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On the decomposition of order-separable posets of

countable width into chains

Gary Gruenhage∗
Department of Mathematics
Auburn University
Auburn, AL 36849-5310
(garyg@mail.auburn.edu)

Joe Mashburn
Department of Mathematics
University of Dayton
Dayton, OH 45469-2316
(joe.mashburn@udayton.edu)

Abstract. A partially ordered set X has countable width if and only if every
collection of pairwise incomparable elements of X is countable. It is order-separable
if and only if there is a countable subset D of X such that whenever p, q ∈ X and
p < q, there is r ∈ D such that p ≤ r ≤ q. Can every order-separable poset of
countable width be written as the union of a countable number of chains? We show
that the answer to this question is ”no” if there is a 2-entangled subset of IR, and
”yes” under the Open Coloring Axiom.

Keywords: countable width, order-separable, chain, k-entangled subset, Open Col-
oring Axiom

Mathematics Subject Classification (1991): 06A06, 03E05

1. Introduction

The decomposition of partially ordered sets into chains has been a sig-
nificant part of the study of the structure of partially ordered sets. The
success in this area has come primarily using posets with the property
that there is n ∈ ω such that for every antichain (by which we mean
a set of incomparable elements) has cardinality ≤ n. See, for example,
these references: [1], and [3]–[14]. In [13], Peles constructed an example
of a poset P such that every antichain of P is finite, but P is not the
union of a countable number of chains. In [15] a problem was studied
which required posets to be order-separable and have countable width.
These posets seemed to be good candidates for decomposition into a
countable number of chains. This led to the question which we will
∗ Research of the first author partially supported by National Science Foundation
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answer in this paper. That is, can every order-separable poset having
countable width be written as the union of a countable number of
chains? In Section 2, we use a type of subset of IR called a 2-entangled
set to show that under certain axioms, such as the continuum hypoth-
esis (CH), there are order-separable posets of countable width that
cannot be written as the union of a countable number of chains. On
the other hand, we show in Section 3 that under the Open Coloring
Axiom, every order-separable poset can indeed be written as the union
of a countable number of chains.

Let us define some of the terminology that we have used, then
consider a couple of related questions. The definition of entangled sets
and the statement of the Open Coloring Axiom will be left to the
appropriate sections.

Definition. A poset X is said to have countable width if and only if
every antichain of X is countable.

Definition. A poset X is order-separable if and only if there is a
countable C ⊆ X such that for every p, q ∈ X with p < q there is
r ∈ C such that p ≤ r ≤ q.

Two questions related to the concepts investigated in this paper
which were asked in [15] also have both positive and negative answers,
depending on your set theory. A structure introduced in [15] is the
collection of nonoverlapping subsets of X.

Definition. A collectionA of subsets of a poset X is called a collection
of nonoverlapping subsets of X if and only if A satisfies the following
conditions.

1. A is a collection of pairwise disjoint sets, each having at least two
elements.

2. The transitive closure of the relation
{〈A,B〉 ∈ A2 : A 6= B ∧ ∃p ∈ A∃q ∈ B(p < q)

}

is a partial order.

We use ν(X) to represent the supremum of the cardinalities of col-
lections of nonoverlapping subsets of X. Obviously, if ν(X) ≤ ω then
X has countable width. To see why these kinds of collections are of any
interest, we must make one more definition.
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Definition. A poset 〈X, <〉 is pliable if and only if for every linear
extension ≺ of <, there is a strictly ≺-increasing function f : X → IR.

In [15] it was shown that X is pliable if and only if ν(X) ≤ ω and
X is order-separable, and the following two questions appeared.

Question. If ν(X) ≤ ω, can X necessarily be written as the union
of a countable number of chains?

Question. If X is pliable, can X necessarily be written as the union
of a countable number of chains?

It will be shown in Section 2 that the answer to both questions is
”no” if there is a 4-entangled set. An immediate corollary to Theorem
2 in Section 3 is that the answer to the second question is ”yes” under
OCA. Since it was shown in [15] that Souslin’s Hypothesis (SH) is
equivalent to the statement that every poset X with ν(X) ≤ ω is
pliable, it also follows that the answer to the first question is ”yes”
under OCA+SH (and so, in particular, under the Proper Forcing Axiom
(PFA)).

2. Entangled Sets

How could one construct an order-separable poset of countable width
that is not the union of a countable number of chains? One approach
would be to find an uncountable poset in which all chains are countable.
If one could then introduce a countable order-dense set, the result-
ing poset would have the desired properties. This is precisely what
2-entangled sets do. For k ∈ ω, k-entangled sets were introduced by She-
lah and were shown in [2] to follow from CH and to be consistent with
MAω1 . He defined them as follows.

Definition. Let k ∈ ω. An uncountable subset A of IR is a k-entangled
subset of IR if and only if for every uncountable set A of k-tuples from
A such that α(i) 6= β(j) if α, β ∈ A and α 6= β or i 6= j, and every
σ : k → 2, there are α, β ∈ A such that α(i) < β(i) ⇐⇒ σ(i) = 1

This means that for every uncountable collection of k-tuples from
A having distinct coordinates and disjoint as unordered sets, there are
pairs illustrating every possible ordering between the coordinates. An
equivalent, and simpler, definition of 2-entangled sets is the following.
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Definition. An uncountable subset A of IR is a 2-entangled subset
of IR if and only if there is no uncountable monotone function from a
subset of A to A with no fixed points.

This means that if f is an uncountable function from a subset of A
to A, and the graph of f is given the usual product ordering (i.e.,
〈a, b〉 ≤ 〈a′, b′〉 iff a ≤ a′ and b ≤ b′), then there are p, q, r, s ∈ A such
that 〈p, f(p)〉 and 〈q, f(q)〉 are comparable, while 〈r, f(r)〉 and 〈s, f(s)〉
are not. This gives us the desired properties that chains and antichains
are countable. If we also require that f is one-to-one, then the addition
of Q| ×Q| will give us an order-separable poset.

THEOREM 1. If there is a 2-entangled subset of IR, then there is an
order-separable poset of countable width which is not the union of a
countable number of chains.

Proof. Let A be a 2-entangled subset of IR and let f : A → A be a
one-to-one function with no fixed points. Set X = f ∪ (Q| 2) with the
usual product order. As was noted above, every chain and antichain
of X is countable, so X has countable width and is not the union of a
countable number of chains.

Let 〈p, q〉 and 〈r, s〉 be elements of X with 〈p, q〉 < 〈r, s〉. Assume
that 〈p, q〉 /∈ Q| 2 and 〈r, s〉 /∈ Q| 2. Then 〈p, q〉, 〈r, s〉 ∈ f and, since f
is a one-to-one function, p = r if and only if q = s. Therefore p < r
and q < s. There are a, b ∈ Q| such that p < a < r and q < b < s. So
〈p, q〉 < 〈a, b〉 < 〈r, s〉, and Q| 2 is order-dense in X.

To obtain negative answers to the questions at the end of the pre-
vious section, we need 4-entangled sets.

THEOREM 2. If there is a 4-entangled subset of IR, then there is an
order-separable poset X with ν(X) ≤ ω which is not the union of a
countable number of chains.

Proof. Let X be as in the previous example, but with A 4-entangled
instead of 2-entangled. As before, X is order-separable and not a count-
able union of chains.

It remains to prove that ν(X) ≤ ω. Suppose on the contrary that
A = {Aα : α < ω1} is an uncountable collection of nonoverlapping
subsets of X. Then, by definition, each Aα has at least two points, say
pα and qα. Applying the definition of 4-entangled to the 4-tuples pα

followed by qα, we see that there are α, β < ω1 such that pα < pβ and
qα > qβ. But then the transitive closure of the relation given in part
2 of the definition of a nonoverlapping collection is not antisymmetric,
hence not a partial order. That completes the proof.
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3. Open Coloring Axiom

If there is to be a model of set theory in which order-separable posets of
countable width will be the union of a countable number of chains, we
will have to use something that kills 2-entangled sets. One of the things
that does this is the Open Coloring Axiom (OCA). The statement of
the axiom, in fact, indicates a strong connection with the problem at
hand. But the axiom applies to subsets of IR. Can we extend it to
general posets? Here is a statement of OCA.

[OCA] If [X]2 = K0 ∪K1 is a given partition where X ⊆ IR and where
K0 is open in [X]2, then either there is an uncountable 0-homogeneous
set, or else X is the union of countably many 1-homogeneous sets.

Here [X]2 is the set of all subsets of X having exactly two elements,
and it is identified with {〈x, y〉 : x < y in X} where the topology is
inherited from IR2. A subset Y of X is 0-homogeneous if [Y ]2 ⊆ K0

and is 1-homogeneous is [Y ]2 ⊆ K1. OCA is a known consequence of
the Proper Forcing Axiom (PFA). See [16] for more information.

How does OCA help? Suppose that K0 consists of pairs of incompa-
rable elements. Then a set that is 0-homogeneous must be an antichain.
If there can’t be an uncountable antichain, then X is a countable union
of the other kinds of sets, chains. To use this, we must somehow rep-
resent a poset as a subset of IR. It is well known that every separable
zero-dimensional metric space is, in fact, a subset of IR. So the thing
to do is to show that order-separable posets of countable width have
a suitable separable zero-dimensional metric topology so that, when
embedded in IR, the set K0 is really open in IR2. This is not obvious,
since the orders of the poset X and the order inherited from IR need
not have a lot in common.

In the following theorem, we will use ↓ p to represent the set of all
q ∈ X such that q ≤ p and ↑ p to represent the set of all q ∈ X such
that p ≤ q. We will also use p ‖q to represent the fact that p and q are
incomparable.

THEOREM 3. (OCA). Every order-separable poset of countable width
is the union of a countable number of chains.

Proof. Let X be an order-separable poset of countable width, and
let D be a countable order-dense subset of X. We are going to use D
to define a suitable 0-dimensional separable metric topology on X. But
in order for this to work, we first need to enlarge D and thin out X.

Define an equivalence relation ∼ on X by setting p ∼ q if and only
if for every r ∈ D, r ∈↓ p ⇔ r ∈↓ q and r ∈↑ p ⇔ r ∈↑ q. Then every
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equivalence class [p] is an antichain and is therefore countable. We may
thus assume that [p] = {p} for every p ∈ X.

For every p ∈ X let

A+
p (D) = {q ∈ X : q ‖p and ∀r ∈ D(r ≥ q ⇒ r ≥ p)}

and let

A−p (D) = {q ∈ X : q ‖p and ∀r ∈ D(r ≤ q ⇒ r ≤ p)}.

Note that A+
p (D) ∩D = ∅ and A−p (D) ∩D = ∅ for every p ∈ X.

Claim 1. For every p ∈ X, |A+
p (D)| ≤ ω and |A−p (D)| ≤ ω.

We will show that A+
p (D) is, in fact, an antichain, and thus it must

be countable. If there are q, r ∈ A+
p (D) such that q < r then there is

s ∈ D such that q ≤ s ≤ r. But q ≤ s implies that p ≤ s, so p ≤ r, a
contradiction. A similar argument shows that |A−p (D)| ≤ ω.

Let D0 = D, and for n < ω, let Dn+1 = Dn ∪ [
⋃

p∈Dn
(A+

p (D) ∪
A−p (D)). Let Dω =

⋃
n∈ω Dn. Then A+

p (Dω) ⊂ A+
p (D) ⊂ Dω for every

p ∈ Dω, and since A+
p (Dω) ∩Dω = ∅, it follows that A+

p (Dω) = ∅ (and
similarly A−p (Dω) = ∅) for every p ∈ Dω.

We will henceforth assume, then, without loss of generality, that D
itself has the property that A+

p (D) = A−p (D) = ∅ for every p ∈ D.
Now for every p ∈ X let

B+
p = {q ∈ X : q ‖p and ∀r ∈ D(r ≥ p ⇒ r ≥ q)}

and let

B−
p = {q ∈ X : q ‖p and ∀r ∈ D(r ≤ p ⇒ r ≤ q)}

Claim 2. For every p ∈ X, |B+
p | ≤ ω and |B−

p | ≤ ω.

We will again show that these sets are antichains. If there are q,
s ∈ B+

p such that q < s, then there is t ∈ D such that q ≤ t ≤ s.
If r ∈ D and r ≥ p, then r ≥ s ≥ t. Also, p ‖t, so p ∈ A+

t (D); but
A+

t (D) = ∅ since t ∈ D, a contradiction. The proof that |B−
p | ≤ ω is

similar.
Now we can write X as a union of countable sets Mα, α < κ, such

that p ∈ Mα implies that B−
p ∪ B+

p ⊂ Mα. Let M ′
α = Mα \

⋃
β<α Mβ.

Without loss of generality, each M ′
α 6= ∅. Note that X is the union of

countable many sets Y such that |Y ∩M ′
α| = 1 for each α < κ. Thus it
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will suffice to prove that if Y = {pα : α < κ}, where pα ∈ M ′
α, then Y

is a countable union of chains, and that is what we now do.
It is not hard to show that the topology on X generated by the

subbase consisting of all ↓p and ↑p for p ∈ D and their complements is
a zero-dimensional topology with a countable base. It is also T1 under
the assumption that [p] = {p} for all p ∈ X. Therefore X is metrizable
and is homeomorphic to a subset of IR. Let Y be as above, and give Y
the subspace topology; this is the space to which we apply OCA.

Let K0 =
{{pα, pβ} ∈ [Y ]2 : pα‖pβ

}
. We’ll be done if we show that

K0 is open, for then OCA implies that Y is a countable union of chains.
To this end, let {pα, pβ} ∈ K0. We may assume that α ∈ β. Then
pβ /∈ B−

pα
∪B+

pα
, so there are q, r ∈ D such that q ≤ pα, q � pβ, pα ≤ r,

and pβ � r. Since q ‖pβ and pβ /∈ A+
q (D), there is s ∈ D such that

s ≥ pβ and s � q. Similarly, since pβ /∈ A−r (D), there is t ∈ D such
that t ≤ pβ and t � r. Let 〈x, y〉 ∈ (↑ q ∩ ↓ r) × (↑ t∩ ↓ s). If x ≤ y
then q ≤ x ≤ y ≤ s, a contradiction. If y ≤ x then t ≤ y ≤ x ≤ r,
another contradiction. Therefore, [Y ]2 ∩ [(↑ q ∩ ↓ r) × (↑ t∩ ↓ s)] is a
neighborhood of {pα, pβ} that is contained in K0, so K0 is open. That
completes the proof.
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