On The Decomposition of Order-separable Posets of Countable Width into Chains

Gary Gruenhage
Auburn University Main Campus
Joe Mashburn
University of Dayton, joe.mashburn@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/mth_fac_pub
Part of the Applied Mathematics Commons, Mathematics Commons, and the Statistics and Probability Commons

eCommons Citation

Gruenhage, Gary and Mashburn, Joe, "On The Decomposition of Order-separable Posets of Countable Width into Chains" (1999).
Mathematics Faculty Publications. 25.
https://ecommons.udayton.edu/mth_fac_pub/25

On the decomposition of order-separable posets of countable width into chains

Gary Gruenhage*
Department of Mathematics
Auburn University
Auburn, AL 36849-5310
(garyg@mail.auburn.edu)
Joe Mashburn
Department of Mathematics
University of Dayton
Dayton, OH 45469-2316
(joe.mashburn@udayton.edu)

Abstract

A partially ordered set X has countable width if and only if every collection of pairwise incomparable elements of X is countable. It is order-separable if and only if there is a countable subset D of X such that whenever $p, q \in X$ and $p<q$, there is $r \in D$ such that $p \leq r \leq q$. Can every order-separable poset of countable width be written as the union of a countable number of chains? We show that the answer to this question is "no" if there is a 2 -entangled subset of \mathbb{R}, and "yes" under the Open Coloring Axiom.

Keywords: countable width, order-separable, chain, k-entangled subset, Open Coloring Axiom

Mathematics Subject Classification (1991): 06A06, 03E05

1. Introduction

The decomposition of partially ordered sets into chains has been a significant part of the study of the structure of partially ordered sets. The success in this area has come primarily using posets with the property that there is $n \in \omega$ such that for every antichain (by which we mean a set of incomparable elements) has cardinality $\leq n$. See, for example, these references: [1], and [3]-[14]. In [13], Peles constructed an example of a poset P such that every antichain of P is finite, but P is not the union of a countable number of chains. In [15] a problem was studied which required posets to be order-separable and have countable width. These posets seemed to be good candidates for decomposition into a countable number of chains. This led to the question which we will

[^0]answer in this paper. That is, can every order-separable poset having countable width be written as the union of a countable number of chains? In Section 2, we use a type of subset of \mathbb{R} called a 2 -entangled set to show that under certain axioms, such as the continuum hypothesis (CH), there are order-separable posets of countable width that cannot be written as the union of a countable number of chains. On the other hand, we show in Section 3 that under the Open Coloring Axiom, every order-separable poset can indeed be written as the union of a countable number of chains.

Let us define some of the terminology that we have used, then consider a couple of related questions. The definition of entangled sets and the statement of the Open Coloring Axiom will be left to the appropriate sections.

Definition. A poset X is said to have countable width if and only if every antichain of X is countable.

Definition. A poset X is order-separable if and only if there is a countable $C \subseteq X$ such that for every $p, q \in X$ with $p<q$ there is $r \in C$ such that $p \leq r \leq q$.

Two questions related to the concepts investigated in this paper which were asked in [15] also have both positive and negative answers, depending on your set theory. A structure introduced in [15] is the collection of nonoverlapping subsets of X.

Definition. A collection \mathcal{A} of subsets of a poset X is called a collection of nonoverlapping subsets of X if and only if \mathcal{A} satisfies the following conditions.

1. \mathcal{A} is a collection of pairwise disjoint sets, each having at least two elements.
2. The transitive closure of the relation

$$
\left\{\langle A, B\rangle \in \mathcal{A}^{2}: A \neq B \wedge \exists p \in A \exists q \in B(p<q)\right\}
$$

is a partial order.
We use $\nu(X)$ to represent the supremum of the cardinalities of collections of nonoverlapping subsets of X. Obviously, if $\nu(X) \leq \omega$ then X has countable width. To see why these kinds of collections are of any interest, we must make one more definition.

Definition. A poset $\langle X,<\rangle$ is pliable if and only if for every linear extension \prec of $<$, there is a strictly \prec-increasing function $f: X \rightarrow \mathbb{R}$.

In [15] it was shown that X is pliable if and only if $\nu(X) \leq \omega$ and X is order-separable, and the following two questions appeared.

Question. If $\nu(X) \leq \omega$, can X necessarily be written as the union of a countable number of chains?

Question. If X is pliable, can X necessarily be written as the union of a countable number of chains?

It will be shown in Section 2 that the answer to both questions is "no" if there is a 4 -entangled set. An immediate corollary to Theorem 2 in Section 3 is that the answer to the second question is "yes" under OCA. Since it was shown in [15] that Souslin's Hypothesis (SH) is equivalent to the statement that every poset X with $\nu(X) \leq \omega$ is pliable, it also follows that the answer to the first question is "yes" under OCA +SH (and so, in particular, under the Proper Forcing Axiom (PFA)).

2. Entangled Sets

How could one construct an order-separable poset of countable width that is not the union of a countable number of chains? One approach would be to find an uncountable poset in which all chains are countable. If one could then introduce a countable order-dense set, the resulting poset would have the desired properties. This is precisely what 2 -entangled sets do. For $k \in \omega, k$-entangled sets were introduced by Shelah and were shown in [2] to follow from CH and to be consistent with $\mathrm{MA}_{\omega_{1}}$. He defined them as follows.

Definition. Let $k \in \omega$. An uncountable subset A of \mathbb{R} is a k-entangled subset of \mathbb{R} if and only if for every uncountable set \mathcal{A} of k-tuples from A such that $\alpha(i) \neq \beta(j)$ if $\alpha, \beta \in \mathcal{A}$ and $\alpha \neq \beta$ or $i \neq j$, and every $\sigma: k \rightarrow 2$, there are $\alpha, \beta \in \mathcal{A}$ such that $\alpha(i)<\beta(i) \Longleftrightarrow \sigma(i)=1$

This means that for every uncountable collection of k-tuples from A having distinct coordinates and disjoint as unordered sets, there are pairs illustrating every possible ordering between the coordinates. An equivalent, and simpler, definition of 2 -entangled sets is the following.

Definition. An uncountable subset A of \mathbb{R} is a 2-entangled subset of \mathbb{R} if and only if there is no uncountable monotone function from a subset of A to A with no fixed points.

This means that if f is an uncountable function from a subset of A to A, and the graph of f is given the usual product ordering (i.e., $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle$ iff $a \leq a^{\prime}$ and $\left.b \leq b^{\prime}\right)$, then there are $p, q, r, s \in A$ such that $\langle p, f(p)\rangle$ and $\langle q, f(q)\rangle$ are comparable, while $\langle r, f(r)\rangle$ and $\langle s, f(s)\rangle$ are not. This gives us the desired properties that chains and antichains are countable. If we also require that f is one-to-one, then the addition of $Q \times Q$ will give us an order-separable poset.

THEOREM 1. If there is a 2-entangled subset of \mathbb{R}, then there is an order-separable poset of countable width which is not the union of a countable number of chains.

Proof. Let A be a 2-entangled subset of \mathbb{R} and let $f: A \rightarrow A$ be a one-to-one function with no fixed points. Set $X=f \cup\left(Q^{2}\right)$ with the usual product order. As was noted above, every chain and antichain of X is countable, so X has countable width and is not the union of a countable number of chains.

Let $\langle p, q\rangle$ and $\langle r, s\rangle$ be elements of X with $\langle p, q\rangle<\langle r, s\rangle$. Assume that $\langle p, q\rangle \notin Q^{2}$ and $\langle r, s\rangle \notin Q^{2}$. Then $\langle p, q\rangle,\langle r, s\rangle \in f$ and, since f is a one-to-one function, $p=r$ if and only if $q=s$. Therefore $p<r$ and $q<s$. There are $a, b \in Q$ such that $p<a<r$ and $q<b<s$. So $\langle p, q\rangle<\langle a, b\rangle<\langle r, s\rangle$, and Q^{2} is order-dense in X.

To obtain negative answers to the questions at the end of the previous section, we need 4 -entangled sets.

THEOREM 2. If there is a 4-entangled subset of \mathbb{R}, then there is an order-separable poset X with $\nu(X) \leq \omega$ which is not the union of a countable number of chains.

Proof. Let X be as in the previous example, but with $A 4$-entangled instead of 2-entangled. As before, X is order-separable and not a countable union of chains.

It remains to prove that $\nu(X) \leq \omega$. Suppose on the contrary that $\mathcal{A}=\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ is an uncountable collection of nonoverlapping subsets of X. Then, by definition, each A_{α} has at least two points, say p_{α} and q_{α}. Applying the definition of 4 -entangled to the 4 -tuples p_{α} followed by q_{α}, we see that there are $\alpha, \beta<\omega_{1}$ such that $p_{\alpha}<p_{\beta}$ and $q_{\alpha}>q_{\beta}$. But then the transitive closure of the relation given in part 2 of the definition of a nonoverlapping collection is not antisymmetric, hence not a partial order. That completes the proof.

3. Open Coloring Axiom

If there is to be a model of set theory in which order-separable posets of countable width will be the union of a countable number of chains, we will have to use something that kills 2 -entangled sets. One of the things that does this is the Open Coloring Axiom (OCA). The statement of the axiom, in fact, indicates a strong connection with the problem at hand. But the axiom applies to subsets of \mathbb{R}. Can we extend it to general posets? Here is a statement of OCA.
$[\mathrm{OCA}]$ If $[X]^{2}=K_{0} \cup K_{1}$ is a given partition where $X \subseteq \mathbb{R}$ and where K_{0} is open in $[X]^{2}$, then either there is an uncountable 0-homogeneous set, or else X is the union of countably many 1-homogeneous sets.

Here $[X]^{2}$ is the set of all subsets of X having exactly two elements, and it is identified with $\{\langle x, y\rangle: x<y$ in $X\}$ where the topology is inherited from \mathbb{R}^{2}. A subset Y of X is 0 -homogeneous if $[Y]^{2} \subseteq K_{0}$ and is 1-homogeneous is $[Y]^{2} \subseteq K_{1}$. OCA is a known consequence of the Proper Forcing Axiom (PFA). See [16] for more information.

How does OCA help? Suppose that K_{0} consists of pairs of incomparable elements. Then a set that is 0 -homogeneous must be an antichain. If there can't be an uncountable antichain, then X is a countable union of the other kinds of sets, chains. To use this, we must somehow represent a poset as a subset of \mathbb{R}. It is well known that every separable zero-dimensional metric space is, in fact, a subset of \mathbb{R}. So the thing to do is to show that order-separable posets of countable width have a suitable separable zero-dimensional metric topology so that, when embedded in \mathbb{R}, the set K_{0} is really open in \mathbb{R}^{2}. This is not obvious, since the orders of the poset X and the order inherited from \mathbb{R} need not have a lot in common.

In the following theorem, we will use $\downarrow p$ to represent the set of all $q \in X$ such that $q \leq p$ and $\uparrow p$ to represent the set of all $q \in X$ such that $p \leq q$. We will also use $p \| q$ to represent the fact that p and q are incomparable.

THEOREM 3. (OCA). Every order-separable poset of countable width is the union of a countable number of chains.

Proof. Let X be an order-separable poset of countable width, and let D be a countable order-dense subset of X. We are going to use D to define a suitable 0 -dimensional separable metric topology on X. But in order for this to work, we first need to enlarge D and thin out X.

Define an equivalence relation \sim on X by setting $p \sim q$ if and only if for every $r \in D, r \in \downarrow p \Leftrightarrow r \in \downarrow q$ and $r \in \uparrow p \Leftrightarrow r \in \uparrow q$. Then every
equivalence class $[p]$ is an antichain and is therefore countable. We may thus assume that $[p]=\{p\}$ for every $p \in X$.

For every $p \in X$ let

$$
A_{p}^{+}(D)=\{q \in X: q \| p \text { and } \forall r \in D(r \geq q \Rightarrow r \geq p)\}
$$

and let

$$
A_{p}^{-}(D)=\{q \in X: q \| p \text { and } \forall r \in D(r \leq q \Rightarrow r \leq p)\} .
$$

Note that $A_{p}^{+}(D) \cap D=\emptyset$ and $A_{p}^{-}(D) \cap D=\emptyset$ for every $p \in X$.
Claim 1. For every $p \in X,\left|A_{p}^{+}(D)\right| \leq \omega$ and $\left|A_{p}^{-}(D)\right| \leq \omega$.
We will show that $A_{p}^{+}(D)$ is, in fact, an antichain, and thus it must be countable. If there are $q, r \in A_{p}^{+}(D)$ such that $q<r$ then there is $s \in D$ such that $q \leq s \leq r$. But $q \leq s$ implies that $p \leq s$, so $p \leq r$, a contradiction. A similar argument shows that $\left|A_{p}^{-}(D)\right| \leq \omega$.

Let $D_{0}=D$, and for $n<\omega$, let $D_{n+1}=D_{n} \cup\left[\bigcup_{p \in D_{n}}\left(A_{p}^{+}(D) \cup\right.\right.$ $\left.A_{p}^{-}(D)\right)$. Let $D_{\omega}=\bigcup_{n \in \omega} D_{n}$. Then $A_{p}^{+}\left(D_{\omega}\right) \subset A_{p}^{+}(D) \subset D_{\omega}$ for every $p \in D_{\omega}$, and since $A_{p}^{+}\left(D_{\omega}\right) \cap D_{\omega}=\emptyset$, it follows that $A_{p}^{+}\left(D_{\omega}\right)=\emptyset$ (and similarly $\left.A_{p}^{-}\left(D_{\omega}\right)=\emptyset\right)$ for every $p \in D_{\omega}$.

We will henceforth assume, then, without loss of generality, that D itself has the property that $A_{p}^{+}(D)=A_{p}^{-}(D)=\emptyset$ for every $p \in D$.

Now for every $p \in X$ let

$$
B_{p}^{+}=\{q \in X: q \| p \text { and } \forall r \in D(r \geq p \Rightarrow r \geq q)\}
$$

and let

$$
B_{p}^{-}=\{q \in X: q \| p \text { and } \forall r \in D(r \leq p \Rightarrow r \leq q)\}
$$

Claim 2. For every $p \in X,\left|B_{p}^{+}\right| \leq \omega$ and $\left|B_{p}^{-}\right| \leq \omega$.
We will again show that these sets are antichains. If there are q, $s \in B_{p}^{+}$such that $q<s$, then there is $t \in D$ such that $q \leq t \leq s$. If $r \in D$ and $r \geq p$, then $r \geq s \geq t$. Also, $p \| t$, so $p \in A_{t}^{+}(D)$; but $A_{t}^{+}(D)=\emptyset$ since $t \in D$, a contradiction. The proof that $\left|B_{p}^{-}\right| \leq \omega$ is similar.

Now we can write X as a union of countable sets $M_{\alpha}, \alpha<\kappa$, such that $p \in M_{\alpha}$ implies that $B_{p}^{-} \cup B_{p}^{+} \subset M_{\alpha}$. Let $M_{\alpha}^{\prime}=M_{\alpha} \backslash \bigcup_{\beta<\alpha} M_{\beta}$. Without loss of generality, each $M_{\alpha}^{\prime} \neq \emptyset$. Note that X is the union of countable many sets Y such that $\left|Y \cap M_{\alpha}^{\prime}\right|=1$ for each $\alpha<\kappa$. Thus it
will suffice to prove that if $Y=\left\{p_{\alpha}: \alpha<\kappa\right\}$, where $p_{\alpha} \in M_{\alpha}^{\prime}$, then Y is a countable union of chains, and that is what we now do.

It is not hard to show that the topology on X generated by the subbase consisting of all $\downarrow p$ and $\uparrow p$ for $p \in D$ and their complements is a zero-dimensional topology with a countable base. It is also T_{1} under the assumption that $[p]=\{p\}$ for all $p \in X$. Therefore X is metrizable and is homeomorphic to a subset of \mathbb{R}. Let Y be as above, and give Y the subspace topology; this is the space to which we apply OCA.

Let $K_{0}=\left\{\left\{p_{\alpha}, p_{\beta}\right\} \in[Y]^{2}: p_{\alpha} \| p_{\beta}\right\}$. We'll be done if we show that K_{0} is open, for then OCA implies that Y is a countable union of chains. To this end, let $\left\{p_{\alpha}, p_{\beta}\right\} \in K_{0}$. We may assume that $\alpha \in \beta$. Then $p_{\beta} \notin B_{p_{\alpha}}^{-} \cup B_{p_{\alpha}}^{+}$, so there are $q, r \in D$ such that $q \leq p_{\alpha}, q \not \leq p_{\beta}, p_{\alpha} \leq r$, and $p_{\beta} \not \leq r$. Since $q \| p_{\beta}$ and $p_{\beta} \notin A_{q}^{+}(D)$, there is $s \in D$ such that $s \geq p_{\beta}$ and $s \nsupseteq q$. Similarly, since $p_{\beta} \notin A_{r}^{-}(D)$, there is $t \in D$ such that $t \leq p_{\beta}$ and $t \not \leq r$. Let $\langle x, y\rangle \in(\uparrow q \cap \downarrow r) \times(\uparrow t \cap \downarrow s)$. If $x \leq y$ then $q \leq x \leq y \leq s$, a contradiction. If $y \leq x$ then $t \leq y \leq x \leq r$, another contradiction. Therefore, $[Y]^{2} \cap[(\uparrow q \cap \downarrow r) \times(\uparrow t \cap \downarrow s)]$ is a neighborhood of $\left\{p_{\alpha}, p_{\beta}\right\}$ that is contained in K_{0}, so K_{0} is open. That completes the proof.

References

1. U. Abraham, A note on Dilworth's Theorem in the infinite case, Order 4 (1987), 107-125
2. U. Abraham and S. Shelah, Martin's Axiom does not imply that every two \aleph_{1}-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176
3. B. Dushnik and E.W. Miller, Partially ordered sets, Amer. J. of Math. 63 (1941), 600-610
4. D. Kurepa, Sur la puissance des ensembles partiellement ordonnés, Sprawozd. Towarz. Nauk Warsaw. Mat.-Fiz. 32 (1939), no. 1/3, 61-67
5. D. Kurepa, Une proprieté des familles d'ensembles bien ordonnés linéaires, Studia Math. 9 (1940), 23-42
6. D. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Revista de Ciencas 42 (1940), 827-846; 43 (1941), 483-500
7. D. Kurepa, On two problems concerning ordered sets, Glasnik Mat.-Fiz. I Astr. 13 (1958), no. 4, 229-234
8. D. Kurepa, On the cardinal number of ordered sets and of symmetrical structures in dependence on the cardinal numbers of its chains and antichains, Glasnik Mat.-Fiz. I Astr. 14 (1959), no. 3, 183-203
9. D. Kurepa, Star number and antistar number of ordered sets and graphs, Glasnik Mat.-Fiz. I Astr. 18 (1963), no. 1-2, 27-37
10. D. Kurepa, Monotone mappings between some kinds of ordered sets, Glasnik Mat.-Fiz. I Astr. 19 (1964), no. 3-4, 175-186
11. D. Kurepa, A link between ordered sets and trees on the rectangle tree hypothesis, Publ. Inst. Math. 31 (45) (1982), 121-128
12. E.C. Milner, Z.S. Wang, and B.Y. Li, Some inequalities for partial orders, Order 3 (1987), 369-382
13. M.A. Peles, On Dilworth's theorem in the infinite case, Israel J. Math. 1 (1963), 108-109
14. O. Pretzel, A representation theorem for partial orders, J. London Math. Soc. 42 (1967), 507-508
15. J.D. Mashburn, A note on reordering ordered topological spaces and the existence of continuous stictly increasing functions, Topology Proceedings $\mathbf{2 0}$, 207-250
16. S. Todorčević, Partition Problems in Topology, Math. Proc. Cambridge Phil. Soc. 112 (1992) 247-254.

[^0]: * Research of the first author partially supported by National Science Foundation grant DMS 970-4849

