of Laplace’s equation on a cir-
cle subject to Neumann boundary conditions. The convergence results are displayed in Figure 3.

Example 5.6 Solution of Poisson’s equation on a flower domain with Dirichlet boundary con-
ditions

We present the convergence of Algorithm 1 for the solution of Poisson’s equation on a flower
domain subject to Dirichlet boundary conditions where the exact solution is given by

ue(x, y) = x6 + y6 + sin(πx) + sin(πy) + cos(πx) + cos(πy).

This example was used in the work of Gibou and Fedkiw in [19]. The convergence results from
this example are displayed in Figure 4. In Figure 5(b) we show the computed solution of Pois-
son’s equation on the flower domain subject to Dirichlet boundary conditions.

Example 5.7 Solution of Laplace’s equation with Dirichlet boundary conditions on a domain
whose boundary contains cusps

Figure 5(c) shows the computed solution of Laplace’s equation on a domain whose boundary
contains cusps. In these computations we used constant Dirichlet boundary conditions where
the constant was equal to 1.

Example 5.8 Solution of Laplace’s equation on a circle with mixed boundary conditions

Figure 6 shows the computed solution of Laplace’s equation on a circle subject to boundary

conditions of the form given in (8). In these computations we chose g(x) = 1, σ(x) =
1

4
1Γ0

(x)

and ρ(x) =
1

10
1∂Ω\Γ0

(x) where ∂Ω was the circle and Γ0 the left half of the circle. This choice

is equivalent to imposing mixed boundary conditions.

Three dimensions

As in the two dimensional case we first describe the calculations of the exact solution and
the exact density for Laplace’s equation on a sphere with Dirichlet and Neumann boundary
conditions. We first start with the exact solution to Laplace’s equation on a sphere with Dirichlet
boundary conditions. The exact solution can be obtained using separation of variables and
expressed in spherical coordinates, for a sphere centered at (0, 0, 0), as

ue(r, θ, ϕ) =

∞∑
l=0

rl
l∑

m=0

(alm cos(mϕ) + blm sin(mϕ)) fml (cos θ), (37)

20

where alm, blm ∈ R and fml are the Legendre functions satisfying the ODE

d

dx

(
(1− x2)f ′(x)

)
+

(
l(l + 1)− m2

1− x2

)
f(x) = 0, l > 0,m ∈ N,

with the conditions that f should remain finite at the end points x = 1 and x = −1 corresponding
to θ = 0 and θ = π through the change of variables x = cos θ. These finite conditions can only
be satisfied if l ∈ N∗ and m ≤ l. The solutions fml are derived from the Legendre polynomials
Pl by the formula

fml (x) = (−1)m(1− x2)
m
2
dm

dxm
Pl(x).

In the general case where the sphere is centered at (cx, cy, cz) the exact solution of Laplace’s
equation in (x, y, z) ∈ R3 is obtained using (37) with x = cx+r sin θ cosϕ, y = cy +r sin θ sinϕ
and z = cz +r cos θ. Since the boundary conditions are of Dirichlet type we use the double layer
potential formulation with exact exterior solution vdl given by

vdl(r, θ, ϕ) = −
∞∑
l=0

l

l + 1

R2l+1

rl+1

l∑
m=0

(alm cos(mϕ) + blm sin(mϕ)) fml (cos θ), (38)

for alm, blm as in (37). The exact density βe is given by (35), where ue is given by (37) and
vdl by (38). In these computations we use a00 = 0, a10 = −7, a11 = 3, b11 = 8, a20 = −5,
a21 = 3, a22 = 5, b21 = −5, b22 = −4, a30 = 6, a31 = −9, a32 = 7, a33 = 1, b31 = 4,
b32 = −4, b33 = 8 and alm = blm = 0 for l > 3,m ≤ l.

The exact solution to the Neumann problem is the same as for the Dirichlet problem and
is given by (37). We use the single layer potential formulation. In this simple case the exact
exterior solution vsl is obtained from the interior solution ue and expressed as

vsl(r, θ, ϕ) =

∞∑
l=0

R2l+1

rl+1

l∑
m=0

(alm cos(mϕ) + blm sin(mϕ)) fml (cos θ), (39)

for alm, blm as in (37). The exact density αe is given by (36), where vsl is given by (39) and ue
by (37). We use the same values of alm and blm as for the Dirichlet problem given above.

Example 5.9 Convergence of the numerical integration of (19) when x is away from the bound-
ary

We present the convergence of our numerical quadrature when, (a) the width of the tubular
neighborhood is fixed and the number of grid points is increasing, and (b) the grid size is fixed
but the width of the tubular neighborhood is increasing. For this study we use a sphere as the
interface, and the solution is computed at one point away from the boundary. The solution is
obtained using the exact value for the density β given in (35), where ue is given by (37) and
vdl by (38), as well as the exact normal derivative of the fundamental solution ∂Φ

∂ny
. In the

computations we take δε to be the cosine kernel (31). The results are displayed in Table 4 and

Figure 7 where we compare the errors using J
(0)
η , J

(1)
η and J

(2)
η .

The results in Figure 7 show that the errors in the solution obtained with J
(0)
η and J

(1)
η

quickly, and already at very coarse grids, saturate to a relatively small magnitude of the order
of 10−4. This is due to the fact that the errors are dominated by the analytical error (we are
not using the correct Jacobian) which scales with ε. Since ε is fixed in these computations, the

errors with J
(0)
η and J

(1)
η are also stationary. Indeed, as Table 4 shows, the error gets larger

as ε increases. On the other hand the computations with the correct Jacobian J
(2)
η display a

decrease in the error in the solution as the resolution increases.

21

Example 5.10 Convergence of the numerical integration of (19) when x is on the interface

As in Example 5.9, we present the convergence of our numerical quadrature when, (a) the width
of the tubular neighborhood is fixed and the number of grid points is increasing, and (b) the
grid size is fixed but the width of the tubular neighborhood is increasing. For this study we
use a sphere as the interface, and the integral is evaluated at one point on the boundary. In
this example we take the density β = 1 and use the result of Theorem B.4 in Appendix B to
compare the computed value with the exact value of 1

2 . The purpose of this study is to test the
effect the regularization of the normal derivative of the fundamental solution on the result of
the integration. In the computations, we take δε to be the cosine kernel (31). The results are

displayed in Figure 8 where we compare the errors using J
(0)
η , J

(1)
η and J

(2)
η .

As in Example 5.9, the results in Figure 8 show that the errors in the solution obtained

with J
(0)
η and J

(1)
η are basically constant as the grid spacing decreases. This is due to the fact

that the errors are dominated by the analytical error which scales with ε. Since ε is fixed in

these computations, the errors with J
(0)
η and J

(1)
η are also stationary. On the other hand, when

the exact Jacobian J
(2)
η is used, the errors become much smaller and seem to converge with a

globally third order trend.

Example 5.11 Study of the condition numbers for the inversion step when the interface is
made of several connected components

In this example we study the condition number of the matrices assembled in Algorithms 1 and 2
when the interface is made of several connected components. We compare the condition number
of these matrices when the tangent and the paraboloid regularizations are used. We display the
computed condition numbers in Table 3 in the case where the interface consists of two disjoint
spheres.

Example 5.12 Solution of Laplace’s equation on a sphere with Dirichlet boundary conditions

We present the convergence of Algorithm 1 for the solution of Laplace’s equation on a sphere
subject to Dirichlet boundary conditions. The convergence results are displayed in Figure 9.

Example 5.13 Solution of Laplace’s equation on a sphere with Neumann boundary conditions

We present the convergence of Algorithm 2 for the solution of Laplace’s equation on a sphere
subject to Neumann boundary conditions. The convergence results are displayed in Figure 9.

Example 5.14 Solution of Poisson’s equation on an ellipsoid with Dirichlet boundary condi-
tions

We present the convergence of Algorithm 1 for the solution of Poisson’s equation on an
ellipsoid subject to Dirichlet boundary conditions. In our computations we use the ellipsoid

described by the equation (x−cx)2

a2 +
(y−cy)2

b2 + (z−cz)2

c2 = 1, with cx = 0.02, cy = −0.026,
cz = 0.012, a = 0.784, b = 0.465 and c = 0.634. The exact solution of Poisson’s equation is
taken to be

ue(x, y, z) = x4 + y4 + z4 + cosx+ cos z.

The convergence results are displayed in Figure 10.

22

Table 1: Convergence of the numerical integration of (19) with the exact value of the density β. In these convergence
studies we used a fixed resolution of 5132 and took the averaging kernel to be the cosine function (31). The interface
was chosen to be a circle and the error in the solution was measured at a point far away from the interface. This
table refers to Example 5.1.

Epsilon Error in the solution with J
(0)
η Order Error in the solution with J

(1)
η Order

ε0 5.306304988× 10−8 – 8.836347155× 10−8 –
2ε0 2.861647354× 10−8 0.89 3.504417392× 10−8 1.33
4ε0 6.320256577× 10−9 2.18 8.006345883× 10−9 2.13

Table 2: Condition number for the matrix built for solving Laplace’s equation with Dirichlet and Neumann boundary
conditions using the double layer potential. The exact curvature correction is used. We denote by C0 the condition
number without regularization of the fundamental solution and by Creg the condition number with regularization. In
these computations the interface is one circle. τ is to the tolerance used to determine the onset of the regularization.
This table refers to Example 5.2.

τ C0,Dirichlet BC Creg, Dirichlet BC C0, Neumann BC Creg,Neumann BC

n = 1282

4dx 11.6427 6.9807 13.7324 9.7054

dx 11.6427 6.9808 13.7324 9.7053

n = 10242

4dx 107.4301 8.0026 103.6829 11.4458

dx 107.4301 8.0026 103.6829 11.4458

Table 3: Condition number for the matrix built for solving Laplace’s equation with Dirichlet and Neumann boundary
conditions using the double layer potential. The exact curvature correction is used. We denote by CregT the condition
number with the tangent regularization and CregP the condition number with the paraboloid regularization. In these
computations the interface consists of two disjoint spheres. This table refers to Example 5.11.

τ CregT , Dirichlet BC CregP , Dirichlet BC CregT , Neumann BC CregP , Neumann BC

n = 503

4dx 6.0734 8.2257 12.6043 25.1914

dx 7.0869 8.0414 20.3432 24.3847

n = 803

4dx 6.3995 7.9259 14.8948 23.8252

dx 7.1536 7.8570 21.1952 23.8336

Table 4: Convergence of the numerical integration of (19) with the exact value of the density β. In these convergence
studies we used a fixed resolution of 2003 and took the averaging kernel to be the cosine function (31). The interface
was chosen to be a sphere and the error in the solution was measured at a point far away from the interface. This
table refers to Example 5.9.

Epsilon Error with J
(0)
η Order Error with J

(1)
η Order Error with J

(2)
η Order

ε0 0.000216219 – 0.000216315 – 1.313118131× 10−7 –
2ε0 0.000865085 −2.00 0.000865090 −2.00 5.425436281× 10−8 1.28
4ε0 0.003460350 −2.00 0.003460350 −2.00 6.553840441× 10−9 3.05

23

10 4 10 3 10 2 10 110 10

10 8

10 6

10 4

10 2

dx

Er
ro

r

dx3

REJ0

REJ1

Figure 1: Convergence of the numerical integration of (19) with the exact value of the density β as described
in Example 5.1. In these convergence studies we used a constant width of the tubular neighborhood ε and took
the averaging kernel to be the cosine function (31). The interface was chosen to be a circle and the error in the
solution was measured at a point far away from the interface. This is a loglog plot of the relative error in the solution
computed using J

(0)
η and J

(1)
η . This figure refers to Example 5.1.

Table 5: Convergence of the numerical integration of (19) with the exact value of the density β. In these convergence
studies we used a fixed resolution of 2003 and took the averaging kernel to be the cosine function (31). The interface
was chosen to be a sphere and the error in the solution was measured at a point on the interface. This table refers
to Example 5.10.

Epsilon Error with J
(0)
η Order Error with J

(1)
η Order Error with J

(2)
η Order

ε0 0.003980277628161 – 0.003675494063089 – 1.41307015× 10−4 –
2ε0 0.015319781365319 −1.94 0.015229122258640 −2.05 3.8369953× 10−5 1.88
4ε0 0.061092589758195 −2.00 0.061058214575044 −2.00 1.0870387× 10−5 1.82

24

10 3 10 2 10 110 5

10 4

10 3

10 2

dx

Er
ro

r i
n

be
ta

dx2

REJ0

REJ1

Figure 2: Convergence of the density β as described in Example 5.3. In these convergence studies we used a constant
width of the tubular neighborhood ε and took the averaging kernel to be the cosine function (31). The interface was

chosen to be a circle and the error in β was computed using J
(0)
η and J

(1)
η . This is a loglog plot of the relative errors

in the solution computed at a point away from the interface using J
(0)
η and J

(1)
η . These two errors are so similar that

they line up perfectly (dashed line). This figure refers to Example 5.3.

10 4 10 3 10 2 10 110 5

10 4

10 3

10 2

dx

R
el

at
iv

e
Er

ro
r

dx
REDirichlet

REDirichlet

RENeumann

RENeumann

Figure 3: Convergence of Algorithm 1 and Algorithm 2 for the solution of Laplace’s equation on a circle with
Dirichlet and Neumann boundary conditions as presented in Example 5.4. In these computations the averaging
kernel δε was taken to be the hat function (32), the width of the tubular neighborhood was ε = 2|∇d|h and the
tolerance for the regularization of the normal derivative of the fundamental solution was τ = h

5
. This loglog plot

displays the relative errors in the solution, and in the densities β (with Dirichlet boundary conditions) and α (with
Neumann boundary conditions)

25

10 4 10 3 10 2 10 110 5

10 4

10 3

10 2

10 1

dx

R
el

at
iv

e
Er

ro
r

dx1.5

REPoisson
Flower

Figure 4: Convergence of Algorithm 1 on a flower domain. In these computations, the averaging kernel δε was
taken to be the hat function, the width of the tubular neighborhood was ε = 2|∇d|1h and the tolerance for the
regularization of the normal derivative of the fundamental solution was τ = h

5
. This loglog plot shows the relative

error in the solution. This figure refers to Example 5.6.

0 20 40 60 80 100 120 140

0

50

100

150
20

10

0

10

20

(a) Computed solution of Laplace’s
equation on a circle

0
50

100
150

0

50

100

150
2

1

0

1

2

3

(b) Computed solution of Poisson’s
equation on a flower

0
50

100
150

0

50

100

150
0.5

0

0.5

1

1.5

(c) Computed solution Laplace’s
equation on a domain with cusps

Figure 5: 5(a): Computed solution of Laplace’s equation with Dirichlet boundary conditions on a circle. 5(b):
Computed solution of Poisson’s equation with Dirichlet boundary conditions on a flower domain. 5(c): Computed
solution of Laplace’s equation with constant Dirichlet boundary conditions on a domain containing cusps. In these
computations the averaging kernel δε was taken to be the hat function (32), the width of the tubular neighborhood
was ε = 2|∇d|1h and the tolerance for the regularization of the normal derivative of the fundamental solution was
τ = h

5
. The computations were performed on a 512 by 512 grid and the solution was reconstructed on a 128 by 128

grid. This figure refers to Examples 5.4, 5.6 and 5.7.

26

0 20 40 60 80 100 120 1400

100

200
15

10

5

0

5

10

15

20

Figure 6: Computed solution of Laplace’s equation with mixed boundary conditions. In these computations the
averaging kernel δε was taken to be the cosine function (31), the width of the tubular neighborhood was ε = 2h and
the tolerance for the regularization of the normal derivative of the fundamental solution was τ = h. The computations
were performed on a 128 by 128 grid and the solution was reconstructed on a 128 by 128 grid. This figure refers to
Example 5.8.

10 3 10 2 10 1 10010 10

10 8

10 6

10 4

10 2

100

dx

Er
ro

r

dx4

EJ0

EJ1

EJ2

Figure 7: Convergence of the numerical integration of (19) with the exact value of the density β. In these
convergence studies we used a constant width of the tubular neighborhood ε and took the averaging kernel to be the
cosine function (31). The interface was chosen to be a sphere and the error in the solution was measured at a point

far away from the interface. This figures shows the loglog plot of the error in the solution computed using J
(0)
η , J

(1)
η

and J
(2)
η . We see that when J

(0)
η and J

(1)
η are used, the error saturates, but is still quite small (around 10−4). When

the correct Jacobian J
(2)
η is used, the error seems to be fourth order accurate. This figure refers to Example 5.9

27

10 3 10 2 10 1 10010 8

10 6

10 4

10 2

100

dx

Er
ro

r

dx3

dx2

EJ0

EJ1

EJ2

Figure 8: Convergence of the numerical integration of (19) with the exact value of the density β. In these
convergence studies we used a constant width of the tubular neighborhood ε and took the averaging kernel to be the
cosine function (31). The interface was chosen to be a sphere and the error in the solution was measured at a point
on the interface. This figure is a loglog plot of the error in the solution computed at a point on the interface using
J
(0)
η , J

(1)
η and J

(2)
η . We see that if J

(0)
η and J

(1)
η are used the error remains stationary around 10−2. On the other

hand, if the correct Jacobian J
(2)
η is used, the error seems to follow a third order accuracy trend. This figure refers

to Example 5.10.

10 2 10 1 10010 4

10 3

10 2

10 1

dx

Er
ro

r

dx1.6

REDirichlet

REDirichlet

RENeumann

RENeumann

Figure 9: Convergence of Algorithm 1 for the solution of Laplace’s equation on a sphere with Dirichlet boundary
conditions and Algorithm 2 for the solution of Laplace’s equation on a sphere with Neumann boundary conditions.
In these computations the averaging kernel δε was taken to be the hat function (32), the width of the tubular
neighborhood was ε = 2|∇d|1h and the tolerance for the regularization of the normal derivative of the fundamental
solution was τ = h. This loglog plot displays the relative errors in the solution and in the densities β (with Dirichlet
boundary conditions) and α (with Neumann boundary conditions). This figure refers to Examples 5.12 and 5.13.

28

10 2 10 1 10010 4

10 3

10 2

10 1

100

dx

Er
ro

r

dx2

REPoisson
Ellipsoid

Figure 10: Convergence of Algorithm 1 for the solution of Poisson’s equation on an ellipsoid. In these computations
the averaging kernel δε was taken to be the cosine function (31), the width of the tubular neighborhood was ε = 2h
and the tolerance for the regularization of the normal derivative of the fundamental solution was τ = h. This figure
refers to Example 5.14.

29

6 Conclusion

We proposed a formulation for computing integrals of the form
∫
∂Ω
v(x(s))ds in the level set

framework and presented an implicit boundary integral method for solving Poisson’s equation
in domains of any shape. Our algorithm is based on the solution of an integral equation on the
domain boundary, which is implicitly defined by a signed distance function. One of the main
advantages of our proposed algorithm is its flexibility and simplicity of implementation. Indeed,
our algorithm can solve Poisson’s equation on any domain with various boundary conditions
(i.e. Neumann, Dirichlet, Robin and mixed boundary conditions) and can also solve the interior
and exterior problem with no additional changes. The other main advantage of our proposed
algorithm is that it is grid independent, thus eliminating the need to compute intersection points
between the domain boundary and the grid. One immediate consequence is that this algorithm
handles complicated domains and moving interfaces easily. The other consequence is that lo-
cal level set techniques can be incorporated into our algorithm with almost no modification.
Furthermore, our algorithm is compatible with Fast Multipole Methods and other established
computational techniques that can be used to further improve its numerical efficiency.

Acknowledgments

The authors gratefully acknowledge the support of NSF grants DMS-0914465 and DMS-0914840.
Catherine Kublik was in part supported by a Bing Fellowship. The authors thank Dan Knopf
and Mar González for helpful discussions.

30

A Jacobian for the integration over an offset hypersurface

Let Ω be a n dimensional domain (n = 2, 3) such that its boundary ∂Ω is of smoothness of class
C2. Then for each x ∈ ∂Ω there is a neighborhood N (x) of x on which the signed distance
function to the boundary ∂Ω, denoted by d(x), is a C2 function. Thus, at any point x ∈ ∂Ω, we
can define the unit normal vector (outward by convention) n(x). Moreover we have the following
property:

Proposition A.1 If d is differentiable at a point x ∈ Rn, then there exists a unique x∗ ∈ ∂Ω,
such that d(x) = |x− x∗|, and

∇d(x) =
x− x∗
d(x)

.

x∗ is called the projection of x onto ∂Ω and the projection map x 7→ x∗ is a diffeomorphism.

Let ε > 0 and consider ∂Ωη for η ∈ [−ε, ε], where ∂Ωη := {x : d(x) = η}. We assume that
any x ∈ ∂Ωη for all η ∈ [−ε, ε] is included in a neighborhood on which the signed distance
function d is C2. In other words at any point x ∈ Tε := {x : |d(x)| ≤ ε}, the characteristics are
straight lines and are normal to ∂Ωη for any η ∈ [−ε, ε].

A.1 Two dimensions

Consider the two integrals ∫
∂Ωη

α(y∗(s))ζ(x, y∗(s))ds, (40)

and ∫
∂Ω

α(y∗(s))ζ(x, y∗(s))ds, (41)

where α is a continuous function defined on ∂Ω and ζ is a continuous function defined on
R2 ×R2. Without loss of generality we assume that the length of the interface ∂Ωη is 1 and let
sη ∈ [0, 1] 7→ R be its arc length parameterization. Then∫

∂Ωη

α(y∗(s))ζ(x, y∗(s))ds =

∫ 1

0

α(y∗(sη))ζ(x, y∗(sη))dsη,

and ∫
∂Ω

α(y∗(s))ζ(x, y∗(s))ds =

∫ 1

0

α(y∗(sη))ζ(x, y∗(sη))|y′(sη)|dsη.

The pointwise projection map can be written as

y∗(sη) = y(sη)− d(y(sη))∇d(y(sη)) = y(sη)− d(y(sη))ny(sη),

where y(sη) ∈ ∂Ωη and ny(sη) is the inward unit normal to the curve ∂Ω (ny(sη) is also the normal
unit vector in the Frenet frame). Since sη is the arc length parameterization of the curve ∂Ω it
follows that τsη = τ ′(y(sη)) = κ(sη)ny(sη) = κ(sη)n(sη), where τ(y(s)) is the tangent vector to
the curve ∂Ω at y(sη) and n(sη) = ny(sη). Moreover, since y(sη) ∈ ∂Ωη, we have d(y(sη)) = η,
which gives

y∗(sη) = y(sη)− η τsη
κ(sη)

. (42)

Differentiating (42) with respect to sη we obtain

(y∗)′(sη) = y′(sη)− η τsηsηκ(sη) + τsηκ
′(sη)

κ(sη)2
,

31

which, using τsη = κ(sη)n(sη) and nsη = −κ(sη)τ(sη), can be simplified as

(y∗)′(sη) = y′(sη) + ηκ(sη)τ(sη). (43)

Since sη is the arc length parameterization of ∂Ωη it follows that y′(sη) = τsη and thus (43) can
be rewritten as

(y∗)′(sη) = (1 + ηκ(sη))τ(sη).

Consequently if η is chosen such that η < min
x∈∂Ωε

1

κε(x)
, we have

|(y∗)′(sη)| = 1 + ηκ(sη) = 1 + ηκη.

Thus ∫
∂Ω

α(y∗(s))ζ(x, y∗(s))ds =

∫ 1

0

α(y∗(sη))ζ(x, y∗(sη))|y′(sη)|dsη

=

∫ 1

0

α(y∗(sη))ζ(x, y∗(sη)) (1 + ηκη) dsη

=

∫
∂Ωη

α(y∗(sη))ζ(x, y∗(sη)) (1 + ηκη) dsη. (44)

Using the signed distance function d(z), we compute the curvature κ(z) at a point z ∈ R2

sitting on ∂Ωη as
κ(z) = κη = −∆d(z).

A.2 Three dimensions

In this section we provide the reader with a simple and intuitive derivation of the change of
variable for surfaces. We consider the two integrals∫

∂Ωη

α(y∗(sη, λη)ζ(x, y∗(sη, λη))dsηdλη,

and ∫
∂Ωη

α(y∗(s, λ)ζ(x, y∗(s, λ))dsdλ.

By a simple calculation we will relate the surface element dsdλ to the surface element dsηdλη.
Pick a point x on the zero level set surface and consider its two principal directions. We assume
without loss of generality that s is the parameterization of the first principal direction and λ
the parameterization of the second. We assume also that the curvature along the first principal
direction at x is κ1 and that the curvature along the second principal direction at x is κ2.
In this situation we call R1 the radius of the osculating circle associated to the first principal
direction and R2 the radius of the osculating circle associated to the second principal direction.
From x we now consider a surface element dsdλ, where ds = R1θ1 and R2θ2. See Figure 11.
Since the offset surface is defined as {x : d(x) = η}, the two principal curvatures of the offset
surface element at xη = x − η∇d(x) (xη is the projection of x onto the offset surface) are
κη1 = 1

R1−η and κη2 = 1
R2−η . Therefore the offset surface element can be expressed as dsηdλη,

32

where dsη = (R1 − η)θ1 and dλη = (R2 − η)θ2. Relating the two surface elements we have

dsdλ

dsηdλη
=

R1R2

(R1 − η)(R2 − η)

=
(R1 − η)(R2 − η) + η(R1 − η +R2 − η)

(R1 − η)(R2 − η)
+

η2

(R1 − η)(R2 − η)

= 1 +

(
1

R1 − η
+

1

R1 − η

)
η +

η2

(R1 − η)(R2 − η)

= 1 + (κη1 + κη2)η +
η2

(R1 − η)(R2 − η)

= 1 + 2Hηη +O(η2),

where Hη =
κ

(1)
η + κ

(2)
η

2
is the mean curvature of the η level set at xη. So it follows that if η is

chosen such that η < min
x∈∂Ωε

1

Hε(x)
, we have

∫
∂Ω

α(y∗(s, λ))ζ(x, y∗(s, λ))dsdλ =

∫
∂Ωη

α(y∗(sη, λη))ζ(x, y∗(sη, λη))
(
(1 + 2ηHη) dsηdλη +O(η2)

)
,

where Hη is the mean curvature of the offset surface at y∗(sη, λη).

✓1

✓2

⌘~n

ds d⌧

R2

R1

Figure 11: The two surface elements on the zero and the η level set surfaces.

The exact Jacobian in three dimensions is actually of degree 2 in η and so that the integral

33

becomes∫
∂Ω

α(y∗(s, λ))ζ(x, y∗(s, λ))dsdλ =

∫
∂Ωη

α(y∗(sη, λη))ζ(x, y∗(sη, λη))
(
1 + 2ηHη + η2Gη

)
dsηdλη,

(45)
where Gη is the Gaussian curvature of the offset surface at y∗(sη, λη).

Using the signed distance function d(z), we compute the mean curvature H(z) and the
Gaussian curvature Γ(z) at a point z ∈ R3 sitting on ∂Ωη as

H(z) = Hη = −1

2
∆d(z),

and

G(z) = Gη = 〈∇d, adj(Hess(d))∇d〉
= d2

x(dyydzz − d2
yz) + d2

y(dxxdzz − d2
xz) + d2

z(dxxdyy − d2
xy)

+2[dxdy(dxzdyz − dxydzz) + dydz(dxydxz − dyzdxx) + dxdz(dxydyz − dxzdyy)],

where adj(Hess(d)) is the adjugate matrix of the Hessian of d.
In the next section we present a detailed derivation of the closed formula for the change of

variable in any dimension.

A.3 Closed formula for the Jacobian in any dimension

In this section we provide the reader with a sketch of the derivation of the complete change of
variable in dimension (n+ 1), n ∈ N∗. The proof was obtained by Dan Knopf.

Consider the hypersurfaces ∂Ω and ∂Ωη in Rn+1, and a domain U ⊂ Rn+1 such that υ : U 7→
Rn is a parameterization of ∂Ωη. Then the induced metric g on ∂Ωη has components

gij = 〈Diυ,Djυ〉,
where i, j = 1, · · · , n, and Diυ = Diυ(x) = (∂iυ1(x), . . . , ∂iυn+1(x)). If ν is the inward unit
normal to ∂Ωη we define the second fundamental form h as

hij = 〈Diν,Djυ〉.
The area of ∂Ωη is then computed by

A(∂Ωη) =

∫
U

√
det gdx,

where dx is a Lebesgue measure on Rn. From the parameterization of ∂Ωη we obtain a param-
eterization of ∂Ω as

υ̃(x) = υ(x) + ην(υ(x)),

with induced metric

g̃ij = 〈Diυ + ηDiν,Djυ + ηDjν〉 = gij + 2ηhij + η2〈Diν,Djν〉.
Using the fact that Diν = hikg

klDlυ, (using Einstein summation convention), we obtain that

〈Diν,Djν〉 = 〈hikgklDlυ, hjmg
mrDrυ〉

= hikg
klhjmg

mr 〈Dlυ,Drυ〉︸ ︷︷ ︸
=glr

= hikg
klhjm g

mrglr︸ ︷︷ ︸
=δml

= hikg
klhjl = h ∗ g ∗ h.

34

Thus we obtain the tensor identity

g̃ = g + 2ηh+ η2h ∗ g ∗ h.

By applying g−1 to the above equation we obtain

(g−1g̃)ji = δji + 2ηhji + η2hki h
j
k,

in which we can now diagonalize the Weingarten map induced by h to obtain

P−1
(
g−1g̃

)
P = In + 2η


κ

(1)
η 0 · · · 0

0 κ
(2)
η 0 0

0 · · · · · · 0

0 · · · 0 κ
(n)
η

+ η2


(κ

(1)
η)2 0 · · · 0

0 (κ
(2)
η)2 0 0

0 · · · · · · 0

0 · · · 0 (κ
(n)
η)2



=


(1 + ηκ

(1)
η)2 0 · · · 0

0 (1 + ηκ
(2)
η)2 0 0

0 · · · · · · 0

0 · · · 0 (1 + ηκ
(n)
η)2

 ,

where P is the change of basis matrix and κ
(i)
η are the eigenvalues of the Weingarten map

induced by h and the ith principal curvature of ∂Ωη. Then

√
det g̃ =

√
det g

(
n∏
i=1

(1 + ηκ(i)
η)

)
= 1 +

n∑
i=1

σi(h)ηi, (46)

where σi(h) is the ith symmetric polynomial in the eigenvalues of the Weingarten map induced

by h, and σ1(h) = 2Hη is the non averaged mean curvature (Hη = 1
n

∑n
i=1 κ

(i)
η with κ

(i)
η its ith

principal curvature) and σn(h) = Gη =
∏n
i=1 κ

(i)
η is the Gaussian curvature. When n = 1 we

recover the Jacobian obtained for curves in two dimensions in (44) and when n = 2 we obtain
the Jacobian obtained in (45).

Remark: These changes of variable only hold if η is the constant distance between the two
level sets ∂Ω and ∂Ωη, and η is sufficiently small, i.e. less than the focal distance. We also note
that the first order curvature correction (in η) obtained in the above changes of variable is the
first variation of arc length (for curves) and area (for surfaces) from Riemannian geometry.

B Single and double layer potentials for Laplace’s equa-
tion

Let Ω be a bounded set of Rn, n ∈ N∗, and consider Laplace’s equation

∆u(x) = 0, (47)

in the bounded set Ω subject to Dirichlet, Neumann or the general Robin as in (8) boundary
conditions on ∂Ω. We refer to (47) as the interior Laplace problem. We define the fundamental
solution of Laplace’s equation on Rn to be the solution Φ(x, y) of

∆yΦ(x, y) = δ(x− y), (48)

for x, y ∈ Rn, where n ∈ N∗ is the dimension. By noticing that Laplace’s equation is invariant
under rotations, (47) can be solved by searching for radial solutions. The fundamental solution

35

of Laplace’s equation can therefore be expressed as

Φ(x, y) =


1

2π ln |x− y| for n = 2,

− 1

n(n− 2)ρn|x− y|n−2
for n ≥ 3,

(49)

where ρn is the volume of the unit ball in Rn. A few properties of the fundamental solution Φ
are summarized in the following theorem:

Theorem B.1 (Properties of Φ) For all x, y ∈ Rn, x 6= y, we have

1. Symmetry: Φ(x, y) = Φ(y, x),

2. ∇yΦ(x, y) = −∇xΦ(x, y),

3. ∇yΦ(x, y) = −∇yΦ(y, x).

Since the fundamental solution Φ satisfies (48) we can express the solution u of (47) as an
integral involving Φ. Using Green’s identity for u and Φ defined in Equations (47) and (48)
respectively, it follows that∫

Ω

(u(y)∆yΦ(x, y)− Φ(x, y)∆yu(y)) dy =

∫
∂Ω

(
u(y(s))

∂Φ(x, y(s))

∂ny
− Φ(x, y(s))

∂u(y(s))

∂ny

)
ds,

(50)
where ny is the outward unit normal to Ω at the point y(s) ∈ ∂Ω. Since u is harmonic on Ω
Equation (50) simplifies to∫

Ω

u(y)∆yΦ(x, y)dy =

∫
∂Ω

(
u(y(s))

∂Φ(x, y(s))

∂ny
− Φ(x, y(s))

∂u(y(s))

∂ny

)
ds.

We consider two cases:

• x ∈ Ω

In this case, since both x and y in the left-hand side of the above equation are in Ω, we
obtain

u(x) =

∫
∂Ω

(
u(y(s))

∂Φ(x, y(s))

∂ny
− Φ(x, y(s))

∂u(y(s))

∂ny

)
ds.

• x ∈ Ω̄c

In this case, we have ∆yΦ(x, y) = 0 since x ∈ Ω̄c and y ∈ Ω, and thus Equation (50)
further simplifies to

0 =

∫
∂Ω

(
u(y(s))

∂Φ(x, y(s))

∂ny
− Φ(x, y(s))

∂u(y(s))

∂ny

)
ds.

We therefore obtain the following identity:∫
∂Ω

(
u(y(s))

∂Φ(x, y(s))

∂ny
− Φ(x, y(s))

∂u(y(s))

∂ny

)
ds =

{
u(x) if x ∈ Ω,

0 if x ∈ Ω̄c.
(51)

We now define the exterior Laplace problem as the equation

∆v(x) = 0, (52)

satisfied in Ω̄c. The boundary condition for v on ∂Ω will be described later. Using Green’s
identity for v we can write∫

Ω̄c
(v(y)∆yΦ(x, y)− Φ(x, y)∆yv(y)) dy =

∫
∂Ω

(
v(y(s))

∂Φ(x, y(s))

∂n−y
− Φ(x, y(s))

∂v(y(s))

∂n−y

)
ds,

(53)

36

where n−y is the outward unit normal to Ω̄c at the point y(s) ∈ ∂Ω. Noticing that n−y = −ny,
we rewrite (53) as∫

Ω̄c
(v(y)∆yΦ(x, y)− Φ(x, y)∆yv(y)) dy =

∫
∂Ω

(
Φ(x, y(s))

∂v(y(s))

∂ny
− v(y(s))

∂Φ(x, y(s))

∂ny

)
ds.

Simplifying the above left-hand side in the same manner as we simplified the left-hand side
of (50), we obtain the identity∫

∂Ω

(
Φ(x, y(s))

∂v(y(s))

∂ny
− v(y(s))

∂Φ(x, y(s))

∂ny

)
ds =

{
0 if x ∈ Ω,

v(x) if x ∈ Ω̄c.
(54)

Adding (51) and (54) we arrive at the following result:∫
∂Ω

((
∂v(y(s))

∂ny
− ∂u(y(s))

∂ny

)
Φ(x, y(s)) + (u(y(s))− v(y(s)))

∂Φ(x, y(s))

∂ny

)
ds =

{
u(x) if x ∈ Ω,

v(x) if x ∈ Ω̄c.

(55)
We now define the following two boundary value problems:

Definition B.1 (Single layer boundary value problem) Let Ω be a bounded set in Rn and
define the single layer boundary value problem as ∆vsl(x) = 0 in Ω̄c

vsl(x) = u(x) on ∂Ω,
lim|x|→∞ vsl(x) = 0,

(56)

where u is the solution of (47) with Dirichlet, Neumann, or the general Robin as in (8) boundary
conditions.

Similarly we define the double layer boundary value problem in the following way:

Definition B.2 (Double layer boundary value problem) Let Ω be a bounded set in Rn
and define the double layer boundary value problem as

∆vdl(x) = 0 in Ω̄c
∂vdl(x)
∂nx

= ∂u(x)
∂nx

on ∂Ω,

lim|x|→∞ vdl(x) = 0,

(57)

where nx is the outward unit normal to Ω at the point x ∈ ∂Ω, and u is the solution of (47)
with Dirichlet, Neumann, the general Robin as in (8) boundary conditions.

Thus if we choose the function v to be the solution vsl of the single layer boundary value problem
(56), (55) becomes ∫

∂Ω

α(y(s))Φ(x, y(s))ds =

{
u(x) if x ∈ Ω,

vsl(x) if x ∈ Ω̄c,
(58)

where α(y) =

(
∂vsl(y)

∂ny
− ∂u(y)

∂ny

)
for y ∈ ∂Ω. The function

∫
∂Ω

α(y(s))Φ(x, y(s))ds in (58) is

referred to as the single layer potential with density α.
If we choose v to be the solution vdl of the double layer boundary value problem (57), (55)

becomes ∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds =

{
u(x) if x ∈ Ω,

vdl(x) if x ∈ Ω̄c,
(59)

37

where β(y) = u(y)− vdl(y) for y ∈ ∂Ω. The function

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds in (59) is known

as the double layer potential with density β. It follows that in the bounded set Ω the solution
u of (47) can be represented by either the single layer or the double layer potential. So far
the above single layer and double layer potential functions are only defined on Rn \ ∂Ω. It is
therefore interesting (and also useful for practical applications) to look at their respective limits
as x approaches the boundary ∂Ω. Standard results in potential theory [29] give the following
theorems:

Theorem B.2 Let ∂Ω be of class C2 and α ∈ C(∂Ω). Then the single layer potential with
density α is continuous throughout Rn, namely

lim
h→0+

∫
∂Ω

α(y)Φ(x± hnx, y)ds(y) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds,

where x ∈ ∂Ω and nx is the outward unit normal to Ω at the point x ∈ ∂Ω, and the integral
exists as an improper integral.

Theorem B.3 Let ∂Ω be of class C2, and β ∈ C(∂Ω). Then the double layer potential with
density β can be continuously extended from Ω to Ω̄, and from Ω̄c to Ωc with

lim
h→0+

∫
∂Ω

β(y(s))
∂Φ(x± nx, y(s))

∂ny
ds =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds∓ 1

2
β(x),

where x ∈ ∂Ω and nx is the outward unit normal to Ω, and the integral exists as an improper
integral.

We also have the following result regarding the normal derivative of the fundamental solution
of Laplace’s equation:

Theorem B.4 Let Φ be the fundamental solution of Laplace’s equation defined in (49). Then
we have the following: ∫

∂Ω

∂Φ(x, y(s))

∂ny
ds =

 1 if x ∈ Ω,
1
2 if x ∈ ∂Ω,
0 if x ∈ Ω̄c.

This result is used in Example 5.10. This result also shows that any non zero constant function

defined on ∂Ω is an eigenvector for the operator K : v 7→
∫
∂Ω

∂Φ(x, y(s))

∂ny
v(y(s))ds associated

to the eigenvalue
1

2
.

B.1 Integral equations for Poisson’s equations

For Ω a bounded set of Rn and a real function ψ0 defined on Ω, we consider Poisson’s equation

∆u(x) = ψ0(x), (60)

for x ∈ Ω, subject to either Dirichlet, Neumann, or the general Robin as in (8) boundary condi-
tions. The solution to this problem can be obtained using the fundamental solution of Laplace’s
equation through integral equations. By following the procedure described in Section B.1 for
Laplace’s equation, we obtain the following single and double layer potential formulations for
the Poisson problem respectively:∫

∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy =

{
u(x) if x ∈ Ω,

vsl(x) if x ∈ Ω̄c,
(61)

38

where α(y) =

(
∂vsl(y)

∂ny
− ∂u(y)

∂ny

)
for y ∈ ∂Ω and vsl is the solution of the single layer boundary

value problem (56), and∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy =

{
u(x) if x ∈ Ω,

vdl(x) if x ∈ Ω̄c,
(62)

where β(y) = u(y)−vdl(y) for y ∈ ∂Ω and vdl is the solution of the double layer boundary value
problem (57). Similarly to Laplace’s equation, the limit of the single layer potential (61) and
the double layer potential (62) as x approaches the boundary ∂Ω are obtained using standard
results in potential theory.

We now consider the Dirichlet problem for Poisson’s equation (60),{
∆u(x) = ψ0(x) on Ω
u(x) = f(x) on ∂Ω,

(63)

and the Neumann problem for Laplace’s equation
∆u(x) = ψ0(x) on Ω
∂u(x)
∂nx

= g(x) on ∂Ω such that
∫
∂Ω
g(x(s))ds =

∫
Ω
ψ0(x)dx.

lim|x|→∞ u(x) = 0.

(64)

Contrary to the Dirichlet problem which is well-posed, the Neumann problem stated in (64)
is ill-posed since a solution to (64) might not always exist for any function g defined on the
boundary ∂Ω. It is therefore useful to observe that since u satisfies Poisson’s equation on Ω, it
follows from the divergence theorem that∫

Ω

∆u(x)dx =

∫
∂Ω

∂u(x(s))

∂nx
ds =

∫
Ω

ψ0(x)dx.

Thus in order for the Neumann problem (64) to have a solution it is necessary to impose some
constraints on the function g prescribed on the boundary. In particular g should satisfy the
compatibility condition ∫

∂Ω

g(x(s))ds =

∫
Ω

ψ0(x)dx. (65)

Note also the solution of the Neumann problem can only be obtained up to a constant.
Let us now first consider the Dirichlet problem (63). To obtain its solution u in Ω, we can

use two different approaches: one using the single layer potential formulation (58) or one using
the double layer potential formulation (59).

Single layer potential formulation

In this case we represent u in Ω as

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy,

where α is the unknown density on ∂Ω. We remark that u is entirely determined by the
knowledge of the single layer density α defined on the boundary ∂Ω. Letting x go to the
boundary ∂Ω, we use the result of Theorem B.2 to obtain

f(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ ∂Ω, (66)

which is an integral equation involving only boundary quantities α and f . This equation is a
Fredholm equation of the first kind (see [29]). Since f and Φ are both known quantities it is
possible to use (66) to solve for α. The steps to solve the Dirichlet problem using the single
layer potential formulation are thus as follows:

39

1. Find the density α defined on ∂Ω such that∫
∂Ω

α(y(s))Φ(x, y(s))ds = f(x)−
∫

Ω

Φ(x, y)ψ0(y)dy, for x ∈ ∂Ω.

2. Reconstruct u in Ω using the single layer potential formulation

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

Double layer potential formulation

In this case we represent u in Ω as

u(x) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy,

where β is the unknown density on ∂Ω. Again we remark that u is entirely determined by
the knowledge of the double layer density β defined on the boundary ∂Ω. Letting x go to the
boundary ∂Ω from the inside of Ω, we use the result of Theorem B.3 to obtain

f(x) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy +
1

2
β(x), for x ∈ ∂Ω, (67)

which is a Fredholm equation of the second kind. Note that if we let x go the boundary from
the outside of Ω we obtain another Fredholm equation of the second kind, namely

lim
h→0+

vdl(x+ hnx) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy − 1

2
β(x), for x ∈ ∂Ω.

Unfortunately we do not know the function vdl nor its limit as x approaches the boundary ∂Ω.
This equation is therefore not useful in practice. Nevertheless, (67) can be used to solve for
β. The steps to solve the Dirichlet problem using the double layer potential formulation are as
follows:

1. Find the density β defined on ∂Ω such that∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

1

2
β(x) = f(x)−

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ ∂Ω.

2. Reconstruct u in Ω using the double layer potential formulation

u(x) =

∫
∂Ω

β(y(s))
∂Φ(x, y(s))

∂ny
ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

Between these two approaches the double layer potential formulation is often preferred since
the Fredholm equation of the second kind leads to a numerical system with a better condition
number than the system obtained from the Fredholm equation of the first kind.

Single layer formulation for the Neumann problem

We consider the Neumann problem
∆u(x) = ψ0(x) on Ω
∂u(x)
∂nx

= g(x) on ∂Ω such that
∫
∂Ω
g(x(s))ds =

∫
Ω
ψ0(x)dx.

lim|x|→∞ u(x) = 0.

40

In this case it is necessary to use the single layer potential formulation (58) and represent u in
Ω as

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, (68)

where α is the unknown density on ∂Ω. This formulation however cannot be used directly since
the boundary condition of the Neumann problem is prescribed on the normal derivative of u on
∂Ω instead of being specified on the function u. It is therefore necessary to compute the normal
derivative of u in (68) and then take its limit as x approaches the boundary ∂Ω. Here again
standard results in potential theory apply and give the following theorem:

Theorem B.5 Let ∂Ω be of class C2. Then for the single layer potential u with continuous
density α we have

lim
h→0+

∂u(x± hnx)

∂nx
=

∫
∂Ω

α(y(s))
∂Φ(x, y(s))

∂nx
ds± 1

2
α(x),

where limh→0+
∂u(x±hnx)

∂nx
is to be understood in the sense of uniform convergence on ∂Ω and

where the integral exists as an improper integral.

Using this result we can solve the Neumann problem as follows:

1. Find the density α defined on the domain boundary ∂Ω such that∫
∂Ω

α(y(s))
∂Φ(x, y(s))

∂nx
ds− 1

2
α(x) = g(x)−

∫
Ω

∂Φ(x, y)

∂nx
ψ0(y)dy, for x ∈ ∂Ω.

2. Reconstruct u in Ω using the single layer potential formulation

u(x) =

∫
∂Ω

α(y(s))Φ(x, y(s))ds+

∫
Ω

Φ(x, y)ψ0(y)dy, for x ∈ Ω.

C Accuracy of the regularizations of ∂Φ
∂n

In this section we estimate the errors incurred by our regularizations of the normal derivative
of the fundamental solution in two and three dimensions.

C.1 Two dimensions

Let C be a C2 curve in R2 and let z be a point on C. We assume that we have a parameterization
(x(t), y(t)) of C and consider the Frenet frame associated to C and centered at z = (x(t0), y(t0) ∈
C for some t0 > 0. In that frame z is the point (0, 0), the x-axis is the tangent and the y-axis the
normal. For simplicity we denote by O the origin of the frame (which is also z). See Figure 12.
Locally around the origin, the equation of the curve can be written as a function y = f(x). As
a result we have f(0) = 0, f ′(0) = 0 and f ′′(0) = κ(0) = 1

R is the curvature of the curve at O.
This curvature is also the curvature of C at z.

Now we consider the osculating circle of the curve C at O. In the Frenet frame the osculating
circle is centered at (0, R). The equation of the circle (bottom portion) can be written as

y = R−
√
R2 − x2,

for |x| < R. For |h| < R a small parameter we consider a point M on the osculating circle
with coordinates (h,R−

√
R2 − h2) and a point P on the curve with coordinates (h, f(h)). We

41

x

y

y = z(x)

C

R

O

Figure 12: The curve and its osculating circle in the Frenet frame.

compute the difference of their y-coordinates:

f(h)− (R−
√
R2 − h2) = f(0) + hf ′(0) +

h2

2
f ′′(0) +

h3

6
f ′′′(0) +O(h4)

−R+R

(
1− h2

2R2
+

h4

8R4
+O(h6)

)
=

h2

2R
+
h3

6
f ′′′(0)− h2

2R
+O(h4)

= O(h3).

If the point O is a vertex, then f ′′′(0) = 0 and the circle is called overosculating. In this case
the contact point between the curve and its osculating circle is of order ≥ 4. We recall that a
vertex of a curve in R2 is a point where the contact order of the curve with its osculating circle
is at least 4 (i.e. O(h4)).

Estimate for the normal derivative Let M be a point on the osculating circle such
that its coordinates are (x,R−

√
R2 − x2) for |x| � R. Let P be a point on the curve such that

its coordinates are (x, f(x)). We compare the two quantities
∂Φ(M,O)

∂nO
and

∂Φ(P,O)

∂nO
.

∂Φ(M,O)

∂nO
= − 1

2π

(M −O)

|M −O|2 · nO = − 1

2π

√
R2 − x2 −R

x2 + (R−
√
R2 − x2)2

=
1

4πR
,

∂Φ(P,O)

∂nO
= − 1

2π

(P −O)

|P −O|2 · nO =
1

2π

f(x)

x2 + f(x)2
=

1

2π

R−
√
R2 − x2 +O(x3)

x2 + (R−
√
R2 − x2 +O(x3))2

=
1

4πR
+O(x).

We note that if the curve is locally convex we have

∂Φ(P,O)

∂nO
=

1

4πR
+O(x2).

42

Consequently we have in general

∂Φ(P,O)

∂nO
=
∂Φ(M,O)

∂nO
+O(xp) =

∂Φ(M,O)

∂nO
+O(|O − P |p),

since |O−P | = O(x) and where p = 1 in general and p = 2 if the origin O (or z ∈ C) is a vertex.

C.2 Three dimensions

Let S be a C2 surface in R3, and let P0 be a point on S. For simplicity in the calculations we
consider a local coordinate system centered at P0 with axes x, y and z such that the tangent
plane to the surface S at P0 is the xy plane with the principal directions being the x-axis and
the y-axis. Note that P0 is also the origin (denoted now by O). Locally around the origin, the
equation of the surface can be written as a function z = f(x, y). As a result, we have f(0, 0) = 0,
fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = κ1, fyy(0, 0) = κ2 and fxy(0, 0) = fyx(0, 0) = 0, where κ1

and κ2 are the two principal curvatures of S at O.
If we use the tangent plane at P0, (equivalently the origin O), then a point P on the tangent

plane can be written as (x, y, 0) so the normal derivative of the fundamental solution becomes
(for x and y small):

∂Φ(O,P)

∂nP
= − 1

4π

(O − P) · (0, 0,−1)

|P −O|3 =
1

4π

(x, y, 0) · (0, 0,−1)

(x2 + y2)
3
2

= 0.

This is equivalent to throwing out points on the interface that are too close to P0. As pointed
out in Section 4.1, the accuracy resulting from this regularization can be further improved by
approximating the surface locally by its osculating paraboloid instead of its tangent plane.

We consider the osculating paraboloid of the surface S at O. We can then write the equation
of the paraboloid as

z(x, y) =
1

2

(
κ1x

2 + κ2y
2
)
.

Near the origin, we consider a pointM on the osculating paraboloid with coordinates (x, y, 1
2

(
κ1x

2 + κ2y
2
)
)

and a point P on the surface with coordinate (x, y, f(x, y)) and compute the difference in their
z-coordinates:

f(x, y)− 1

2

(
κ1x

2 + κ2y
2
)
)

= f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2
(fxx(0, 0) + 2fxy(0, 0) + fyy(0, 0)) +O(x3, x2y, xy2, y3)

−1

2

(
κ1x

2 + κ2y
2
)
)

= O(x3, x2y, xy2, y3).

If follows that the osculating paraboloid has contact of order 3 in general. If the point is a
vertex, then the contact order is at least 4.

Estimate for the normal derivative Let M be a point on the osculating paraboloid with
coordinates (x, y, 1

2

(
κ1x

2 + κ2y
2
)
)) and let P be a point on S with coordinates (x, y, f(x, y)).

We compare the two quantities ∂Φ(O,M)
∂nM

and ∂Φ(O,P)
∂nP

. We compute these quantities using
cylindrical coordinates. The point M on the paraboloid can be described as

p(r, θ) =

(
r cos(θ), r sin(θ),

1

2

(
κ1 (r cos(θ))

2
+ κ2 (r sin(θ))

2
))

,

43

for r ∈ [0, τ] and θ ∈ [0, 2π]. Then

∂p

∂r
× ∂p

∂θ
=
(
−r2κ1 cos(θ),−r2κ2 sin(θ), r

)
.

Thus ||∂p∂r ×
∂p
∂θ || = r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)

. Computing the normal derivative of

the fundamental solution at the point P on the paraboloid we obtain

∂Φ(O,P)

∂nP
= − 1

4π

(O − P) · (zx, zy,−1)

|(zx, zy,−1)||P −O|3

= − 1

4π

(−x,−y,− 1
2

(
κxx

2 + κyy
2
)
) · (xκx, yκy,−1)√

1 + z2
x + z2

y

(
x2 + y2 + 1

4 (κxx2 + κyy2)
2
) 3

2

= − 1

4π

−x2κx − y2κy + 1
2

(
x2κx + y2κy

)√
1 + x2κ2

x + y2κ2
y

(
x2 + y2 + 1

4 (κxx2 + κyy2)
2
) 3

2

=
1

8π

κxx
2 + κyy

2√
1 + r2

(
(κx cos(θ))

2
+ (κy sin(θ))

2
)(

x2 + y2 + 1
4 (κxx2 + κyy2)

2
) 3

2

=
1

8π

r2
(
κx cos2(θ) + κy sin2(θ)

)√
1 + r2

(
(κx cos(θ))

2
+ (κy sin(θ))

2
)
r3
(

1 + r2

4

(
κx cos2(θ) + κy sin2(θ)

)2) 3
2

=
1

πr

κx cos2(θ) + κy sin2(θ)√
1 + r2

(
(κx cos(θ))

2
+ (κy sin(θ))

2
)(

4 + r2
(
κx cos2(θ) + κy sin2(θ)

)2) 3
2

.

We now compute the average value of the normal derivative of the fundamental solution

over the piece of paraboloid defined as P :=
{
r2

2

(
κ1 cos2 θ + κ2 sin2 θ

)
: θ ∈ [0, 2π], r ∈ [0, τ]

}
.

Using a Taylor expansion for small τ and Maple to simplify the result, the first few terms of the
integral of the normal derivative of the fundamental solution over the piece of paraboloid P are

1

π

∫ τ

0

∫ 2π

0

(κ1 cos2(θ) + κ2 sin2(θ))r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)

√
1 + r2

(
(κx cos(θ))

2
+ (κy sin(θ))

2
)
r
(

4 + r2
(
κ1 cos2(θ) + κ2 sin2(θ)

)2) 3
2

drdθ

=
1

π

∫ τ

0

∫ 2π

0

κ1 cos2(θ) + κ2 sin2(θ)(
4 + r2

(
κ1 cos2(θ) + κ2 sin2(θ)

)2) 3
2

drdθ

=
κ1 + κ2

8
τ − 1

512

(
5
(
κ3

1 + κ3
2

)
+ 3κ1κ2 (κ1 + κ2)

)
τ3 +O(τ5).

Similarly, the first few terms of the surface area of the piece of paraboloid P:∫ τ

0

∫ 2π

0

r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)
drdθ

= πτ2 + π

(
κ2

1 + κ2
2

8

)
τ4 − π

(
κ4

1 + κ4
2

64
+
κ2

1κ
2
2

96

)
τ6 +O(τ8).

44

Consequently, the first few terms in the average of the normal derivative over P are

Avg =

1
π

∫ τ
0

∫ 2π

0
κ1 cos2(θ)+κ2 sin2(θ)

r(4+r2(κ1 cos2(θ)+κ2 sin2(θ))2)
3
2
r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)
drdθ

∫ τ
0

∫ 2π

0
r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)
drdθ

=
1

8πτ
(κ1 + κ2)− 1

512π

(
13
(
κ3

1 + κ3
2

)
+ 11κ1κ2 (κ1 + κ2)

)
τ

+
1

393216π

(
3086

(
κ2

1κ
3
2 + κ3

1κ
2
2

)
+ 2139

(
κ4

1κ2 + κ1κ
4
2

)
+ 2583

(
κ5

1 + κ5
2

))
τ3 +O(τ5).

Now, we look at the error made by approximating the normal derivative of the fundamental
solution using the paraboloid instead of the surface. Let P be the point (x, y, z(x, y)) on the
paraboloid and S the point on the surface (x, y, f(x, y)). We have

∂Φ(O,P)

∂nP
=

1

8π

κ1x
2 + κ2y

2√
1 + z2

x + z2
y (x2 + y2 + z2)

3
2

,

and thus

∂Φ(O,S)

∂nS
= − 1

4π

(O − S) · (fx, fy,−1)

|(fx, fy,−1)||S −O|3

= − 1

4π

−xfx − yfy + f(x, y)√
1 + f2

x + f2
y (x2 + y2 + f(x, y)2)

3
2

= − 1

4π

−xzx − yzy + z(x, y) +O(x3, x2y, xy2, y3)√
1 + (zx +O(x2, xy, y2))2 + (zy +O(x2, xy, y2))2

(
x2 + y2 + (z(x, y) +O(x3, x2y, xy2, y3))2

) 3
2

=
1

8π

κxx
2 + κyy

2 +O(x3, x2y, xy2, y3)√
1 + z2x + z2y +O(x3, yx2, xy2, y3) (x2 + y2 + z(x, y)2 +O(x5, x4y, x3y2, x2y3, xy4, y5))

3
2

=
1

8π

κxx
2 + κyy

2 +O(x3, x2y, xy2, y3)√
1 + z2x + z2y

√
1 + O(x3,x2y,xy2,y3)

z2x+z
2
y+1

(x2 + y2 + z(x, y)2)
3
2

(
1 +
O(x5, x4y, x3y2, x2y3, xy4, y5)

x2 + y2 + z(x, y)2

)− 3
2

=
1

8π

κxx
2 + κyy

2 +O(x3, x2y, xy2, y3)√
1 + z2x + z2y (x2 + y2 + z2)

3
2

1 +
O(x3, x2y, xy2, y3)

z2x + z2y + 1︸ ︷︷ ︸
=O(1)


− 1

2 (
1 +
O(x5, x4y, x3y2, x2y3, xy4, y5)

x2 + y2 + z(x, y)2

)− 3
2

.

Using polar coordinates for the O term with x = r cos(θ) and y = r sin(θ), we have

∂Φ(O,S)

∂nS
=

1

8π

κxx
2 + κyy

2 +O(r3)√
1 + z2

x + z2
y (x2 + y2 + z(x, y)2)

3
2

(
1 +O(r3)

)− 1
2
(
1 +O(r3)

)− 3
2

=
1

8π

 κxx
2 + κyy

2√
1 + z2

x + z2
y (x2 + y2 + z(x, y)2)

3
2

+O(1)

(1 +O(r3)
)

=
1

8π

κxx
2 + κyy

2√
1 + z2

x + z2
y (x2 + y2 + z(x, y)2)

3
2

+O(1).

45

since
κxx

2+κyy
2

(x2+y2+z2)
3
2

= O
(

1
r

)
. It follows that

∂Φ(O,S)

∂nS
=
∂Φ(O,P)

∂nP
+O(1).

Now∫
U(O;τ)

∂Φ(O,S)

∂nS
dS(y) =

∫
Ũ(0;τ)

∂Φ(O,P)

∂nP
dS(y) +

∫ τ

0

∫ 2π

0

O (1) r

√
1 + r2

(
(κ1 cos(θ))

2
+ (κ2 sin(θ))

2
)
drdθ

=

∫
Ũ(O;τ)

∂Φ(O,P)

∂nP
dS(y) +O(τ2),

where Ũ(O; τ) is a neighborhood of O on the tangent plane to the surface at O (also P0). If the
point P0 ∈ ∂Ω is a vertex, namely if the paraboloid is overosculating, we would have at least a
third order accuracy in τ . So in general we can write∫

U(O;τ)

∂Φ(O,S)

∂nS
dS(y) =

∫
Ũ(O;τ)

∂Φ(O,P)

∂nP
dS(y) +O(τp),

where p = 2 in general and p = 3 if P0 (also the origin O on the tangent plane) is a vertex.
Now we estimate the error made when we approximate the normal derivative of the fundamen-
tal solution weakly using the osculating paraboloid as the approximate surface. We have the
following∫
U(x;τ)

∂Φ(x, y)

∂ny
α(y)dS(y) = α(x)

∫
U(x;τ)

∂Φ(x, y)

∂ny
dS(y) +∇α(x) ·

∫
U(x;τ)

∂Φ(x, y)

∂ny
(y − x)dS(y) + · · ·

= α(x)

(∫
Ũ(x;τ)

∂Φ(x, y)

∂ny
dS(y) +O(τp)

)

+∇α(x) ·
∫
U(x;τ)

∂Φ(x, y)

∂ny
(y − x)dS(y) + · · · .

= α(x)

(
1

8πτ
(κ1 + κ2)− 1

512π

(
13
(
κ3

1 + κ3
2

)
+ 11κ1κ2 (κ1 + κ2)

)
τ

)
+O(τp),

where p = 2 in general and p = 3 if x is a vertex.

46

References

[1] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces. J.
of Comput. Phys., 118(2):269–277, 1995.

[2] K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cam-
bridge University Press, 1997.

[3] K. E. Atkinson and G. Chandler. Boundary integral equation methods for solving laplace’s
equation with nonlinear boundary conditions: the smooth boundary case. Mathematics of
Computation, 55(191):451–472, 1990.

[4] I. Babus̆ka. The finite element method for elliptic equations with discontinuous coefficients.
Computing, 5:207–213, 1970.

[5] J. Berossian, J. J. von Brecht, S. Zhu, E. Sifakis, and J. Teran. A second order virtual
node method for elliptic problems with interfaces and irregular domains. J. Comput. Phys.,
229:6405–6426, 2010.

[6] S. Börn, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Technical report, Max-
Planck Institut fur Mathematik in den Naturwissenschaften, Leipzig, 2003.

[7] M. Burger and S. Osher. A survey on level set methods for inverse problems and optimal
design. Euro J. of Appl. Math., 16(2):263–301, 2005.

[8] H. Chen, C. Min, and F. Gibou. A supra-convergence finite difference scheme for the
Poisson and heat equations on irregular domains and non-graded adaptive cartesian grids.
J. Comput. Phys., 31(1/2):19–60, 2007.

[9] L.-T. Cheng and Y.-H. Tsai. Redistancing by flow time dependent Eikonal equation. J.
Comput. Phys., 227(2):4002–4017, 2008.

[10] I.-L. Chern and Y.-C. Shu. A coupling interface method for elliptic interface problems. J.
of Comput. Physics, 225:2138–2174, 2007.

[11] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, 1978.

[12] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, 1992.

[13] M. C. Delfour and J.-P. Zolesio. Shapes and geometries. analysis, differential calculus and
optimization. Advances in Design and Control, SIAM, 2001.

[14] J. Dolbow and I. Harari. An efficient finite element method for embedded interface prob-
lems. J. Numer. Methods Eng., 78:229–252, 2009.

[15] B. Engquist, A.-K. Tornberg, and R. Tsai. Discretization of dirac delta functions in level
set methods. J. Comput. Phys., 207(1):28–51, 2005.

[16] B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels.
SIAM J. Sci. Comput., 29(4):1710–1737, 2007.

[17] F. Ethridge and L. Greengard. A new fast-multipole accelerated poisson solver in two
dimensions. SIAM J. Sci. Comput., 23(3):741–760, 2001.

[18] H. Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959.

[19] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the laplace and heat
equations on arbitrary domains, with applications to the stefan problem. J. Comput. Phys.,
202:577–601, 2005.

[20] F. Gibou, R. Fedkiw, L. Cheng, and M. Kang. A second order accurate symmetric dis-
cretization of the poisson equation on irregular domains. J. Comput. Phys., 176:1–23,
2002.

47

[21] L. Greengard. The rapid evaluation of potential fields in particle systems. PhD thesis, MIT,
1988.

[22] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,
73(2):325–348, 1987.

[23] A. Hansbo and P. Hansbo. An unfitted element method, based on nitsche’s method for
elliptic interface problems. Comput. Methods Appl. Mech. Eng., 191:5537–5552, 2002.

[24] A. Hansbo and P. Hansbo. A finite element method for the simulation of strong and weak
discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng., 193:3523–3540,
2004.

[25] J. Helsing. Integral equation methods for elliptic problems with boundary conditions of
mixed type. J. Comput. Phys., 228(23), 2009.

[26] J. Huang and J. Zou. A mortar element method for elliptic problems with discontinous
coefficients. IMA J. Numer. Anal., 22:549–576, 2002.

[27] H. Johansen. Cartesian grid embedded boundary finite difference methods for elliptic and
parabolic differential equations on irregular domains. PhD thesis, University of California,
Berkeley, 1997.

[28] H. Johansen and P. Colella. A cartesian grid embedded boundary method for poisson’s
equation on irregular domains. J. Comput. Phys., 147:60–85, 1998.

[29] R. Kress. Linear Integral Equations. Springer-Verlag, New York, second edition, 1999.

[30] R. Leveque and Z. Li. The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources. SIAM J. Numer. Anal., 31:1019–1044, 1994.

[31] Z. Li and K. Ito. The immersed interface method: numerical solutions of pdes involving
interfaces and irregular domains (frontiers in applied mathematics). Society for Industrial
and Applied Mathematics, 2006.

[32] X. Liu, R. Fedkiw, and M. Kang. A boundary condition capturing method for poisson’s
equation on irregular domains. J. Comput. Phys., 160(1):151–178, 2000.

[33] C. B. Macdonald and S. J. Ruuth. Level set equations on surfaces via the Closest Point
Method. J. Sci. Comput., 35(2–3):219–240, June 2008. doi:10.1007/s10915-008-9196-6.

[34] S. Mallat. A wavelet tour of signal processing. Academic Press Inc., San Diego, CA, 1998.

[35] C. Min and F. Gibou. A second order accurate level set method on non-graded adaptive
cartesian grids. J. Comput. Phys., 225(1):300–321, 2007.

[36] C. Min, F. Gibou, and H. D. Ceniceros. A supra-convergent finite difference scheme for the
variable coefficient poisson equation on non-graded grids. J. Comput. Phys., 218(1):123–
140, 2007.

[37] W. W. Mullins and R. F. Sekerka. Morphological stability of a particle growing by diffusion
or heat flow. J. of Applied Physics, 34:323–329, 1963.

[38] E. Nyström. Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf
Randwertaufgaben. Acta Math., 54:185–204, 1930.

[39] S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algo-
rithms based on hamilton-jacobi formulations. J. Comp. Phys., 79:12–49, 1988.

[40] D. Peng, B. Marriman, S. Osher, and H. Zhao. A PDE-based fast local level set method.
J. of Comput. Phys., 155(2):410–438, 1999.

[41] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comput.
Phys., 60:185–207, 1985.

[42] G. Russo and P. Smereka. A remark on computing distance functions. J. Comput. Phys.,
163:51–67, 2000.

48

[43] S. J. Ruuth and B. Merriman. A simple embedding method for solving partial differential
equations on surfaces. J. Comput. Phys., 227(3):1943–1961, 2008.

[44] J. Sethian. A fast marching level set method for monotonically advancing fronts. Proceed-
ings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[45] P. Smereka. The numerical approximation of a delta function with application to level set
methods. J. Comput. Phys., 211(1):77–90, 2006.

[46] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151:616–648, 1999.

[47] J. D. Towers. Two methods for discretizing a delta function supported on a level set. J.
Comput. Phys., 220(2):915–931, 2007.

[48] Y.-H. Tsai, L. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping methods for a class of
hamilton-jacobi equations. SIAM Journal on Numerical Analysis, 41(2):673–694, 2003.

[49] Y.-H. R. Tsai. Rapid and accurate computation of the distance function using grids. J.
Comput. Phys., 178(1):175–195, 2002.

[50] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transactions on
Automatic Control, 40:1528–1538, 1995.

[51] S. Zahedi and A.-K. Tornberg. Delta function approximations in level set methods by
distance function extension. J. Comput. Phys., 229(6):2199–2219, 2010.

[52] J. Zhu, X. Chen, and T. Y. Hou. An efficient boundary integral method for the Mullins-
Sekerka problem. J. Comput. Phys., 127:246–267, 1996.

49

	University of Dayton
	eCommons
	2013

	An Implicit Interface Boundary Integral Method for Poisson’s Equation on Arbitrary Domains
	Catherine Kublik
	Nicolay M. Tanushev
	Richard Tsai
	eCommons Citation

	tmp.1440696373.pdf.5u321

