Three Counterexamples Concerning ω-Chain Continuous Functions and Fixed-point Properties

Joe Mashburn
University of Dayton, joe.mashburn@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/mth_fac_pub
Part of the Applied Mathematics Commons, Mathematics Commons, and the Statistics and Probability Commons

eCommons Citation

Mashburn, Joe, "Three Counterexamples Concerning ω-Chain Continuous Functions and Fixed-point Properties" (1981). Mathematics Faculty Publications. 22.
https://ecommons.udayton.edu/mth_fac_pub/22

UNIVERSITY OF CALIFORNIA RIVERSIDE

The Least Fixed Point Property for ω-Chain Continuous Functions

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy
in
Mathematics
by
Joe Don Mashburn
June, 1981

Dissertation Committee:
Professor Albert R. Stralka, Chairman
Professor F. Burton Jones
Professor Thomas H. Payne

The dissertation of Joe Don Mashburn is approved:

University of California, Riverside June, 1981

Acknowledgement

I want to thank Dr. Stralka, Dr. Jones, and Dr. Payne for their encouragement and suggestions.

ABSTRACT OF THE DISSERTATION

The Least Fixed Point Property for ω-Chain Continuous Functions
by
Joe Don Mashburn

Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 1981 Professor Albert R。Stralka, Chairman

The basic definitions are given in the first section, including those for ω-chain continuity, ω-chain completeness, and the least fixed point property for ω-chain continuous functions. Some of the relations between completeness and fixed point properties in partially ordered sets are stated and it is briefly shown how the question basic to the dissertation arises.

In the second section, two examples are given showing that a partially ordered set need not be ω-chain complete to have the least fixed point property for ω-chain continuous functions. The first example shows that the least fixed point of an ω-chain continuous function is not in gen-
eral equal to $\sup \left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$. The second example is a partially ordered set which has the least fixed point property for ω-chain continuous functions even though it contains an unbounded countable chain. In this case, the least fixed point is always equal to $\sup \left\{\mathrm{f}^{\mathrm{n}}(\mathrm{o}): \mathrm{n} \in \mathbb{N}\right\}$. The free meetsemilattice generated by this second example is also obtained and shown to have the least fixed point property for ω chain continuous functions.

Retracts are discussed in section 3, where it is seen that they are not sufficient to characterize those partially ordered sets having the least fixed point property for ω chain continuous functions. A lemma which will be useful later is proved characterizing partially ordered sets which have unbounded countable chains as retracts.

In section 4 the relation between finite width and the least fixed point property for ω-chain continuous functions is explored. Two useful lemmas are proved which will allow us to restrict the cases that need to be checked when proving theorems later. A third lemma is obtained which says that in a partially ordered set of finite width, if A and B are disjoint subsets and B is an upper end, then there are only a finite number of elements of B which are the suprema of countable chains of A. From this lemma, the first theorem is derived. This states that if C is a nonempty unbounded countable chain in a partially ordered set, P, of finite width, then any cofinal subchain of C of order type ω is a
retract of P. This leads to the second theorem: a characterization of ω-chain complete partially ordered sets of finite width. This says that a partially ordered set of finite width is ω-chain complete only if it has the least fixed point property for w-chain continuous functions. It is known that the implication can be reversed.

Section 5 introduces the notion of a layered partially ordered set and discusses some of its problems. The first theorem in this section says that if P is a layered partially ordered set in which every antichain generates a closed lower end, then any chain in P of order type ω is a retract of P. The second theorem says that if P is a partially ordered set in which every antichain generates a closed lower end and every lower end of P which contains a countable chain but none of its upper bounds is layered, then P is ω-chain complete if it has the least fixed point property for ω-chain continuous functions. It is a corollary of a theorem by Edwin Miller that every partially ordered set in which every antichain is finite and every chain contains a countable cofinal subchain is layered. From this and the previous theorem it is easy to see that a partially ordered set in which every antichain is finite and every chain contains a countable cofinal subchain is ω-chain complete if and only if it has the least fixed point property for ω chain continuous functions.

TABLE OF CONTENTS
Page
I. Introduction 1
II. Some Examples 3
III. Retracts and an Example 10
IV. Finite Width 15
V. Layered Partially Ordered Sets 26
Bibliography 35

I. INTRODUCTION

A partially ordered set is chain complete if each of its chains has a least upper bound. It is ω-chain complete if each of its countable chains has a least upper bound. Since the empty set is considered to be a countable chain, any partially ordered set which is chain or ω-chain complete has a least element, denoted o.

A function, f, mapping a partially ordered set, P, to a partially ordered set, Q, is ω-chain continuous if and only if for every nonempty countable chain, C, of P which has a supremum in $P, f\left(\sup _{P}(C)\right)$ equals $\sup _{Q}(f(C))$. An ω-chain continuous function, then, must preserve order.

A partially ordered set, P, has the (least) fixed point property if and only if every order preserving function from P to itself has a (least) fixed point. It has the (least) fixed point property for ω-chain continuous functions if and only if every w-chain continuous function from P to itself has a (least) fixed point.

In 1955 A. Tarski ([T], Thm。1) and A. C. Davis ([Da], Thm. 2) characterized complete lattices as those lattices having the fixed point property. In 1976 G. Markowsky ([M], Thm. 11) characterized chain complete partially ordered sets as those having the least fixed point property. About the same time partially ordered sets and categories were being developed as models for theoretical computer
science ([Sc1],[Sc2],[Sm]). The existence of fixed points is very important for these models, so it is necessary to be sure that the partially ordered set or category in question has the appropriate fixed point property. It was in this context that G. Plotkin asked in 1978 if parially ordered sets with the least fixed point property for w-chain continuous functions have a characterization similar to that for partially ordered sets with the least fixed point property. That is, is a partially ordered set which has the least fixed point property for ω-chain continuous functions necessarily ω-chain complete? It is known that if a partially ordered set, P, is w-chain complete, then it has the least fixed point property for ω-chain continuous functions. If $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$ is ω-chain continuous, then $\mathrm{f}\left(\sup \left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}\right)=\sup \left(\mathrm{f}\left(\left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}\right)\right)=\sup \left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$. A partially ordered set which does not have a least element cannot have the least fixed point property for ω-chain continuous functions, since the identity map is an ω-chain continuous function which, in that case, would not have a least fixed point. Therefore, partially ordered sets will always be assumed to have a least element. The symbol \mathbb{N} will be used to denote the positive integers; $\mathbb{N} \circ$ will denote the nonnegative integers; and \mathbb{N}_{∞} will denote the positive integers with infinity.

II. SOME EXAMPLES

The following example is a partially ordered set which is not w-chain complete, yet has the least fixed point property for w-chain continuous functions.

EXAMPLE 1. Let P_{1} be the set $\mathbb{N} \circ \times\{0,1,2\}$. Order P_{1} by setting $(n, m) \leq\left(n^{\prime}, m^{\prime}\right)$ if and only if one of the following conditions holds:

1) $n=m=0$
2) $n \leq n^{\prime}$ and $m=m^{\prime} \in\{0,1\}$
3) $m=n '=0$
4) $m=0$ and $m^{\prime}=2$
5) $m=m^{\prime}=1$ and $n^{\prime}=0$
6) $0<\mathrm{n} \leq \mathrm{n}^{\prime}$; $\mathrm{m}=1$; and $\mathrm{m}^{\prime}=2$
7) $n=0$ and $m=m '=2$
P_{1} can be represented by the diagram below.

FIG. 1

Let f be an w-chain continuous function from P_{1} to itself such that $f((0,0))$ is not $(0,0)$. If $f((0,0))$ is an element of $P_{1}-(\mathbb{N} \times\{0\})$, then $f\left(P_{1}\right)$ is contained in $P_{1}-(\mathbb{N} \times\{0\})$. In that case, f must have a least fixed point since $\mathrm{P}_{1}-(\mathbb{N} \times\{0\})$ is w-chain complete. Therefore, assume that $f((0,0))$ is an element of $\mathbb{N} \times\{0\}$. Let U denote the set of upper bounds of $\mathbb{N} \times\{0\}$. Then $f\left(P_{1}\right)$ is contained in $(\mathbb{N} \times\{0\}) \cup U$. If f has a fixed point in $\mathbb{N} \times\{0\}$, then f has a least fixed point in $\mathbb{N} \times\{0\}$. Assume that f has no fixed points in $\mathbb{N} \times\{0\}$. This forces $f(U)^{\prime}$ to be a subset of U.

Assume that $f((0,2))$ is $(0,1)$. Then for every n in \mathbb{N}, $f((n, 2))$ equals $(0,1)$, and $f((n, 1)) \leq(0,1)$. If $f(\mathbb{N} \times\{1\})$ is contained in $\mathbb{N} \times\{0\}$, then $(0,1)$ must also be in $\mathbb{N} \times\{0\}$, contradicting the assumption that $f(U)$ is a subset of U. Thus, there is an N in \mathbb{N} such that, for every $n \not 2 N, f((n, 1))$ equals $(0,1)$. Hence $f((0,1))$ equals $(0,1)$.

If $f((0,2)$) equals $(0,2)$ then, for every n in \mathbb{N}, $f((n, 2))$ must be above $(0,2)$. Since there is no element of P_{1} greater than $(0,2)$ and $(0,1), f((n, 1))$ cannot equal $(0,1)$ for any n in \mathbb{N}. Thus, $f((0,1))$ cannot equal $(0,1)$, and $(0,2)$ is the least fixed point of f.

If $f((0,2)$) equals $(m, 2)$ for some m in \mathbb{N}, then, for every n in $\mathbb{N}, f((n, 2))$ equals $(m, 2)$. It again follows that $f((0,1))$ cannot equal $(0,1)$; and P_{1} has the least fixed point property for ω-chain continuous functions.

As noted earlier, if a partially ordered set is ω-chain
complete, then the least fixed point of an ω-chain continuous function, f, from the set to itself is just $\sup \left\{f^{n}(0): n \in \mathbb{N}\right\}$. In P_{1}, however, this is not always true. Define a function, f, from P_{1} to itself by

$$
f(x)= \begin{cases}(0,1) & \text { if } x \notin \mathbb{N} x\{0\} \\ (n+1,0) & \text { if } x=(n, 0)\end{cases}
$$

This function is clearly ω-chain continuous and has $(0,1)$ as its only fixed point. But $\sup \left\{\mathrm{f}^{\mathrm{n}}((0,0)): n \in \mathbb{N}\right\}$ does not even exist.

The partially ordered set P_{1} has the least fixed point property for ω-chain continuous functions because of the countable chain which sneaks around the antichain of upper bounds of $\mathbb{N} \times\{0\}$. The next example shows that a partially ordered set can have an unbounded countable chain and still have the least fixed point property for ω-chain continuous functions. Also, the least fixed point will be $\sup \left\{\mathrm{f}^{\mathrm{n}}(\mathrm{o}): \mathrm{n} \in \mathbb{N}\right\}$.

EXAMPLE 2. Let Q be the set $\left(\mathbb{N} \times \mathbb{N}_{\infty}\right) \cup\{o\}$. Order Q by setting $x s y$ if and only if one of the following conditions holds.

1) $x=0$
2) $x=(j, k)$; $y=(n, m)$; and either $m=^{\infty}=k$ and $j \leq n$, or $j=n$ and $k \leq m$ Then Q can be represented be the diagram below.

FIG。2
Let X be the set $\mathbb{N} \times\left\{{ }^{\infty}\right\}$. For every n in \mathbb{N}, let X_{n} be the set $\{n\} \times \mathbb{N}$. Let P_{2} be the set $Q \cup \mathbb{N}^{\mathbb{N}}$ and order P_{2} by setting $x \leq y$ if and only if x and y are elements of Q and $x \leq y$ in Q; or $y=\left(n_{1}, n_{2}, \ldots\right)$ is an element of $\mathbb{N}^{\mathbb{N}}, x$ is an element of Q, and $x \leq\left(m, n_{m}\right)$ for some m in \mathbb{N}. Then X is an unbounded countable chain in P_{2} and \mathbb{N}^{N} is an antichain.

Let f be an ω-chain continuous function from P_{2} to itself such that $f(o)$ is not o. If $\sup \left\{f^{n}(0): n \in \mathbb{N}\right\}$ exists, then it is the least fixed point of f. It may therefore be assumed that there is no m in \mathbb{N} such that $f^{m}(o)$ is an element of $\mathbb{N}^{\mathbb{N}}$. If $\left\{f^{n}(0): n \in \mathbb{N}\right\}$ is contained in X_{m} for some m in \mathbb{N}, then $\sup \left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$ exists. Therefore, assume that for some N in \mathbb{N}, for every $n \geq N, f^{n}(0)$ is an element of X.

Let M be the smallest positive integer such that $f(0) \leq(M, \infty)$. Then $f\left(\left\{(n, \infty): n _M\right\}\right)$ is contained in X; and so, for every $n _M$, there is a j_{n} in \mathbb{N} such that, if $k \geq j_{n}, f((k, n))$ equals $f((n, \infty))$. Let x be the element of $\mathbb{N}^{\mathbb{N}}$ whose $n^{\text {th }}$ component is j_{n} for every n in \mathbb{N}. Then for every n in $\mathbb{N}, f(x) \geq f\left(\left(j_{n}, n\right)\right)=$ $f((n, \infty))$. It follows that $f(x)$ is an upper bound of $\left\{f^{n}(0): n \in \mathbb{N}\right\}$; that $\left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$ is finite; and that $\sup \left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$ exists.

This example can be used to show another difference between fixed point properties for ω-chain continuous functions and those for order preserving functions. R. E. Smithson ([S2], Thm 1.2) proved the following theorem, which will not be true for the fixed point property for ω-chain continuous functions and ω-chain completeness.

THEOREM 1. Let P be a partially ordered set with a least element such that for every chain, C, of P, the set of upper bounds of C is down directid. If P has the fixed point property, then P is chain complete.

This theorem has the following obvious corollary.
COROLLARY 1. A meet-semilattice has the fixed point property if and only if it is chain complete.

These theorems do not carry over to w-chain continuous functions and ω-chain completeness, however, since $\mathfrak{F}\left(\mathrm{P}_{2}\right)$, the free meet-semilattice generated by P_{2}, contains an unbounded countable chain, but has the least fixed point property for ω-chain continuous functions. The pairs of elements of P_{2} which do not already have infima are those pairs in which both elements are from the antichain $\mathbb{N}^{\mathbb{N}}$, and those in which
one element is from $\mathbb{N}^{\mathbb{N}}$ and the other is from X .
EXAMPLE 3. Let P_{3} be the set $\mathrm{P}_{2} \cup\left(\operatorname{FS}^{\prime}\left(\mathbb{N}^{\mathbb{N}}\right)\right) \cup\left(\operatorname{XXFS}\left(\mathbb{N}^{\mathbb{N}}\right)\right)$, where $\operatorname{FS}\left(\mathbb{N}^{\mathbb{N}}\right)$ is the set of all nonempty finite subsets of $\mathbb{N}^{\mathbb{N}}$ and $\mathrm{FS}^{\prime}\left(\mathbb{N}^{\mathbb{N}}\right)$ is the set of all finite subsets of $\mathbb{N}^{\mathbb{N}}$ which have at least two elements. Define an order on P_{3} by setting $x \leq y$ if and only if one of the following conditions holds:

1) $x=A \in \mathrm{FS}^{\prime}\left(\mathbb{N}^{\mathbb{N}}\right)$; $y \in P_{2}$; and $y \in A$
2) $x \in P_{2} ; y=A \in F S\left(\mathbb{N}^{N}\right)$; and $x \leq a$ for every a in A
3) $x=((n, \infty), A) \in X \times F S \quad\left(\mathbb{N}^{\mathbb{N}}\right) ; y \in P_{2}$; and $(n, \infty) \leq y$ or $A \leq y$
4) $x \in P_{2} ; y=((n, \infty), A) \in \operatorname{XxFS}\left(\mathbb{N}^{N}\right)$; and $x \leq(n, \infty)$ and $x \leq A$
5) $x=A \in F S^{\prime}\left(\mathbb{N}^{N}\right) ; y=B \in F S^{\prime}\left(\mathbb{N}^{N}\right)$; and $B \subset A$
6) $\mathrm{x}=((\mathrm{n}, \infty), \mathrm{A}) \in \mathrm{X} \times \mathrm{FS}\left(\mathbb{N}^{\mathbb{N}}\right) ; \mathrm{y}=\mathrm{B} \in \mathrm{FS}^{\prime}\left(\mathbb{N}^{\mathbb{N}}\right)$; and $\mathrm{B} \subset \mathrm{A}$
7) $x=((m, \infty), A) \in \operatorname{X} \times F S\left(\mathbb{N}^{\mathbb{N}}\right) ; y=((n, \infty), B) \in \operatorname{X} \times F S\left(\mathbb{N}^{\mathbb{N}}\right)$; and $m \leq n$ and $B \subset A$

Then P_{3} is the free meet-semilattice generated by P_{2}. Notice that X is still unbounded in P_{3}. In fact, it is still the only chain that does not have a supremum.

Let $C=\left\{c_{n}: n \in \mathbb{N}\right\}$ be an infinite chain in $P_{3}-X$ 。 Clearly, if C is a subset of P_{2} then C has a supremum. Therefore, assume that C is a subset of $\operatorname{FS}^{\prime}\left(\mathbb{N}^{\mathbb{N}}\right) \cup\left(X \times F S\left(\mathbb{N}^{\mathbb{N}}\right)\right)$. For every k in \mathbb{N}, let A_{k} be an element of $\operatorname{FS}\left(\mathbb{N}^{N}\right)$ such that either $c_{k}=\left(\left(n_{k}, \infty\right), A_{k}\right)$ or $c_{k}=A_{k}$. Then, since every A_{k} is finite, $A=\bigcup_{k \in \mathbb{N}} A_{k}$ is in $F S\left(\mathbb{N}^{N}\right)$ and $c_{k} \leq A_{k} \leq A$ for every k. If there were an m in \mathbb{N} such that, for every k in $\mathbb{N}, n_{k} \leq m$, then C
would be finite, since the sequence A_{1}, A_{2}, \ldots must be finite. If B is an element of $\operatorname{FS}^{\prime}\left(\mathbb{N}^{N}\right)$ and B is an upper bound of C, then B is a subset of A_{k} for $a l l k$ and therefore $A \leq B$. If x is an element of \mathbb{N}^{N} and x is an upper bound of C, then x is an element of A_{k} for $a l l k$ and so $A \leq x$. Thus A is the supremum of C. The proof that P_{3} has the least fixed point property for w-chain continuous functions is now the same as that for P_{2}.

III. RETRACTS AND AN EXAMPLE

A function, f, from a partially ordered set, P, to itself is a retraction if and only if f is w-chain continuous and is the identity on $f(P)$. The image of a retraction on P is called a retract of P. Obviously, if P has the least fixed point property for w-chain continuous functions, then so does every retract of P. Is it possible to make the implication go the other way? If C is a nonempty countable chain in P which does not have a supremum in P; U is a set of upper bounds of C; and $C U U$ is a retract of P, then if P is to have the least fixed point property, U must have a least element. This is the case in the examples given so far. In [M], Markowsky used such a property for his characterization of chain complete partially ordered sets.

Lemma 1 gives a better idea of when a partially ordered set can have an unbounded countable chain as a retract. Recall that any nonempty countable chain contains a cofinal subchain of order type ω.

DEFINITION. A subset, D, of a partially ordered set, P, is closed if and only if for every nonempty countable chain, C, in D, if C has a supremum in P then $\sup (C)$ is in D. A subset of P is open if and only if its complement is closed.

LEMMA 1. An unbounded countable chain $C=\left\{c_{n}: n \in \mathbb{N}\right\}$ of a
partially ordered set, P, is a retract of P if and only if there is a collection of disjoint closed subsets of P, $\left\{D_{n}: n \in \mathbb{N}\right\}$, such that

1) $P=\cup_{n \in \mathbb{N}} D_{n}$
2) $\forall n \in \mathbb{N}, c_{n} \in D_{n}$
3) if $p \in D_{m} ; q \in D_{n}$; and $p \leq q$, then $m \leq n$.

PROOF. Assume that C is a retract of P and let $f: P \rightarrow C$ be a retraction. For every n in \mathbb{N}, let D_{n} be the set $f^{-1}\left(c_{n}\right)$. Clearly the D_{n}^{\prime} 's form a collection of disjoint subsets of P; P equals $\underset{n \in \mathbb{N}}{\cup} D_{n}$; and, since f preserves order, if p is an element of D_{m}, q is an element of D_{n}, and $p \leq q$, then $m \leq n$. Let $X=\left\{x_{n}: n \in \mathbb{N}\right\}$ be a chain in D_{m} which has a supremum in P. Then $f(\sup (X))=\sup (f(X))=c_{m}$, so that $\sup (X)$ is an element of D_{m}.

Now let $\left\{D_{n}: n \in \mathbb{N}\right\}$ be a collection of disjoint closed subsets of P having the properties listed in the lemma. Define a function, f, from P to itself by $f(x)=c_{n}$ if and only if x is an element of D_{n}. This function is obviously order preserving, so it remains to show that it preserves the supremums of nonempty countable chains. Let $X=\left\{x_{n}: n \in \mathbb{N}\right\}$ be an infinite chain which has a supremum in P. Assume that $\sup (X)$ is an element of D_{m}. Then X is contained in $\underset{n \leq m}{U} D_{n}$. Since X is infinte, one of these D_{n} 's must contain an infinite number of elements of X. Then it will contain a cofinal
subchain of X and hence $\sup (X)$. Thus only D_{m} contains an infinite number of elements of X. So $f(\sup (X))$ equals $\sup (f(X))$. Example 4 shows that it is not enough to consider retracts as Markowsky was able to do for order preserving functions.

EXAMPLE 4. Let P_{4} be the subset of $\mathbb{N}_{\infty} \mathbb{N}$ consisting of those elements $\bar{x}=\left(x_{1}, x_{2}, \ldots\right)$ such that x_{n} equals ∞ for only a finite number of n 's, and if x_{n+1} equals ∞ then so does x_{n}. Order P_{4} with the usual product ordering. Then P_{4} is a lattice and every nonempty subset of P_{4} has an infimum. Thus, every bounded chain in P_{4} has a supremum.

If C is a nonempty bounded countable chain in $P_{4} ; U$ is a set of upper bounds of C; and $f: P_{4} \rightarrow C U U$ is a retraction, then $\sup _{C U U}(C)$ is an element of U since $f\left(\sup _{P_{4}}(C)\right)=\sup _{C U U}(f(C))=\sup _{C U U}(C)$. Therefore U has a least element.

For every n in \mathbb{N} let \bar{c}_{n} be the element of P_{4} having ∞ as its first n components and 1 everywhere else. Then $C=\left\{\bar{c}_{n}: n \in \mathbb{N}\right\}$ is an unbounded chain. Let $\left\{D_{n}: n \in \mathbb{N}\right\}$ be a collection of disjoint closed subsets of P_{4} such that, for each n, \bar{c}_{n} is an element of D_{n} and if p and q are elements of D_{m} and D_{n} respectively, then if $p s q, m \leq n$. For every n, let E_{n} be the set $\underset{m \leq n}{\cup} D_{m}$.

Set x_{1} equal to 1 . Assume that x_{k} has been defined for every $k \leq n$. Let X_{n} be the set of all positive integers, x,
such that $\left(x_{1}, \ldots, x_{n}, x, 1,1,1, \ldots\right)$ is an element of E_{n}. If X_{n} is empty, set x_{n+1} equal to 1 . If not, then it must be finite since E_{n} is closed and does not contain \bar{c}_{n+1}. In this case, set x_{n+1} equal to $\left(\max \left(X_{n}\right)\right)+1$. Each x_{n} defined by this process is a positive integer, so $\bar{x}=\left(x_{1}, x_{2}, \ldots\right)$ is in P_{4}. But \bar{x} is not contained in any D_{n}. If \bar{x} were in D_{n} for some n, then $\bar{y}=\left(x_{1}, \ldots, x_{n+1}, 1,1,1, \ldots\right)$ would be in D_{m} for some $m \leq n$, since $\bar{y} \leq \bar{x}$. Thus, \bar{y} would be in E_{n}, which contradicts the definition of x_{n+1}.

Let $C^{\prime}=\left\{\bar{c}_{n}^{\prime}: n \in \mathbb{N}\right\}$ be an unbounded chain in P_{4} and let f be an ω-chain continuous map from P_{4} to C^{\prime}. For every n in \mathbb{N}, define a sequence whose supremum is \bar{c}_{n}^{\prime} as follows. For every $j, k \in \mathbb{N}$, let

$$
x_{n j k}= \begin{cases}j & \text { if } j \leq c_{n j}^{\prime} \text { and } k \leq j \\ c_{n j}^{\prime} & \text { if } c_{n j}^{\prime}<j \text { and } k \leq j \\ 1 & \text { if } j<k\end{cases}
$$

where $\bar{c}_{n}^{\prime}=\left(c_{n 1}^{\prime}, c_{n 2}^{\prime}, \ldots\right)$, and set $\bar{x}_{n j}=\left(x_{n j 1}, x_{n j 2}, \ldots\right)$. Let X_{n} be the set of all the $\bar{x}_{n j}{ }^{\prime} s$. Notice that for every n in \mathbb{N}, every element of X_{n} is less than an element of C. Therefore, if C^{\prime} is the image of P_{4} under $f, f(C)$ must be a cofinal subchain of C^{\prime}. Assume that this is so and define a function, g, taking C^{\prime} onto a cofinal subchain of C by $g(x)=\min \left\{\bar{c}_{n}: x \leq f\left(\bar{c}_{n}\right)\right\}$. Then $g \circ f$ is a retraction from P_{4} onto a cofinal subchain of C. But this is impossible, so C^{\prime} cannot be the image of P_{4} under f. Thus, no unbounded chain is a retract of P_{4}. In fact, the same argument will show that
there is no w-chain continuous function from P_{4} onto an unbounded countable chain.

Even though P_{4} satisfies this nice property for retracts, it does not have the least fixed point property for ω-chain continuous functions. Denote the point ($1,1, \ldots$) by $\overline{1}$, and, for every $\bar{x}=\left(x_{1}, x_{2}, \ldots\right)$ in P_{4}, let $\bar{x}+\overline{1}$ be the point $\left(x_{1}+1, x_{2}+1, \ldots\right)$, where $\infty+1$ equals ∞. Define a function, f, taking P_{4} into itself by $\mathrm{f}(\overline{\mathrm{x}})=\overline{\mathrm{x}}+\overline{\mathrm{I}}$. This function is clearly order preserving. Let $C=\left\{\bar{c}_{n}: n \in \mathbb{N}\right\}$ be a chain which has a supremum in P_{4}. Then
$f(\sup (C))=(\sup (C))+\overline{1}=\sup \left\{\bar{c}_{n}+\overline{1}: n \in \mathbb{N}\right\}=\sup (f(C))$. Thus, f is an ω-chain continuous functions which has no fixed points.

IV. FINITE WIDTH

The partially ordered sets in the first three examples all contained infinite antichains. It is also clear that any chain has the least fixed point property for ω-chain continuous functions if and only if it is w-chain complete. So it seems reasonable that any partially ordered set in which the cardinalities of all its antichains are finite and bounded would have the least fixed point property for ω-chain continuous functions if and only if it is ω-chain complete。 Before this is shown to be true, some notation and a definition are in order.

DEFINITION. A partially ordered set, P, has finite width if there is a positive integer, N, such that, for every antichain, A, of P, the cardinality of A is less than or equal to N.

For every element, x, of P, the lower end generated by x, denoted $\downarrow x$, is the set of all elements of P less than or equal to x. For a subset, X, of P, the lower end generated by X, denoted $\downarrow X$, is $U \downarrow x$. The sets $\uparrow x$ and $\uparrow X$ are defined $\mathrm{x} \in \mathrm{X}$ dua11y.

LEMMA 2. If a partially ordered set, P, contains a countable chain, C, whose set of upper bound, U, contains a chain, D, which is not bounded below by any element of U and if C is a retract of $\cap \downarrow d$, then P does not $d \in D$
have the fixed point property for ω-chain continuous functions.

PROOF. Let D^{\prime} be a subchain of D such that every subset of D^{\prime} has a largest element and every element of D has an element of D^{\prime} below it. Denote D^{\prime} by $\left\{d_{\alpha}: \alpha<\sigma\right\}$ for some ordinal σ. Set $E_{\text {。 }}$ equal to $P-\downarrow d_{\text {。 }}$ and, for every $\alpha>0$, let E_{α} be the set $\left(\downarrow d_{\alpha}\right)-\left(\downarrow d_{\alpha+1}\right)$. Let f be a retraction of $\underset{d \in D}{\cap \downarrow d}$ onto C. Define a function, $g: P \rightarrow D^{\prime} \cup C$, by

$$
g(x)= \begin{cases}d_{\alpha} & \text { if } x \in E_{\alpha} \\ f(x) & \text { if } x \in \cap \downarrow d \\ d \in D\end{cases}
$$

Let x and y be elements of P such that $x \leq y$. If x and y are elements of $\cap \downharpoonright d$, then $g(x)=f(x) \leq f(y)=g(y)$. If x is an $d \in D$
element of $\cap \nmid \in d$ and y is an element of $P-\cap \downarrow d$, then $g(x)$ is in C; $g(y)$ is in D^{\prime}; and $g(x) \leq g(y)$. If x and y are elements of $P-\cap_{d \in D} \downarrow d$, then let $\alpha<\sigma$ such that y is an element of E_{α}. $\mathrm{d} \in \mathrm{D}$

Then if x is in E_{β}, β must be at least as large as α. Thus $g(x)=d_{B} \leq d_{\alpha}=g(y)$. So g preserves order.

Let X be a nonempty countable chain in P which has a supremum in P. If $\sup (X)$ is an element of $\cap!d$, then X is a subset of $\cap \downarrow d$ and $g(\sup (X))=f(\sup (X))=\sup (f(X))=\sup (g(X))$. $\mathrm{d} \in \mathrm{D}$

If $\sup (X)$ is an element of $P-\cap \downarrow d$, then, because g preserves $d \in D$
order and $\cap \downarrow d$ is closed, it may be assumed that X is con$d \in D$
tained in $P-\underset{d \in D}{U!d}$. Let $\alpha<\sigma$ such that $\sup (X)$ is in E_{α}. Since $\downharpoonright E_{\alpha+1}$ equals $\downarrow d_{\alpha+1}$ and is closed, X cannot be contained in $\downarrow E_{\alpha+1}$. Thus, from some point on, every element of X is in E_{α}. Hence, $g(\sup (X))$ equals $\sup (g(X))$. Therefore, $C U D^{\prime}$ is a retract of P.

Because CUD' does not have the fixed point property for ω-chain continuous functions, P does not either.

LEMMA 3. If a partially ordered set, P, contains a countable chain, C, whose set of upper bounds, U, contains two minimal elements, x and y, with a common upper bound, z, and if C is a retract of $(\downarrow x) \cap(\downarrow y)$, then P does not have the least fixed point property for ω-chain continuous functions.

PROOF. Let f be a retraction from $(\downarrow x) \cap(\downarrow y)$ onto C, and define a function, $g: P \rightarrow C \cup\{x, y, z\}$, by

$$
g(p)= \begin{cases}f(p) & \text { if } p \in(\downarrow x) \cap(\downarrow y) \\ x & \text { if } p \in(\downarrow x)-(\downarrow y) \\ y & \text { if } p \in(\downarrow y)-(\downarrow x) \\ z & \text { if } p \in P-[(\downarrow x) \cup(\downarrow y)]\end{cases}
$$

Let p and q be elements of P such that $p \leq q$. The function, g, obviously preserves order in each of the subsets of P given in the definition of g. If p is an element of $(\downarrow \mathrm{x}) \cap(\downarrow \mathrm{y})$ and q is not, then $\mathrm{g}(\mathrm{p})$ is an element of C and $\mathrm{g}(\mathrm{q})$ is in $\{x, y, z\}$. Therefore, $g(p)$ is less than $g(q)$. Assume that p is an element of $(\downarrow x)-(\downarrow y)$. Then q is an element
either of (!x)-(ty) or of $P-[(t x) \cup(t y)]$. In either case, $\mathrm{g}(\mathrm{p})$ is less than or equal to $\mathrm{g}(\mathrm{q})$. The other case being analogous, g preserves order.

Since each of the subsets given in the definition of g is closed and g is w-chain continuous on all of them, g is ω-chain continuous on P. Because $C U\{x, y, z\}$ does not have the least fixed point property for ω-chain continuous functions, P does not either.

A subset, X, of a partially ordered set, P is an upper end if and only if X equals $\uparrow X$. It is a lower end if and only if X equals X .

LEMMA 4. If a partially ordered set, P, has finite width and A and B are nonempty disjoint subsets of P such that B is an upper end, then there is only a finite number of points in B which are suprema of countable chains in A.

PROOF. Let L be the set of elements of B which are suprema of countable chains in A. Assume that L is infinite and let M be a maximal antichain of L. Since M is finite, there is some element of M, say p_{1}, such that p_{1} is comparable to an infinite number of elements of L 。 Either ($\left.\uparrow p_{1}\right) \cap L$ is infinite or $\left({ }^{\left(p_{1}\right.}\right) \cap L$ is. If $\left(\uparrow p_{1}\right) \cap L$ is infinite, let K_{1} be the set $\left(\uparrow p_{1}\right) \cap L$. Otherwise, set K_{1} equal to $\left(\downarrow p_{1}\right) \cap L$.

Let $n \in \mathbb{N}$ and assume that elements $p_{1}, p_{2}, \ldots, p_{n}$ and subsets K_{n-1} and K_{n} of L have been defined and satisfy the following properties.

1) $\left\{p_{1}, \ldots, p_{n 2}\right\}$ is a chain in L
2) K_{n} is infinite
3) $\mathrm{K}_{\mathrm{n}}=\left(\uparrow \mathrm{p}_{\mathrm{n}}\right) \cap \mathrm{K}_{\mathrm{n}-1}$ or $\mathrm{K}_{\mathrm{n}}=\left(เ \mathrm{p}_{\mathrm{n}}\right) \cap \mathrm{K}_{\mathrm{n}-1}$

Let M be a maximal antichain of $K_{n}-\left\{p_{1}, \ldots, p_{n}\right\}$. Since M is finite, one of its elements, p_{n+1}, is comparable to an infinite number of elements of K_{n}. Define K_{n+1} to be $\left(\uparrow p_{n+1}\right) \cap K_{n}$ if that set is infinite, and $\left({ }^{2} p_{n+1}\right) \cap K_{n}$ otherwise.

The chain $\left\{\mathrm{p}_{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$ thus obtained is infinite and so contains either an increasin or a decreasing chain. Assume that $\left\{p_{n}: n \in \mathbb{N}\right\}$ is increasing, that is, that $p_{1}<p_{2}<p_{3}<\cdots$. For each n in \mathbb{N}, let $X_{n}=\left\{x_{n m}: n \in \mathbb{N}\right\}$ be a chain in A which has p_{n} as a supremum. Because $\left\{p_{n}: n \in \mathbb{N}\right\}$ is increasing, there is, for every n in \mathbb{N}, an $N_{n m}$ in \mathbb{N}, where $m<n$, such that if $j \geq N_{n m}$, then for any $x_{m k}$ in $x_{m}, x_{n j} \hbar x_{m k}$. If $x_{m k}$ were less than $x_{n j}$ for every k in \mathbb{N}, then p_{m} would be less than or equal to $x_{n j}$. This is not possible since B is an upper end and A and B are disjoint. Thus, for every $j \geq N_{n m}$, there is an $M_{n m j}$ in \mathbb{N} such that if $k \sum_{n m j}$, then $x_{m k}$ and $x_{n j}$ are incomparable. Let $n \in \mathbb{N}$ and, for each $0 \leq j \leq n-1$, set k_{j} equal to $\max \left(\left\{N_{n-j, i}: 1 \leq i<n-j\right\} \cup\left\{M_{n-i, n-j, k_{i}}: 0 \leq i \leq j-1\right\}\right)$. Then $\left\{x_{n-j, k_{j}}: 0 \leq j \leq n-1\right\}$ is an antichain. Therefore, P contains arbitrarily large finite antichains, contradicting the assumption that P has finite width.

By reversing the order of P, the same argument works when $\left\{p_{n}: n \in \mathbb{N}\right\}$ is a decreasing chain. Thus, L is finite.

THEOREM 2. If P is a parially ordered set of finite width, then any unbounded chain in P of order type ω is a retract of P.

PROOF. Let $C=\left\{c_{n}: n \in \mathbb{N}\right\}$ be an unbounded chain of P. Set E_{1} equal to $P-\left(\uparrow c_{2}\right)$ and, for every $n \geq 2$, let E_{n} be the set $\left(\uparrow c_{n}\right)-\left(\uparrow c_{n+1}\right)$. For every n in \mathbb{N}, let L_{n}^{\prime} be the set of all the elements of $P-E_{n}$ which are suprema of nonempty countable chains in E_{n}. Let L_{n} equal $L_{n}^{\prime}-\cup L_{k<n}^{\prime}$. By Lemma 4 each L_{n} is finite. For every $m, n \in \mathbb{N}$, let $K_{n m}$ be the set $L_{n} \cap E_{n}$. Notice that $K_{n m}$ is empty if $n \geq m$.

Let p be an element of $K_{n m}$ and let $V_{p}^{\prime \prime}$ be an open upper end containing p. Because it is an upper end, $V_{p}^{\prime \prime}$ is also closed. Let V_{p} ' be the intersection of $\mathrm{V}_{\mathrm{p}}^{\prime \prime}$ with $\dagger \mathrm{c}_{\mathrm{n}}$. There may be elements of V_{p}^{\prime} which are the suprema of nonempty countable chains in $P-\left(\uparrow c_{n}\right)$. Let A be the collection of all such elements of V_{p}^{\prime}. By Lemma 4, A is finite, so $V_{p}=V_{p}^{\prime}-\underset{a \in A}{U(\downarrow a)}$ is an open upper end. Now let U_{p} be the set

$\underset{n \leq k \leq m}{U E_{k}}$ and is an upper end in that set. Hence it is open and closed with respect to $\underset{n \leq k \leq m^{2}}{\cup E_{k}}$. Set D_{n} equal to $\left[E_{n} \cup\left(\bigcup_{k=1}^{n} \underset{p \in K_{k n}}{\cup} U_{p}\right)\right]-\bigcup_{k=1}^{n} \underset{n<j}{U} \underset{q \in K_{k j}}{U} U_{q}$.

The following properties will be shown to be true.

$$
\text { 1) } P=\bigcup_{n \in \mathbb{N}^{n}} D_{n}
$$

2) if $n \neq m$, then $D_{n} \cap D_{m}=\phi$
3) for all $n, c_{n} \in D_{n}$
4) if $x, y \in P$; $x \leq y$; $x \in D_{m}$; and $y \in D_{n}$, then $m \leq n$
5) each D_{n} is closed
6) Let x be an element of P. Since P equals $\underset{n \in \mathbb{N}}{\cup} \mathbb{E}_{n}$, x must be in E_{n} for some n in \mathbb{N}. If x is not in D_{n}, then there is some $1 \leq a \leq n$ and some $b>n$ and some $p \in K_{a b}$ such that x is an e1ement of U_{p}. Let M be the set $\left\{j>n: \mathbb{Z} 1 \leq k \leq n, \sharp q \in K_{k j} \ni x \in U_{q}\right\}$ and set m equal to $\max (M)$. Then x is an element of $E_{m} U(\underbrace{n}_{k=1} \underset{p \in K_{k m}}{U} U_{p})$. Let $1 \leq a \leq m ;$ let $b>m$; and let p be an element of K_{kj}. Then U_{q} is a subset of $\underset{a \leq i<b}{U \mathrm{E}_{\mathrm{i}}}$. So if x is an element of U_{q}, then $a \leq n$. But if $k \leq n$, then b is an element of M, contradicting the choice of m. Thus x is not an element of ${\underset{k=1}{m}}_{\underset{j>m}{U} \underset{q \in K_{k m}}{U} U_{q}}$ and x is in D_{m}.
7) Let m and n be positive integers such that $m<n$. Then the intersection of E_{m} with E_{n} is empty. Let 1 sasm and let p be an element of $K_{a m}$. Then $U p$ is a subset of $\underset{a \leq i<m i}{U E_{i}}$ which
has an empty intersection with E_{n}. Therefore the intersection of $\bigcup_{k=1}^{m} \underset{p \in K_{k m}}{U} U_{p}$ with E_{n} is empty. Assume that
$E_{m} \cap\left({\underset{k=1}{m}}_{U_{p \in K_{k n}}^{U}}^{U_{p}}\right)$ is not empty and let 1 sasn be an element of
$K_{a n}$ such that $E_{m} \cap U_{x}$ is not empty. Now U_{x} is a subset of $\underset{a \leq i<E_{i}}{U} E_{i}$, so asm. But then U_{x} is a subset of $\underset{k=1}{\mathbb{U}} \underset{j>m}{\cup} \underset{q \in K_{k j}}{U_{q}} U_{q}$;

 $1 \leq a \leq m, 1 \leq b \leq n, x \in K_{a m}$, and $y \in K_{b n} \underset{m}{\text { such }}$ that $U_{x} \cap U_{y}$ is not empty. If $b \leq m$, then U_{y} is a subset of $\underset{k=1}{m} \underset{j>m}{U} \underset{q \in K_{k j}}{U} U_{q}$ and $D_{m} n U_{p}$ is empty. Because U_{y} is a subset of $\underset{b \leq i \leq n}{U} E_{i}$ and U_{x} is a subset of $\underset{a \leq i \leq m}{U E} \mathrm{E}_{\mathrm{i}}$, b is less than or equal to m . Therefore, $\mathrm{D}_{\mathrm{m}} \mathrm{nU}_{\mathrm{p}}$ is empty. Thus, $D_{m} \cap D_{n}$ is empty.
8) For every n in \mathbb{N}, c_{n} is an element of E_{n}. By the way they were defined, no U_{p} contains a c_{n}. So c_{n} is an element of D_{n}.
9) Let x and y be elements of P such that $x \leq y, x$ is an element of D_{m} and y is an element of D_{n}. Let x be an element of E_{a} and y an element of E_{b}. Since x is less than y, a must be less than or equal to b. Obviously a is less than or equal to m and b is less than or equal to n. If m is equal to a, then $m \leq b \leq n$. If m is greater than a, then there exists $1 \leq k \leq a$ and $j>a$ and an element, p, of $K_{k j}$ such that x is an element of U_{p}. If there are no j 's greater than b, then $m \leq b \leq n$. If $j>b$, then U_{p} is an upper end of $\underset{k \leq i<j}{U} E_{i}$, so y is an element of U_{p}. Therefore, m is less than or equal to n.
10) Let n be an element of \mathbb{N} and let X be a nonempty countable chain in D_{n}. If X is a subset of E_{n}, then either $\sup (X)$
is an element of E_{n} or $\sup (\mathrm{X})$ is an element of K_{kj} for some $1 \leq k \leq n$ and $j>n$. If $\sup (X)$ is an element of $k_{k j}$, then the intersection of X with $U_{\sup }(X)$ is not empty and X is not a subset of D_{n}. For the same reason, $\sup (X)$ cannot belong to U_{p} for any element, p, of $K_{k j}$, where $1 \leq k \leq n$ and $j>n$. Thus, $\sup (X)$ is an element of D_{n}. If X is a subset of $\bigcup_{k=1}^{n} \underset{p \in K_{k n}^{U}}{U} U_{p}$, then it may be assumed that X is a subset of U_{p} for some element, p, of $K_{k n}$ where $1 \leq k \leq n$. Assume that $\sup (X)$ is not in U_{p} and that $\sup (X)$ is not in E_{n}. Let $\sup (X)$ be an element of E_{m}. Since U_{p} is a subset of $\underset{k \leq i<n}{U E_{i}}$ and U_{p} is closed in this set, m must be greater than n. Again it may be assumed that X is a subset of E_{j} for some $k \leq j s n$. But then $\sup (X)$ is an element of $K_{i m}$ for some $1 \leq i \leq n$ and the intersection of X with
$\bigcup_{k=1}^{n} \underset{j>n}{U} \underset{q \in K_{k j}}{U} U_{q}$ is not empty, contradicting the assumption that X is a subset of D_{n}. Therefore, $\sup (X)$ is an element of D_{n}.

It follows from Lemma 1 that C is a retract of P. Therefore, P does not have the fixed point property for $w-$ chain continuous functions.

THEOREM 3. If a partially ordered set with finite width has the least fixed point property for w-chain continuous functions, then it is w-chain complete。

PROOF. By Theorem 2, it may be assumed that every countable chain in a partially ordered set, P, is bounded. Let
C be a nonempty countable chain in P which does not have a supremum. Let U be the set of upper bounds of C.

By Lemmas 2 and 3 it may be assumed that U contains a set of minimal elements, M, that every element of U is above some element of M, and that no two elements of M have a common upper bound. Denote the elements of M by $m_{1}, m_{2}, \ldots, m_{r}$. Let D be the set of all elements, x, of P such that $\uparrow x$ is not contained in $\downarrow\left(\uparrow m_{i}\right)-\underset{j \neq i}{\bigcup_{i}}\left(\uparrow m_{j}\right)$ for any $1 \leq i \leq r$.

Let $X=\left\{x_{n}: n \in \mathbb{N}\right\}$ be a chain in D which has a supremum in P. Assume that for every n in \mathbb{N}, there are $i \geq n, 1 \leq j_{i} \neq k_{i} \leq r$, and $y_{j_{i}} \geq m_{j_{i}}$, and $y_{k_{i}} \geq m_{k_{i}}$ such that x_{i} is less than both $y_{j_{i}}$ and $y_{k_{i}}$. Then there are an infinite number of pairs, $\left(j_{i}, k_{i}\right)$, and one of the pairs, (j, k), must be repeated an infinite number of times. Let Y_{j} be the set $\left\{y_{j_{i}}: j_{i}=j\right\}$ and Y_{k} the set $\left\{y_{k_{i}}: k_{i}=k\right\}$. If Y_{j} is finite, then it contains an element which is an upper bound of X. If it is infinite, it must contain an infinite chain which, by assumption, is bounded. Any upper bound of this chain is, of course, an upper bound of X. In either case there is $a y_{j} \geq m_{j}$ which is an upper bound of X. Similarly, there is a $y_{k} 2 \mathrm{~m}_{\mathrm{k}}$ which is an upper bound of X. Thus, $\sup (X)$ is less than both y_{j} and y_{k} and $\sup (X)$ is an element of D.

Assume that for every n in \mathbb{N}, there is a y_{n} in $P \bar{i}_{i=1}^{V_{i}}\left(\uparrow m_{i}\right)$ such that $x_{n} \leq y_{n}$. Let Y be the set of all these
y_{n} 's. If Y is finite, one of its elements must be an upper bound of X. If Y is infinite, it must contain an infinite chain which, by assumption, is bounded. Any upper bound of this chain will be an upper bound of X. In either case there is an element, y, of $P-\bigcup_{i=1}^{r}!\left(\uparrow m_{i}\right)$ which is an upper bound of X. Then $\sup (X)$ is less than or equal to y and $\sup (X)$ is an $e l e-$ ment of D. Therefore D is closed.

Since C is unbounded in D, there is, by Theorem 2, a retraction, f, of D onto a cofinal subchain, C^{\prime} of C. Define a function, $g: P \rightarrow C \cup M$ by

$$
g(x)= \begin{cases}m_{i} & \text { if } x \in \downarrow\left(\uparrow m_{i}\right)-D \quad 1 \leq i \leq r \\ f(x) & \text { if } x \in D\end{cases}
$$

Let x and y be elements of P with $x \leq y$. If x is in D, then $g(x) \leq g(y)$. If x is not in D, then there is some $1 \leq i \leq r$ such that $\uparrow \mathrm{x}$ is a subset of $\downarrow\left(\uparrow \mathrm{m}_{\mathrm{i}}\right)-\underset{j \neq i}{U \downarrow}\left(\uparrow \mathrm{~m}_{\mathrm{j}}\right)$. But then y is an element of $\downarrow\left(\uparrow m_{i}\right)-D$, so $g(x)=m_{i}=g(y)$. Therefore, g preserves order.

Clearly, g is ω-chain continuous on D and on $\downarrow\left(\uparrow m_{i}\right)-D$ for each $1 \leq i \leq r$. Thus g is ω-chain continuous on P; C'UM is a retract of P; and P cannot have the least fixed point property for w-chain continuous function.

COROLLARY 2. A partially ordered set, P, having finite width is ω-chain complete if and only if it has the least fixed point property for ω-chain continuous functions.

V. LAYERED PARTIALLY ORDERED SETS

The proof of Theorem 2 relied heavily on Lemma 4, which is no longer true if partially ordered sets not of finite width are considered. Another way must be found if Theorem 3 is to be generalized.

Recall that in the first three examples, the partially ordered sets all contained a countable chain which sneaked around an antichain, that is, they all contained an antichain which generates a nonclosed lower end. Notice also that the lower end generated by a finite antichain will always be closed. Thus no partially ordered set of finite width could have an antichain which generates a lower end that is not closed. If a partially ordered set contains an unbounded chain $C=\left\{c_{n}: n \in \mathbb{N}\right\}$ and there is a collection, $\left\{A_{n}: n \in \mathbb{N}\right\}$, of antichains such that c_{n} is an element of $\downarrow A_{n} ; P$, the partially ordered set, equals $\underset{n \in \mathbb{N}}{\cup} \downarrow A_{n}$; and for each n in $\mathbb{N}, \downarrow A_{n}$ is closed, then C is arretract of P. This is the approach which will be taken next.

The first question which arises concerning this method is, Can a partially ordered set actually be partitioned in such a manner? The answer is that not all can be. For example, if a partially ordered set contains a maximal chain which has no countable cofinal subchain, then it cannot be the union of a countable number of lower ends generated by antichains. Such chains must therefore be avoided. Even so,
it is not certain that such partitions occur in general. A Souslin tree is a partially ordered set which cannot be partitioned in the desired way even though all of its chains and antichains are countable. The existence of a Souslin tree is independant of the usual axioms of set theory (see [D]), so it may be that the existence of such partitions is also independant.

DEFINITION. A partially ordered set, P, is layered if and only if there is a collection, $\left\{A_{n}: n \in \mathbb{N}\right\}$, of antichains of P such that P is equal to $\underset{n \in \mathbb{N}}{U \backslash A_{n}}$.

THEOREM 4. If every antichain of a layered partially ordered set, P, generates a closed lower end, then any unbounded chain in P of order type ω is a retract of P .

PROOF. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a collection of antichains of P such that P equals $\underset{n \in \mathbb{N}}{\cup \downarrow A_{n}}$. First, assume that for every n in $\mathbb{N}, \mid A_{n}$ is a subset of $t A_{n+1}$. Let $C=\left\{c_{n}: n \in \mathbb{N}\right\}$ be an unbounded chain in P and assume that C is not contained in $\downarrow A_{n}$ for any n. Set d_{n} equal to the largest element of C contained in $!A_{n}$, if there are any elements of C in $\downharpoonright A_{n}$, and c_{1} if there are not. Define a function, $f: P \rightarrow C$, by

$$
f(x)=\left\{\begin{array}{l}
c_{1} \text { if } x \in{ }^{+c_{1}} \\
c_{n} \text { if } x \in\left(+c_{n}\right)-\left(l c_{n-1}\right) \text { and } n>1 \\
d_{1} \text { if } x \in(P-!C) \cap\left(!A_{1}\right) \\
d_{n} \text { if } x \in(P-!C) \cap\left(\left(!A_{n}\right)-\left(!A_{n-1}\right)\right) \text { and } n>1
\end{array}\right.
$$

Let x and y be elements of P such that $x \leq y$. If y is an
element of $1 C$, then x is an element of $\mid C$ and $f(x) \leq f(y)$. If y is an element of $(P-\downarrow C) \cap\left(\left(\downarrow A_{n}\right)-\left(\downarrow A_{n-1}\right)\right)$, where $\downarrow A_{n-1}$ is empty if n is 1 , then x is an element of ${ }^{\prime} A_{n}$ and $f(x) \leq d_{n}=f(y)$.

Let X be a nonempty countable chain in P which has a supremum in P. If $\sup (X)$ is an element of $t c_{n}$ for some n, then X is a subset of ${ }^{~} c_{n}$. Furthermore, from some point on, all the elements of X must be in $\left(\downarrow c_{n}\right)-\left(\downarrow c_{n-1}\right)$. Thus, $f(\sup (X))=c_{n}=\sup (f(X))$. Assume that $\sup (X)$ is an element of $(P-\downarrow C) \cap\left(\left(+A_{n}\right)-\left(\downarrow A_{n-1}\right)\right)$, where $\downarrow A_{n-1}$ is again empty if n is 1 . Then, since $\downarrow \mathrm{A}_{\mathrm{n}-1}$ is closed, X may be assumed to be a subset of $\left(1 A_{n}\right)-\left(เ A_{n-1}\right)$. In fact, it may be assumed that X is a subset of $(P-\downarrow C) \cap\left(\left(\downarrow A_{n}\right)-\left(\downarrow A_{n-1}\right)\right)$, since if it were not it would be a subset of $\downarrow d_{n}$, which is closed. Therefore, $f(\sup (X))=d_{n}=\sup (f(X))$. Hence C is a retract of P.

If there is an n in \mathbb{N} such that C is a subset of $\downarrow A_{n}$, then it may be assumed that C is a subset of $!A_{n}$ for every n in \mathbb{N}. Set D_{1} equal to $\underset{n \in \mathbb{N}}{\cup!}\left(A_{n}-\left(\uparrow c_{2}\right)\right)$. For all m>1, set D_{m} equal to $\left(\underset{n \in \mathbb{N}}{\cup!}\left(\left(A_{n}-\left(\uparrow c_{m+1}\right)\right) \cap\left(\uparrow c_{m}\right)\right)\right)-\underset{j<m}{U D_{j}}$. Let x be an element of P, n an element of \mathbb{N}, and a an element of A_{n} such that x is less than a . Now a is not an upper bound of C , so either there is an m in \mathbb{N} such that a is an element of $\left(A_{n}-\left(\uparrow c_{m+1}\right)\right) \cap\left(\uparrow c_{m}\right)$ or it is an element of $A_{n}-\left(\uparrow c_{2}\right)$. Thus, either x is in D_{m} or x is in D_{1}. Hence P equals $\underset{n \in \mathbb{N}}{\cup} D_{n}$.

Let X be a nonempty countable chain in D_{m} which has a supre-
mum in P. Since P equals $\underset{n \in \mathbb{N}}{\cup \downarrow A_{n}}$, there is a k in \mathbb{N} such that X is contained in $\downarrow A_{k}$. Then X is contained in $\left(\downarrow A_{k}\right) \cap D_{m}$ which is equal to $\downarrow\left(\left(A_{k}-\left(\uparrow c_{n+1}\right)\right) \cap\left(\uparrow c_{n}\right)\right)$ for some $n>1$ or $\downarrow\left(A_{k}-\left(\uparrow c_{2}\right)\right)$. In either case, X is a subset of a lower end generated by an antichain. But such a lower end is closed, so $\sup (X)$ is an element of D_{m}. Thus, D_{m} is closed. Let x and y be elements of P such that x is less than y. Assume that x is an element of D_{m} and that y is an element of D_{n}. Clearly, if y is an element of $\downarrow\left(\left(A_{k}-\left(\uparrow c_{n+1}\right)\right) \cap\left(\uparrow c_{n}\right)\right)$, then x must be also. Therefore, m is less than or equal to n. By Lemma 1, C is a retract of P.

The requirement that every antichain of P generate a closed lower end is not necessary for the first part of the previous proff. There it is only needed that each of the A_{n} 's generate a closed lower end. The requirement is necessary in the second part, however, as is shown by the following example.

EXAMPLE 5. Let a be the collection of infinite countable subsets of ω_{1} which don't have a largest element. Let P_{5} be the set $\omega_{1} U\left(\underset{\alpha \in \omega_{1}-\omega}{U} \underset{A \in \mathbb{C}}{U}(\alpha \times A \times\{A\})\right)$. Let $\left\{X_{\alpha}: \alpha \in \omega\right\}$ be a partition of $\omega_{1}-\omega$ such that, for every α, X_{α} is infinite. If x and y are elements of P_{5}, set $x \leq y$ if and only if one of the following conditions holds.

1) $x \in w ; y \in X_{\alpha}$ for some $\alpha \in w$; and $x s^{\alpha}$ in w
2) $x=(\alpha, \beta, A) \in \alpha \times A \times\{A\} ; y=(\alpha, \delta, A) \in \alpha \times A \times\{A\}$; and $\beta \leq \delta$
3) $x=(\alpha, \beta, A) \in \alpha \times A \times\{A\}$ and $y=\alpha$ or $y=\beta$
4) $x, y \in \omega$ and $x \leq y$ in ω
5) $x=0$ (the least element of ω)

Clearly, ω is an unbounded chain in $P ;{ }_{1} 1^{-w}$ is an antichain; and $\downarrow\left(\omega_{1}-\omega\right)$ is all of P_{5} and is closed. Let f be an ω-chain continuous function from P_{5} to itself and assume that $f\left(P_{5}\right)$ is a subset of ω. Then there is an element, m, of ω such that $f^{-1}(m)$ is infinite. Let A be an element of a which is contained in $f^{-1}(m)$. Then for every α in $\omega_{1}-w$, $f(\alpha \times A \times\{A\})$ is a subset of $\{1,2, \ldots, m\}$. Since α is the supremum of $\alpha \times A \times\{A\}$, it must be less than or equal to m. Hence for every $n \geq m, f(n)$ is less than or equal to m. Thus, no cofinal subchain of ω is a retract of P_{5}.

In fact, P_{5} has the least fixed point property for ω chain continuous functions. Assume that $f(0)$ is not 0 . Since $P-w$ is ω-chain complete, it may be assumed that $\left\{\mathrm{f}^{\mathrm{n}}(0): \mathrm{n} \in \mathbb{N}\right\}$ is contained in w. By the argument above, it may also be assumed that tere is an α in $\omega_{1}-\omega$ such that $f(\alpha)$ is an element of $\omega_{1}-w$. Let $f(\alpha)$ be an element of X_{m}. For every $n \geq m$, let A_{n} be the element of a contained in X_{n}. Since α is the supremum of $\alpha \times A_{n} \times\left\{A_{n}\right\}$, there is an element, β, of A_{n} such that $f((\alpha, \beta, A))$ equals $f(\alpha)$. Therefore, $f(\beta)$ equals $f(\alpha)$ and $f(n)$ is less than or equal to m. It follows that f has a least fixed point.

THEOREM 5. If every antichain of a partially ordered set, P, generates a closed lower end; every lower end of P
which contains a countable chain but none of its upper bounds is layered; and P has the least fixed point property for ω^{-} chain continuous functions, then P is ω-chain complete.

PROOF. Assume that P contains a nonempty countable chain, C, which does not have a supremum. By Theorem 4 and Lemmas 2 and 3, it may be assumed that every countable chain in P is bounded: that the set, U, of upper bounds of C has a set, M, of minimal elements; that every element of U is above an element of M; and that no two elements of M have a common upper bound.

Let D be the set of all the elements, x, of P such that $\dagger \mathrm{x}$ is not contained in $(\downarrow(\dagger \mathrm{m}))-\quad U!(\uparrow \mathrm{n})$ for any m in M. Let $n \in M-\{m\}$
$X=\left\{x_{n}: n \in \mathbb{N}\right\}$ be a chain in D which has a supremum in P. Assume that for every k in \mathbb{N}, there is a $j \geq k$, elements $m_{r}{ }_{j}{ }^{\prime} m_{s}$ of M , and $\mathrm{y}_{r_{j}}$ of $\mathrm{tm}_{r_{j}}$ and $\mathrm{y}_{\mathrm{s}_{\mathrm{j}}}$ of $\mathrm{t}_{\mathrm{m}_{\mathrm{s}}}$ such that x_{j} is less than both $y_{r_{j}}$ and $y_{s_{j}}$. Let Y_{r} be the set of all the $y_{r_{j}}{ }^{\prime} s$ and Y_{s} the set of all the $y_{S_{j}}^{\prime} s^{\prime}$.

Assume that both Y_{r} and Y_{S} are infinite and that Y_{r} contains an infinite antichain, A_{r}. Since the lower end generated by an antichain is closed, $\sup (X)$ is below all but a finite number of the elements of A_{r}. Let Z_{S} be those elements of Y_{s} which are paired with the elements of A_{r}. If Z_{s} has an infinite antichain, A_{s}, then $\sup (X)$ is below all but
a finite number of the elements of A_{s}. Thus, there is a j in \mathbb{N} such that $\sup (X)$ is less than $y_{r_{j}}$ and $y_{s_{j}}$. Then $\sup (X)$ is an element of D.

If every antichain of Z_{s} is finite, then it contains an infinite chain, C_{s}, which, by assumption, is bounded. Let y_{s} be an upper bound for this chain. Then $\sup (X)$ is less than or equal to y_{s}. Let B_{r} be the set of elements of A_{r} which are paired with the elements of C_{S}. Since B_{r} is an antichain and X is contained in $\downarrow B_{r}$, sup (X) is in $\downarrow B_{r}$. Let y_{r} be an element of B_{r} which is above $\sup (X)$. Then y_{r} and y_{S} are elements of U which are above distinct elements of M and are both greater than $\sup (X)$. Thus $\sup (X)$ is in D.

Assume that all antichains in both Y_{r} and Y_{S} are finite. Let C_{r} be an infinite chain in Y_{r}; let y_{r} be an upper bound of C_{r}; and let m_{r} be the element of M less than or equal to y_{r}. Let Z_{s} be the set of elements of Y_{S} which are paired with the elements of C_{r}. Then no element of Z_{S} is greater than m_{r}. Since every antichain of Z_{S} is finite, it must contain an infinite chain, C_{s}. Let y_{S} be an upper bound of C_{s} and let m_{s} be the element of M less than or equal to y_{S}. Then m_{r} does not equal m_{s} and $\sup (X)$ is less than both y_{r} and y_{s}. Therefore, $\sup (X)$ is in D.

Assume that for every k in \mathbb{N}, there is a $y_{k} \geq x_{k}$ such that y_{k} is not contained in $\downarrow(\uparrow \mathrm{m})$ for any m in M. Let Y be the set of all the y_{k} 's. Assume that Y is infinite. If Y
contains an infinite antichain, then $\sup (X)$ is in the lower end it generates and is therefore in D. If Y does not contain an infinite antichain, then it contains an infinite chain which is bounded. Let y be an upper bound for this chain. Then y is above $\sup (X)$ and is not in $\downarrow(\uparrow m)$ for any m in M. Therefore, D is closed.

Since C is unbounded in D, there is, by Theorem 4, a retraction, f , of D onto C^{\prime}, a cofinal subchain of C of order type ω. Let m_{1} and m_{2} be distinct elements of M. Define a function $g: P \rightarrow C \prime\left\{m_{1}, m_{2}\right\}$, by

$$
g(x)= \begin{cases}m_{1} & \text { if } \uparrow x \subset\left(\downarrow\left(\uparrow m_{1}\right)\right)-D \\ m_{2} & \text { if } \uparrow x \subset(\downarrow(\uparrow m))-D \text { and } m \neq m_{1} \\ f(x) & \text { if } x \in D\end{cases}
$$

Then f preserves order. Since the sets $\left(\downarrow\left(\uparrow m_{1}\right)\right)-D$ and
$U((\downarrow(\uparrow m))-D)$ are closed and g is ω-chain continuous on $\mathrm{m} \in \mathrm{M}-\left\{\mathrm{m}_{1}\right\}$
them and on D, it is w-chain continuous on P. Thus, $C \cup\left\{\mathrm{~m}_{1}, \mathrm{~m}_{2}\right\}$ is a retract of P and P cannot have the least fixed point property for ω-chain continuous functions.

COROLLARY 3. If every antichain of a partially ordered set, P, generates a closed lower end and every lower end of P which contains a countable chain but none of its upper bounds is layered, then P is ω-chain complete if and only if it has the least fixed point property for ω-chain continuous functions.

The following theorem by Edwin Miller appears as Theorem
B in [Mi].
THEOREM 6. If every antichain of an uncountable partially ordered set, P, is finite, then P contains an uncountable chain.

COROLLARY 4. If every antichain of a partially ordered set, P, is finite and every chain contains a countable cofinal subshain, then P is layered.

PROOF. Assume that there is no countable collection, a, of antichains of P such that P equals $\underset{A \in G}{U: A}$. Let A_{1} be a maximal antichain of P. If \mathcal{F} is less than ω_{1} and, for every α less than β, A_{c} has been defined, then $\operatorname{let} A_{\beta}$ be a maximal antichain of $P-\underset{\alpha<\beta}{U!A_{\alpha}}$. The set $A=U_{\alpha<\omega_{\alpha}}$ is an uncountable partially ordered set and, by Theorem 6, contains an uncountable chain, C. But C must intersect an uncountable number of A_{α} 's and so cannot contain a countable cofinal subchain.

COROLLARY 5. If every antichain of a partially ordered set, P, is finite and every chain contains a countable cofinal subchain, then P is w-chain complete if and only if it has the least fixed point property for w-chain continuous functions.

BIBLIOGRAPHY

[A] S. Abian and A. B. Brown, A theorem on partially ordered sets with applications to fixed point theorems, Canadian J. Math. 13(1961), 78-82。
[Da] A.C. Davis, A characterization of complete lattices, Pacific J. Math. 5(1955), 311-319.
[D] R. Demarr, Common fixed points for isotone mappings, Colloq. Math. 13(1964), 45-48.
[De] K. Devlin and H. Johnsbraten, The Souslin Problem, Lect. Notes Math. 405 (Springer-Verlag, Berlin).
[H] Hoft and Hoft, Some fixed point theorems for partially ordered sets, Canadian J. Math. 28(1976), 992-997.
[K] I. I. Kolodner, On completeness of partially ordered sets and fixpoint theorems for isotone mappings, Amer. Math. Monthly 75(1968), 48-49.
[M] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Univ。 6(1976), 53-68.
[Mi] E. Miller, A note on Souslin's problem, Am. J. Math. 65(1943), 673-678.
[P] A. Pelczar, On the invariant points of a transformation, Ann. Pol. Math. 11(1961), 199-202.
[Sc1] Dana Scott, Continuous Lattices, Proc. 1971 Dalhousie conference, Lecture Notes in Math. No. 274, SpringerVerlag, New York, 1972.
[Sc2] Dana Scott, Data types as lattices, SIAM J. Computing 5(1976), 522-587.
[S1] R. E. Smithson, Fixed points of order preserving multifunctions, Proc. Amer. Math.Soc. 28(1971), 304-310.
[S2] R. E. Smithson, Fixed points on partially ordered sets, Pacific J. Math. 45(1973), 363-367.
[Sm] M. B. Smyth and G. D. Plotkin, The Category-Theoretic Solution of Recursive Domain Equations, D.A.I. Research Report No. 60, 1978, University of Edinburgh.
［T］A．Tarski，A lattice－theoretical fixpoint theorem and its applications，Pacific J．Math．5（1955）， 285－309．
［W］M．Wand，Fixed－point constructions in order－enriched categories，Theor．Comput．Sci．8（1979），13－30。
［Wa］L．E．Ward，Jr．，Completeness in semilattices， Canadian J．Math．9（1957），578－582。
［Wo］E．S．Wolk，Dedekind completeness and a fix－point theorem，Canadian J．Math．9（1956），400－405．
［Wg］J．S．W．Wong，Common fixed points of commuting monotone mappings，Canadian J．Math。19（1966）， 617－620．

