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Abstract In 2002 Coecke and Martin ([3]) created a model for the finite classi-
cal and quantum states in physics. This model is based on a type of ordered set
which is standard in the study of information systems. It allows the information
content of its elements to be compared and measured. Their work is extended to
a model for the infinite classical states. These are the states which result when an
observable is applied to a quantum system. When this extended order is restricted
to a finite number of coordinates, the model of Coecke and Martin is obtained.
The infinite model retains many desirable aspects of the finite model, such as pure
states as maximal elements and expected behavior of thermodynamic entropy. But
it looses some of the important domain theoretic aspects, such as having a least el-
ement and exactness. Shannon entropy is no longer defined over the entire model
and both it and thermodynamic entropy cease to be a measurements in the sense
of Martin.

1 Introduction

In 1970 Dana Scott ([8]) introduced the concept of using ordered sets as models
for systems of information. The ordered sets he used, called domains, have proved
useful in many settings that can be expressed in terms of some type of knowledge
or information. The role of information has become important in the interpretation
of quantum physics. See, for example, Clifton, Bub, and Halvorson [2] or Fuchs
[5]. Recently Coecke and Martin ([3]) used a modified version of these domains to
create a model, ∆n, for finite classical states and a model, Ωn for finite quantum
states. The classical states are the states which result when an observable is applied
to a quantum system. One can also think of choosing a frame of reference for the
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quantum system. Then there are a finite number of possible outcomes, each with
its own probability of actually occurring. The model ∆n is therefore based on the
set of n-tuples with nonnegative coordinates whose sum equals one. The idea is
that each coordinate represents the probability that the system under consideration
has the particular outcome represented by that coordinate. The order defined on
this set, called the Bayesian order, captures the notion of increasing certainty. If
x, y ∈ ∆n and x < y then y represents a movement from the uncertain state x
towards a particular pure state, in which one coordinate has value 1 and the others
have value 0. These pure states form the maximal elements of the model. The
model contains a minimum element (the completely mixed state each of whose
coordinates has value 1/n). It also satisfies the Mixing Law and Degeneracy. In
this model, entropy decreases as certainty increases.

The Bayesian order gives an order-theoretic structure to the physical informa-
tion contained in the classical states. The content of the information contained in
a state can be measured and the information contained in different states can be
compared. The model can predict which states contain essential information for
other states.

In this paper, we will extend the model for finite classical states to one for
infinite classical states. We will make use of symmetries, similar to those used
by Coecke and Martin, to define an order on functions defined on ω, the set of
nonnegative integers. These functions take the place of the n-tuples and behave
like ω-tuples with nonnegative coordinates. This model retains some of the nice
properties of ∆n such as pure states, Degeneration, the Mixing Law, and thermo-
dynamic entropy. The order also represents increasing certainty. But some prop-
erties are lost. There is no longer a minimal element, and an important relation
defined by Coecke and Martin to represent approximation does not work in this
model. This means that the idea of essential information is lost. While the notion of
entropy associated with thermodynamics is retained Shannon entropy, more com-
monly associated with quantum information theory, is not defined over the entire
infinite model. Nevertheless, Shannon entropy still provides a picture of what is
happening in the system. The standard functions which measure the information
content of elements of the model are no longer able to do so in the infinite case.

In the next section we will give the background and basic definitions and no-
tation that are needed in the following sections. In Section 3, the order is defined
and its basic properties are established. In Section 4 the structure of the model is
developed. We will see that the Mixing Law applies, that the model has an infinite
number of maximal elements, that it is directed complete, that it can be divided
into an infinite number of order isomorphic pieces, and that it has no minimal el-
ements. In Section 5 it is shown that the notion of approximation used in [3] does
not help with approximation in this model because no element is weakly way be-
low any other element. In Section 6 it is shown that while the natural retraction
still retains the nice behavior exhibited in ∆n, as does the function v(f) = 1− f+

and entropy s(f) = − ln f+, Shannon entropy is not defined everywhere. We will
also see that these functions are no longer measurements of the model.
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2 Background

An order (<) on a set X is a relation that is asymmetric and transitive. A partial
ordering (≤) is a relation that is reflexive, antisymmetric and transitive. We can
clearly switch back and forth easily between the two kinds of relations. If a ∈ X
then ↑ a = {b ∈ X : a < b}, ↓ a = {b ∈ X : b < a}, ↑ a = {b ∈ X : a ≤ b},
and ↓ a = {b ∈ X : b ≤ a}. We say that a subset A of X is increasing if
A = ↑ A =

⋃
a∈A ↑ a.

Definition 1 A subset D of an ordered set X is directed if and only if for every
a, b ∈ D there is c ∈ D such that a ≤ c and b ≤ c.

In terms of information, to say that D is directed means that for every pair of
states contained in D there is another state in D which extends the information
contained in both states in the pair. This means that the information contained
in states in D is consistent. If a (possibly infinite) number of observers reach
conclusions on the state of a physical system based on their individual results
and these various states are collected into a set D, then to say that D is directed
means when states for observers A and B are compared there is a state belonging
to another observer which is consistent with which the first two states. That is,
while the results of A and B differ, neither is surprised by the results of C.

Definition 2 An ordered set X is said to be directed complete if and only if every
nonempty directed subset of X has a supremum in X .

If X is directed complete then we will say that it is a directed complete partial
order, or a dcpo. As the name implies, a dcpo represents an information system that
is complete in the sense that consistent collections of information lead somewhere.
There is a larger piece of information that is obtained by combining all the smaller
bits.

Definition 3 A set U of an ordered set X is Scott open if and only if it is increasing
and, for every directed D ⊆ X , if sup D ∈ U then D ∩ U 6= ∅.

The collection of Scott open subsets forms the Scott topology. A subset of X ,
or collection of states, will be Scott open when the subset contains all the states
that give more information about the system than a state known to be in the col-
lection, and when it is impossible to reach the information contained within a state
from the collection without first obtaining information from a state already known
to be in the collection. Every ordered set admits a Scott topology. A relation that
is intimately connected to the Scott topology is the way below relation. Let X be
an ordered set and a, b ∈ X . Then a is way below b, or a ¿ b, if and only if,
for every directed D ⊆ X , if sup D ≥ b then D ∩ ↑ a 6= ∅. When a state a is
way below a state b it means that a contains information that is essential if one is
to obtain the information contained in state b. Every path to b could use a as its
starting point. Let ↑↑a = {b ∈ X : a ¿ b} and ↓↓a = {b ∈ X : b ¿ a}. The
ordered set X is continuous if, for every a ∈ X , ↓↓a is directed and sup ↓↓a = a.
When X is continuous, every element of X can be approximated by the elements
that are way below it. Coecke and Martin relate this to the notion of partiality,
in which the approximating elements are said to be partial, and the approximated
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elements are total. See [4] for more information on partiality in physics. The con-
tinuity of X also gives us a good way of constructing the Scott topology, for when
X is continuous then {↑↑a : a ∈ X} is a basis for the Scott topology. For more
information on the way below relation and the Scott topology see [1] and [8].

Unfortunately, ∆n is not continuous. The set {↑↑x : x ∈ ∆n} still generates a
topology, but not the Scott topology. Many elements of ∆n are not way below any
other element. Coecke and Martin were able to preserve a notion of approximation
by slightly changing the definition of the way below relation. We will say that a
is weakly way below b, or a ¿w b, if and only if, for every directed D ⊆ X , if
sup D = b then D ∩ ↑ a 6= ∅. Let ↑↑wa = {b ∈ X : a ¿w b} and ↓↓w

a = {b ∈
X : b ¿w a}. X is said to be exact if, for every a ∈ X , ↓↓w

a is directed and
sup ↓↓w

a = a. Exactness, like continuity, provides an idea of approximation. ∆n is
exact. The weakly way below relation provides a notion of essential information
just as the way below relation does. If a ¿w b then we cannot build a knowledge
of b without knowing a. The difference in the relations is that if a ¿ b then
we cannot build a knowledge of a state which contains even more information
than b without knowing a. In the weakly way below relation we can build up such
knowledge without knowing a. For more information on the weakly way below
relation see [7]. In [6] Martin modifies the order on ∆n to obtain a continuous
model for the classical states. But this order does not extend to quantum states,
whereas the Bayesian order does.

In the following sections ω is the set of natural numbers, or nonnegative inte-
gers. For every n ∈ ω, n = {m ∈ ω : m < n} = {0, 1, . . . , n − 1}. Saying that
m ∈ n is the same as saying that m < n. We will use the standard notation of
dom f as the domain of the function f , and ran f as its range. We will use f+ to
represent max ran f .

3 Definition of the Model

The model we will construct should reflect the situation when an observable is
applied to an infinite dimensional quantum system. Then the system is in a state
in which an infinite number of outcomes are possible and each outcome has a
certain probability of actually occurring. This situation can be represented by a
function with an infinite number of possible values. Since the values are supposed
to be probabilities, they must all be nonnegative and add up to one. Let ∆ω be
the set of functions from ω into [0, 1] such that

∑
n∈ω f(n) = 1. We can again

think of f as giving us probabilities for being in a particular state. Here f(n) is
the probability that our system has the outcome represented by n. Note that if
f, g ∈ ∆ω and there is m ∈ ω such that f(m) < g(m) then there must be n ∈ ω
such that f(n) > g(n). This means that if f(m) ≤ g(m) for all m ∈ ω then f = g.

Some of our results require a more general setting, so let C be the set of func-
tions from ω into [0, 1] such that

∑
n∈ω f(n) converges.

Let f ∈ C and think of f as an infinite string of numbers whose sum is finite.
We can reorder f so that the numbers are decreasing (in the sense of nonincreas-
ing). We will use such reorderings to define the order on ∆ω, and we would like
all of them to “look alike”. But we will have trouble getting this because of zeroes.
If f(n) > 0 for a finite number of values of n then a reordering of f will result
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in a sequence of order type ω. But if f(n) > 0 for an infinite number of values
of n and there are still some values of n at which f(n) = 0 then a reordering
of f results in a sequence of order type larger than ω. We will have an infinite se-
quence of nonzero numbers, followed by a sequence of zeros. When this happens
we will essentially throw the extra zeros away. Since the outcomes represented by
the coordinates giving us a value of 0 cannot occur, we do not lose any physical
significance by eliminating them.

Definition 4 For every f ∈ C let R(f) be the set of one-to-one functions σ from ω
into ω such that f−1[(0, 1]] ⊆ ran σ and f ◦ σ is decreasing.

For every f ∈ C the set R(f) represents the number of ways that f can be
rearranged into a decreasing sequence.

The following fairly obvious lemma will be very useful in the development of
the model.

Lemma 5 Let f ∈ C. If σ, τ ∈ R(f) then f ◦ σ = f ◦ τ .

Before defining the order on ∆ω we must consider what it is that the order
should tell us. The relation f < g should occur when g gives us more certain
information about the state of our system and is consistent with what we know
from the earlier observation. This means that outcomes with lower probabilities
in f should become even lower in g, and those with higher probabilities in f
should become even higher in g. The relative differences in the values we get
from g should become larger than those we get from f . Coecke and Martin were
able to codify this in the following way. Let f, g ∈ C. To simplify notation, we
will assume that f and g are already decreasing, and that they never take on the
value 0. Then g is more certain than f when f(n)/f(n + 1) ≤ g(n)/g(n + 1) for
all n ∈ ω. If we write this inequality as f(n)g(n + 1) ≤ f(n + 1)g(n) then we
can drop the assumption that f and g are never zero. This leads us to the following
two definitions.

Definition 6 For every f ∈ C set T (f, g) equal to the set of all σ ∈ R(f) ∩R(g)
such that

(f ◦ σ)(n)(g ◦ σ)(n + 1) ≤ (f ◦ σ)(n + 1)(g ◦ σ)(n) (∗)

for every n ∈ ω.

Definition 7 For every f, g ∈ ∆ω set f ≤ g if and only if T (f, g) 6= ∅.

The following lemmas will establish some basic behavior of this relation and
allow us to show that it is indeed an order. First, if f ≤ g and f(n) = 0 for some n
then, since g should not contain any surprises, based on the information from f ,
we should have g(n) = 0.

Lemma 8 Let f, g ∈ C. If T (f, g) 6= ∅ and there is n ∈ ω such that f(n) = 0
then g(n) = 0. If {m ∈ ω : g(m) > 0} is infinite and there is n ∈ ω such that
g(n) = 0 then f(n) = 0.
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Proof Let σ ∈ T (f, g). If n /∈ dom σ then g(n) = 0. So we may assume that
n ∈ dom σ. Let m ∈ ω such that σ(m) = n. We may also assume that m =
min{k ∈ ω : (f ◦ σ)(k) = 0}. Obviously m > 0, so

(f ◦ σ)(m− 1)(g ◦ σ)(m) ≤ (f ◦ σ)(m)(g ◦ σ)(m− 1) = 0

and therefore g(n) = (g ◦ σ)(m) = 0.
Now assume that {m ∈ ω : g(m) > 0} is infinite and let n ∈ ω such that

g(n) = 0. Let σ ∈ T (f, g). If f(n) > 0 then n ∈ ran σ. Let j ∈ ω such that
σ(j) = n. There must be m ∈ ω such that g(m) > 0 and m = σ(k) for some
k > j. But this is impossible because g(σ(k)) ≤ g(σ(j)) = 0. Thus f(n) = 0. ut

A consequence of this lemma is that if T (f, g) 6= ∅ and {n ∈ ω : g(n) > 0}
is infinite then {n ∈ ω : f(n) > 0} = {n ∈ ω : g(n) > 0}. So if f ∈ ∆ω

and f is positive on an infinite number of coordinates, then we cannot create a
larger element of ∆ω by changing a finite number of these coordinates to 0 and
adjusting the rest. If we want to change one of these coordinates to 0, then we must
change all but a finite number of them to 0. If we determine that a finite number of
outcomes are impossible and remain consistent with the information represented
by f , then we must in fact determine that all but a finite number of outcomes are
impossible.

Lemma 9 If f, g ∈ C and σ ∈ T (f, g) then

(f ◦ σ)(m)(g ◦ σ)(n) ≤ (f ◦ σ)(n)(g ◦ σ)(m)

for all m,n ∈ ω with m < n.

Proof Let m,n ∈ ω with m < n and assume that the following inequality holds.

(f ◦ σ)(m)(g ◦ σ)(n) ≤ (f ◦ σ)(n)(g ◦ σ)(m)

We want to show that (f ◦σ)(m)(g ◦σ)(n+1) ≤ (f ◦σ)(n+1)(g ◦σ)(m). This is
clearly true if (g ◦σ)(n +1) = 0, so we may assume that (g ◦σ)(n +1) 6= 0. This
means that (g◦σ)(n) 6= 0 and, by Lemma 8, (f ◦σ)(n) 6= 0 and (f ◦σ)(n+1) 6= 0
as well. Our assumption tells us that

(f ◦ σ)(m)
(f ◦ σ)(n)

≤ (g ◦ σ)(m)
(g ◦ σ)(n)

and the fact that σ ∈ T (f, g) gives us

(f ◦ σ)(n)
(f ◦ σ)(n + 1)

≤ (g ◦ σ)(n)
(g ◦ σ)(n + 1)

Therefore

(f ◦ σ)(m)
(f ◦ σ)(n + 1)

=
(f ◦ σ)(m)
(f ◦ σ)(n)

· (f ◦ σ)(n)
(f ◦ σ)(n + 1)

≤ (g ◦ σ)(m)
(g ◦ σ)(n)

· (g ◦ σ)(n)
(g ◦ σ)(n + 1)

=
(g ◦ σ)(m)

(g ◦ σ)(n + 1)

The result now follows by induction. ut
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The next lemma establishes that ∆ω satisfies Degeneration.

Lemma 10 (Degeneration) Let f, g ∈ C with T (f, g) 6= ∅. If there are m,n ∈ ω
with g(m) = g(n) > 0 then f(m) = f(n).

Proof Assume that m 6= n. Let σ ∈ T (f, g) and let j, k ∈ ω such that σ(j) =
m and σ(k) = n. We may assume that j < k. Then (f ◦ σ)(j)(g ◦ σ)(k) ≤
(f ◦ σ)(k)(g ◦ σ)(j) or (f ◦ σ)(j) ≤ (f ◦ σ)(k). But f ◦ σ is decreasing, so
f(m) = (f ◦ σ)(j) = (f ◦ σ)(k) = f(n). ut

The proceeding lemma shows that the relation follows our intuition on more
certain states. If g is more certain than f and f tells us that outcome m is less
likely than outcome n then it would be a surprise for g to say that they were
equally likely, unless they both went to zero.

Lemma 11 Let f, g ∈ C and let σ ∈ T (f, g). If (g◦σ)(m) < (f ◦σ)(m) for some
m ∈ ω then (g ◦σ)(n) < (f ◦σ)(n) for all n ∈ ω with m < n and (g ◦σ)(n) > 0.

Proof Let n ∈ ω with m ≤ n and assume that (g ◦ σ)(n + 1) > 0. Then none
of (f ◦ σ)(n), (f ◦ σ)(n + 1), and (g ◦ σ)(n) can be zero. Further assume that
(g ◦ σ)(n) < (f ◦ σ)(n). From σ ∈ T (f, g) we get that

(g ◦ σ)(n + 1)
(f ◦ σ)(n + 1)

≤ (g ◦ σ)(n)
(f ◦ σ)(n)

< 1

and therefore (g ◦ σ)(n + 1) < (f ◦ σ)(n + 1). ut
Lemma 12 Let f, g ∈ ∆ω with T (f, g) 6= ∅. If f+ ≥ g+ then f = g.

Proof Let σ ∈ T (f, g). Then (f ◦ σ)(0) = f+ = g+ = (g ◦ σ)(0). Let n ∈ ω and
assume that (g ◦ σ)(n) ≤ (f ◦ σ)(n). If (f ◦ σ)(n) = 0 then (g ◦ σ)(n) = 0 and
(g◦σ)(n+1) = 0 = (f ◦σ)(n+1). We may therefore assume that (f ◦σ)(n) > 0.
Then

(g ◦ σ)(n + 1) ≤ (g ◦ σ)(n)
(f ◦ σ)(n)

(f ◦ σ)(n + 1) ≤ (f ◦ σ)(n + 1)

and it follows that g(n) ≤ f(n) for all n ∈ ω and that f = g. ut
This means that if f ≤ g then f+ ≤ g+.

Theorem 13 The relation ≤ is an order.

Proof It is obvious that f ≤ f for all f ∈ ∆ω. Let f, g ∈ ∆ω with f ≤ g and
g ≤ f . Let σ ∈ T (f, g) and τ ∈ T (g, f). If f+ < g+ then (f◦τ)(0) < (g◦τ)(0) so
f(n) < g(n) for all n ∈ ω with f(n) > 0 by Lemma 11, which is a contradiction.
If g+ < f+ then (g ◦ σ)(0) < (f ◦ σ)(0) so g(n) < f(n) for all n ∈ ω with
g(n) > 0 by Lemma 11, which is a contradiction. Therefore f+ = g+ and f = g
by Lemma 12.

Let f, g, h ∈ ∆ω with f ≤ g and g ≤ h. Let ρ ∈ T (f, g) and σ ∈ T (g, h).
We will define a new function τ and show that τ ∈ T (f, h). First assume that
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g(n) > 0 for all n ∈ ω. Then ran σ = ω so automatically f−1[(0, 1]] ⊆ ran σ and
h−1[(0, 1]] ⊆ ran σ.

Let n ∈ ω. If ρ(n) = σ(n) then (f ◦ ρ)(n) = (f ◦ σ)(n). If ρ(n) 6= σ(n) then,
since (g ◦ ρ)(n) = (g ◦ σ)(n) we have (f ◦ ρ)(n) = (f ◦ σ)(n) by Lemma 10.
Therefore f ◦ ρ = f ◦ σ and σ ∈ R(f). Since ρ ∈ T (f, g) we know that

(f ◦ ρ)(n)
(f ◦ ρ)(n + 1)

≤ (g ◦ ρ)(n)
(g ◦ ρ)(n + 1)

or

(f ◦ σ)(n)
(f ◦ σ)(n + 1)

≤ (g ◦ σ)(n)
(g ◦ σ)(n + 1)

for all n ∈ ω.
If (h ◦ σ)(n) = 0 then (h ◦ σ)(n + 1) = 0 and (f ◦ σ)(n)(h ◦ σ)(n + 1) =

(f ◦ σ)(n + 1)(h ◦ σ)(n). Assume that (h ◦ σ)(n) > 0. If (h ◦ σ)(n + 1) = 0 then
(f ◦ σ)(n)(h ◦ σ)(n + 1) = 0 ≤ (f ◦ σ)(n + 1)(h ◦ σ)(n). If (h ◦ σ)(n + 1) > 0
then

(f ◦ σ)(n)
(f ◦ σ)(n + 1)

≤ (g ◦ σ)(n)
(g ◦ σ)(n + 1)

≤ (h ◦ σ)(n)
(h ◦ σ)(n + 1)

In each of these cases, σ ∈ T (f, g).
Now assume that there is k ∈ ω such that g(k) = 0. Let m be the minimum

element of {k ∈ ω : (g ◦ ρ)(k) = 0}. Note that if n ≥ m then (g ◦ σ)(n) =
(g ◦ ρ)(n) = 0 so (h ◦ ρ)(n) = 0. For every n ∈ ω set

τ(n) =

{
σ(n), if n < m

ρ(n), if m ≤ n

We need to ensure that f−1[(0, 1]] ⊆ ran τ and h−1[(0, 1]] ⊆ ran τ . Let j ∈ ω
such that f(j) > 0. If g(j) > 0 then there is n ∈ ω such that σ(n) = j. Now
n < m so τ(n) = σ(n) = j. Assume that g(j) = 0. Since f(j) > 0 there
is n ∈ ω such that ρ(n) = j. Now m ≤ n so τ(n) = ρ(n) = j. Therefore
f−1[(0, 1]] ⊆ ran τ . Let h(j) > 0. Then g(j) > 0 so there is n ∈ ω such that
σ(n) = j. Now n < m so τ(n) = σ(n) = j. Therefore h−1[(0, 1]] ⊆ ran τ .

If n < m then (f ◦ τ)(n) = (f ◦ σ)(n) = (f ◦ ρ)(n). Thus, for every n ∈ ω,
(f ◦ τ)(n) = (f ◦ ρ)(n) ≥ (f ◦ ρ)(n + 1) = (f ◦ τ)(n + 1). If n + 1 < m then
(h ◦ τ)(n) = (h ◦ σ)(n) ≥ (h ◦ σ)(n + 1) = (h ◦ τ)(n + 1). If n + 1 = m
then (h ◦ τ)(n) = (h ◦ σ)(n) ≥ 0 = (h ◦ τ)(n + 1). And if n + 1 > m then
(h ◦ τ)(n) = 0 = (h ◦ τ)(n + 1). Therefore τ ∈ R(f) ∩R(h).

The proof that (f ◦ τ)(n)(h ◦ τ)(n+1) ≤ (f ◦ τ)(n+1)(h ◦ τ)(n) is the same
as the previous case when n + 1 < m. If n + 1 ≥ m then (h ◦ τ)(n + 1) = 0 so
(f ◦ τ)(n)(h ◦ τ)(n + 1) = 0 ≤ (f ◦ τ)(n + 1)(h ◦ τ)(n). Therefore τ ∈ T (f, h)
and f ≤ h. ut

4 Structure of ∆ω

We have already seen that ∆ω satisfies Degeneracy. If our model is to be a good
one, it should also satisfy the Mixing Law and have maximal elements that repre-
sent pure states where our knowledge or information is absolute. It is an immediate
consequence of the definition of ∆ω that this model satisfies the Mixing Law.
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Theorem 14 (The Mixing Law) Let f, g ∈ ∆ω. If f ≤ g and t ∈ (0, 1) then
f ≤ (1− t)f + tg ≤ g.

Proof Let h = (1 − t)f + tg and let σ ∈ T (f, g). Since 1 − t > 0 and t > 0 we
know that σ ∈ R(h). Let n ∈ ω.

(f ◦ σ)(n)(h ◦ σ)(n + 1) = (f ◦ σ)(n)[(1− t)(f ◦ σ)(n + 1) + t(g ◦ σ)(n + 1)]
= (1− t)(f ◦ σ)(n)(f ◦ σ)(n + 1) + t(f ◦ σ)(n)(g ◦ σ)(n + 1)
≤ (1− t)(f ◦ σ)(n + 1)(f ◦ σ)(n) + t(f ◦ σ)(n + 1)(g ◦ σ)(n)
= (f ◦ σ)(n + 1)[(1− t)(f ◦ σ)(n) + t(g ◦ σ)(n)]
= (f ◦ σ)(n + 1)(h ◦ σ)(n)

Therefore σ ∈ T (f, g) and f ≤ h. The proof that h ≤ g is similar. ut
Just as in ∆n, the pure states will be the maximal elements of ∆ω.

Definition 15 For every m ∈ ω let em be the element of ∆ω given by

em(n) =

{
1, m = n

0, m 6= n

Let max ∆ω denote the set of maximal elements of ∆ω.

Theorem 16 For every f ∈ ∆ω and m ∈ ω, f ≤ em if and only if f(m) = f+.

Proof Let f ∈ ∆ω and let m ∈ ω such that f(m) = f+. Let σ ∈ R(f) such that
σ(0) = m. Then σ ∈ R(em) and (f ◦ σ)(n)(em ◦ σ)(n + 1) = 0 ≤ (f ◦ σ)(n +
1)(em ◦ σ)(n) for every n ∈ ω. Therefore f ≤ em.

If f(m) 6= f+ and σ ∈ R(f) then σ(0) 6= m. Thus R(f) ∩ R(em) = ∅ and
f and em are incomparable. ut

Since em and en are incomparable when m 6= n the preceding proof shows
that max∆ω = {em : m ∈ ω} and ↓ max∆ω = ∆ω.

We will see later that ∆ω does not have any minimal elements. Another prop-
erty that our model should have is completeness. We want to know that if we
follow consistent states that are becoming more certain that we will be led to a
state with at least as much certainty or information. The next lemma and theorem
will allow us to show that ∆ω has this property by being directed complete.

Lemma 17 Let γ be an ordinal and let 〈fα : α ∈ γ〉 be a sequence in C such that
for every α, β ∈ γ, if α < β then T (fα, fβ) 6= ∅. Then there is m ∈ ω such that
fα(m) = f+

α for every α ∈ γ.

Proof For every α ∈ γ let Mα = {m ∈ ω : fα(m) = f+
α }. Let α, β ∈ γ with

α < β and let σ ∈ T (fa, fb). Then fα(σ(0)) = f+
α and fβ(σ(0)) = f+

β . If
m ∈ Mβ then fβ(m) = fβ(σ(0)) so fα(m) = fα(σ(0)) by Lemma 10. Therefore
m ∈ Mα and Mβ ⊆ Mα. If γ = β +1 then Mβ ⊆

⋂
α∈γ Mα so

⋂
α∈γ Mα = Mβ .

If γ is a limit ordinal then
⋂

α∈γ Mα 6= ∅ because each Mα is finite. In either case,
if m ∈ ⋂

α∈γ Mα then fα(m) = f+
α for all α ∈ γ. ut
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Theorem 18 Let γ be an ordinal. If 〈fα : α ∈ γ〉 is an increasing sequence in
∆ω then there is a one-to-one function σ : ω → ω such that σ ∈ T (fα, fβ) for all
α, β ∈ γ with α < β.

Proof We will define σ recursively. The idea is simple enough, but the details
are technical. We will use Lemma 17 to find a coordinate m on which all of the
functions in the sequence reach their maximum value. We will then eliminate this
coordinate, and repeat the process to find the next coordinate. Set M0 = ∅. Let
i ∈ ω and assume that Mi is a finite subset of ω. Let λi be a strictly increasing
function from ω onto ω − Mi and set fiα = fα ◦ λi for every α ∈ γ. Then
〈fiα : α ∈ γ〉 is a sequence in C.

Let α, β ∈ γ with α < β. We want to show that T (fiα, fiβ) 6= ∅. Let ραβ ∈
T (fα, fβ) and let µiαβ be a strictly increasing function from ω onto ω− ρ−1

αβ [Mi].
Set τiαβ = λ−1

i ◦ ραβ ◦ µiαβ . Then dom τiαβ = ω and ran τiαβ ⊆ ω. If k ∈ ω
and fiα(k) > 0 then fα(λi(k)) > 0 so λi(k) ∈ ran ραβ . Let m ∈ ω such that
ραβ(m) = λi(k) or (λ−1

i ◦ ραβ)(m) = k. Now λi(k) ∈ ω − Mi so m ∈ ω −
ρ−1

αβ [Mi]. Let n ∈ ω such that µiαβ(n) = m. Then τiαβ(n) = (λ−1
i ◦ ραβ ◦

µiαβ)(n) = k and k ∈ ran τiαβ . The same argument shows that f−1
iβ [(0, 1]] ⊆

ran τiαβ .
We must show that fiα ◦ τiαβ and fiβ ◦ τiαβ are decreasing. Let m,n ∈ ω with

m < n. Then µiαβ(m) < µiαβ(n) and therefore

(fiα ◦ τiαβ)(m) = (fα ◦ λi ◦ λ−1
i ◦ ραβ ◦ µiαβ)(m)

= (fα ◦ ραβ)(µiαβ(m))
≥ (fα ◦ ραβ)(µiαβ(n))
= (fiα ◦ τiαβ)(n)

The same argument shows that fiβ ◦ τiαβ is decreasing.
Still with m < n we get the following inequalities.

(fiα ◦ τiαβ)(m)(fib ◦ τiαβ)(n) = (fα ◦ ραβ)(µiαβ(m))(fβ ◦ ραβ)(µiαβ(n))
≤ (fα ◦ ραβ)(µiαβ(n))(fβ ◦ ραβ)(µiαβ(m))
= (fiα ◦ τiαβ)(n)(fib ◦ τiαβ)(m)

Therefore τiαβ ∈ T (fiα, fiβ).
By Lemma 17 there is bi ∈ ω such that fiα(bi) = f+

iα for every α ∈ γ. Let
σ(i) = λ−1

i (bi) and set Mi+1 = Mi ∪ {σ(i)}.
This process recursively defines a function σ : ω → ω. For every i ∈ ω,

σ(i) ∈ ω−Mi and σ(i) ∈ Mi+1, so σ is one-to-one. Let α ∈ γ. If fα(m) > 0 and
fα(m) /∈ ran σ then the set {n ∈ ω : fα(n) ≥ fα(m)} is infinite, contradicting∑

n∈ω fα(n) = 1. Also, (fα ◦ σ)(n) = max{fα(m) : m /∈ Mi} so (fa ◦ σ)(i) ≥
(fα ◦ σ)(i + 1).

Finally, let m,n ∈ ω and α, β ∈ γ with m < n and α < β. Let ρ ∈ T (fα, fβ).
Then

(fα ◦ σ)(m)(fβ ◦ σ)(n) = (fα ◦ ρ)(m)(fβ ◦ ρ)(n)
≤ (fα ◦ ρ)(n)(fβ ◦ ρ)(m)
= (fα ◦ σ)(n)(fβ ◦ σ)(m) ut



11

Theorem 19 If 〈fn : n ∈ ω〉 is an increasing sequence in ∆ω then 〈fn : n ∈ ω〉
has a supremum g = supn∈ω fn in ∆ω and g(k) = limn→∞ fn(k) for all k ∈ ω.

Proof We will first show that 〈fn(k) : n ∈ ω〉 converges for every k ∈ ω. By
Theorem 18 there is a function σ so that σ ∈ T (fm, fn) for all m,n ∈ ω with
m < n. Then (fn ◦ σ)(0) = f+

n for all n ∈ ω and 〈(fn ◦ σ)(0) : n ∈ ω〉 is
an increasing sequence in [0, 1] and must converge. Let k ∈ ω and assume that
〈(fn ◦ ω)(k) : n ∈ ω〉 converges. If limn→∞(fn ◦ σ)(k) = 0 then 〈(fn ◦ σ)(k +
1) : n ∈ ω〉 also converges to 0 since (fn ◦ σ)(k + 1) ≤ (fn ◦ σ)(k) for all
n ∈ ω. We may therefore assume that limn→∞(fn ◦ σ)(k) > 0. This means that
(f ◦ σ)(k) > 0 for all n ∈ ω by Lemma 8. The same lemma allows us to assume
that (fn ◦ σ)(k + 1) > 0 for all n ∈ ω. Because 〈(fn ◦ σ)(k) : n ∈ ω〉 converges,
for every ε > 0 there is j ∈ ω such that for every m,n ∈ ω, if j < m < n then
(fn◦σ)(k)/(fm◦σ)(k) < 1+ε. If 〈(fn◦σ)(k+1) : n ∈ ω〉 does not converge then
there is ε > 0 such that for every j ∈ ω there are m, n ∈ ω such that j < m < n
and (fn ◦ σ)(k + 1)/(fm ◦ σ)(k + 1) > 1 + ε. Using this last ε we can choose
m,n ∈ ω such that m < n and

(fn ◦ σ)(k)
(fm ◦ σ)(k)

<
(fn ◦ σ)(k + 1)
(fm ◦ σ)(k + 1)

a contradiction.
Now that we have coordinate-wise convergence, we can define g by g(k) =

limn→∞ fn(k) for all k ∈ ω. Obviously g is a function from ω into [0, 1] and
∑

k∈ω

g(k) =
∑

k∈ω

lim
n→∞

fn(k) = lim
n→∞

∑

k∈ω

fn(k) = 1

We also know that g◦σ is decreasing because fn◦σ is decreasing for every n ∈ ω.
If g(m) > 0 then fn(m) > 0 for all n ∈ ω. Thus m ∈ ran σ. Therefore σ ∈ R(g).

If k,m, n ∈ ω with m < n then

(fm ◦ σ)(k)(fn ◦ σ)(k + 1) ≤ (fm ◦ σ)(k + 1)(fn ◦ σ)(k)

So limn→∞(fm ◦ σ)(k)(fn ◦ σ)(k + 1) ≤ limn→∞(fm ◦ σ)(k + 1)(fn ◦ σ)(k) or
(fm ◦ σ)(k)(g ◦ σ)(k + 1) ≤ (fm ◦ σ)(k + 1)(g ◦ σ)(k). Therefore σ ∈ T (fm, g)
and fm ≤ g.

Now let h be an upper bound of 〈fn : n ∈ ω〉 in ∆ω. By Theorem 18 there
is a one-to-one function τ : ω → ω such that τ ∈ T (fn, h) for every n ∈ ω. Let
k ∈ ω. For every n ∈ ω,

(fn ◦ σ)(k)(h ◦ τ)(k + 1) ≤ (fn ◦ σ)(k + 1)(h ◦ τ)(k)

So
lim

n→∞
(fn ◦ σ)(k)(h ◦ τ)(k + 1) ≤ lim

n→∞
(fn ◦ σ)(k + 1)(h ◦ τ)(k)

or
(g ◦ τ)(k)(h ◦ τ)(k + 1) ≤ (g ◦ τ)(k + 1)(h ◦ τ)(k)

As happened with σ we must have g−1[(0, 1]] ⊆ ran τ and γ ◦ τ is decreasing.
Therefore τ ∈ T (g, h) and g ≤ h. ut
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The next corollary is proved the same way that Prop 2.16(ii) is proved in [3]
and it greatly simplifies our study of directed sets, or sets of consistent informa-
tion, by allowing us to consider only sequences. This means that the information
is being built steadily in a linear fashion by adding new or more complete infor-
mation to what we already knew.

Corollary 20 ∆ω is a dcpo and every directed subset D of ∆ω contains and in-
creasing sequence 〈fn : n ∈ ω〉 with supn∈ω fn = sup D.

When Coecke and Martin defined their order on ∆n they based it on the propo-
sition that the order on ∆n+1 should be determined by the order on ∆n in the sense
that for every f, g ∈ ∆n+1, f should be set less than or equal to g if and only if
the projection of f into ∆n is less than or equal to the projection of g into ∆n. The
next theorem shows that ∆ω also displays this kind of behavior. First we need to
define what we mean be a projection.

Definition 21 For every f ∈ ∆ω let P(f) = {A ⊆ ω : 0 <
∑

k∈A f(k)}. If
A ∈ P(f) we define the projection of f onto A, pA(f), by setting

pA(f)(n) =





f(n)∑
m∈A

f(m)
, n ∈ A

0, n /∈ A

for all n ∈ ω.

Note that pA(f) ∈ ∆ω. Under pA(f) we have examined all the outcomes not
listed in A and determined them to be impossible. We have no further information
on the outcomes listed in A relative to one another, so their probabilities remain
comparatively the same. We only need to adjust to ensure that the sum is still 1.

Theorem 22 For every f, g ∈ ∆ω, f ≤ g if and only if pA(f) ≤ pA(g) for all
A ∈ P(f) ∩ P(g).

Proof Assume that f ≤ g and let σ ∈ T (f, g). Let A ∈ P(f) ∩ P(g). We will
consider two cases. First assume that |A| = ω. Let ρ : ω → σ−1[A] be an order
isomorphism (strictly increasing and onto). For easier notation set v = pA(f) and
w = pA(g). Set τ = σ ◦ ρ. Then τ is a one-to-one function from ω into ω. Let
n ∈ ω. If v(n) > 0 then n ∈ A and f(n) > 0. There is m ∈ ω such that σ(m) = n,
since σ ∈ R(f), and m ∈ σ−1[A]. So there is k ∈ ω such that ρ(k) = m. Then
n = (σ ◦ ρ)(k) = τ(k). Since ρ is strictly increasing and f ◦ σ is decreasing, v ◦ τ
must also be decreasing. Thus τ ∈ R(v). It can be shown in the same way that
τ ∈ R(w). Property (∗) of Definition 6 must also be satisfied, again because ρ is
strictly increasing. Therefore τ ∈ T (f, g) and pA(f) ≤ pA(g).

For the second case, assume that |A| < ω. Let n = |A| and let ρ0 : n →
σ−1[A] be strictly increasing and ρ1 : ω − n → ω − σ−1[A] one-to-one. Set
τ = σ ◦ (ρ0 ∪ ρ1). Then τ is a one-to-one function from ω into ω. Note that
if m ≥ n then ρ1(m) /∈ σ−1[A] so τ(m) = (σ ◦ ρ1)(m) /∈ A. Therefore (v ◦
τ)(m) = (w ◦ τ)(m) = 0. The same argument as that used in the first case
shows that v−1[(0, 1]] ⊆ ran τ and w−1[(0, 1]] ⊆ ran τ . That v ◦ τ and w ◦ τ
are decreasing follows from the facts that ρ1 is strictly increasing on n and that
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(v ◦ τ)(m) = (w ◦ τ)(m) = 0 when m ≥ n. It remains to show that Property (∗)
of Definition 6 is satisfied.

Let m ∈ ω. If m + 1 < n then Property (∗) of Definition 6 is satisfied because
ρ0 is strictly increasing. If m + 1 ≥ n then (w ◦ τ)(m + 1) = 0 so Property (∗) is
satisfied. Therefore pA(f) ≤ pA(g).

For the other direction, if pA(f) ≤ pA(g) for all A ∈ P(f) ∩ P(g) then
f = pω(f) ≤ pw(g) = g. ut
Lemma 23 If σ : ω → ω is one-to-one and onto then the function rσ : ∆ω → ∆ω

given by rσ(f) = f ◦ σ is an order isomorphism.

Proof If f ∈ ∆ω then f ◦ σ ∈ ∆ω and f ◦ σ−1 ∈ ∆ω. Therefore ran rσ = ∆ω.
If f 6= g then there is n ∈ ω such that f(n) 6= g(n). Let m ∈ ω such that
σ(m) = n. Then rσ(f)(m) 6= rσ(g)(m) and rs(f) 6= rσ(g). Thus rσ is one-to-
one. If f, g ∈ ∆ω and τ ∈ T (f, g) then σ−1◦τ ∈ T (f ◦σ, g◦σ) so rσ(f) ≤ rσ(g).
If τ ∈ T (f ◦ σ, g ◦ σ) then σ ◦ τ ∈ T (f, g). Therefore rσ is an order isomorphism.

ut
This proof shows that if σ : ω → ω is one-to-one, σ ∈ R(f) ∩ R(g), and

f < g then rσ(f) < rσ(g). If σ is not onto then there will be an f ∈ ∆ω such that
rσ(f) /∈ ∆ω.

Coecke and Martin showed that the model ∆n+1 contains n + 1 copies of
the model ∆n. These are obtained be taking those elements of ∆n+1 whose first
coordinates are zero, then those whose second coordinate is zero, and so forth. We
can do a similar thing with ∆ω.

Definition 24 ∆ω
+ = {f ∈ ∆ω : ∀m ∈ ω(f(m) > 0)}. For every A ⊆ ω,

∆ω(A) = {f ∈ ∆ω : (∀m ∈ ω −A)(f(m) = 0)} and
∆ω

+(A) = {f ∈ ∆ω : ∀m ∈ ω(f(m) > 0 ⇐⇒ m ∈ A)}.

In the following theorem we will use ' to mean order isomorphic.

Theorem 25 Let n ∈ ω and A ⊆ ω.

1. If |A| = n then ∆ω(A) ' ∆n.
2. If |A| = ω then ∆ω(A) ' ∆ω.
3. If |A| = ω then ∆ω

+(A) ' ∆ω
+.

Proof Assume that |A| = n and let ρ : n → A be strictly increasing. Define
φ : ∆ω(A) → ∆n by setting φ(f) = f ◦ ρ for all f ∈ ∆ω(A). This function is
one-to-one and if g ∈ ∆n then φ(f) = g when

f(m) =

{
(g ◦ ρ−1)(m), if m ∈ A

0, if m /∈ A

Therefore ranφ = ∆n.
Let f, g ∈ ∆ω(A) such that f ≤ g and let σ ∈ T (f, g). We would like to use

ρ−1 ◦ σ to show that φ(f) ≤ φ(g), however A may not be a subset of ranσ, in
which case n is not a subset of ran(ρ−1◦σ). If m ∈ A and m /∈ ranσ then f(m) =
g(m) = 0. Let k = min{m ∈ ω : (f ◦ σ)(m) = 0}. Note that (g ◦ σ)(m) = 0 for



14

all m ≥ k. We can enumerate A − ran σ as {mj : j = k, . . . , n − 1}. For every
m ∈ ω set

σ1(j) =





σ(j), if j < k

mj , if k ≤ j < n

σ(j − n + k), if n ≤ j

Let i, j ∈ ω with i < j. If j < k then σ1 = σ(i) 6= σ(j) = σ1(j). If n ≤ i
then σ1(i) = σ(i − n + k) 6= σ(j − n + k) = σ1(j). If i < k and n ≤ j then
i < j − n + k so σ1(i) = σ(i) 6= σ(j − n + k) = σ1(j). Thus σ1 : ω → ω is
one-to-one.

Let m ∈ ω with f(m) > 0. There is j ∈ ω such that σ(j) = m. Now j < k,
so σ1(j) = σ(j) = m. Similarly, if g(m) > 0 then m ∈ ranσ1.

Again let i, j ∈ ω with i < j. If j < k then

(f ◦ σ1)(i) = (f ◦ σ)(i) ≥ (f ◦ σ)(j) = (f ◦ σ1)(j) and
(g ◦ σ1)(i) = (g ◦ σ)(i) ≥ (g ◦ σ)(j) = (g ◦ σ1)(j)

so f ◦ σ1 and g ◦ σ1 are decreasing. We also have the following property.

(f ◦ σ1)(i)(g ◦ σ1)(j) = (f ◦ σ)(i)(g ◦ σ)(j)
≤ (f ◦ σ)(j)(g ◦ σ)(i)
= (f ◦ σ1)(j)(g ◦ σ1)(i)

If k ≤ j then (f ◦ σ1)(j) = (g ◦ σ1)(j) = 0 so (f ◦ σ1)(i) ≥ (f ◦ σ1)(j),
(g ◦ σ1)(i) ≥ (g ◦ σ1)(j), and (f ◦ σ1)(i)(g ◦ σ1)(j) ≤ (f ◦ σ1)(j)(g ◦ σ1)(i).
Therefore σ1 ∈ T (f, g). Now set τ = ρ−1 ◦ σ1. Then τ ¹ n is a permutation on n
and will show that φ(f) ≤ φ(g) in ∆n.

To show that φ−1 also preserves order, let f, g ∈ ∆ω(A) such that φ(f) ≤ φ(g)
in ∆n. There is a permutation σ on n such that (f ◦ ρ) ◦ σ and (g ◦ ρ) ◦ σ are
decreasing, and Property (∗) of Definition 6 is satisfied by φ(f), φ(g), and σ on n.

Define σ1 : ω → ω by setting

σ1(m) =

{
σ(m), if m < n

m, if n ≤ m

Let ρ0 : ω−n → ω−A be one-to-one and set ρ1 = ρ∪ ρ0. Set τ = ρ1 ◦ σ1. Then
τ : ω → ω is one-to-one. Let i, j ∈ ω with i < j. If j < n then

(f ◦ τ)(i) = ((f ◦ ρ) ◦ σ)(i) ≥ ((f ◦ ρ) ◦ σ)(j) = (f ◦ τ)(j)
(g ◦ τ)(i) = ((g ◦ ρ) ◦ σ)(i) ≥ ((g ◦ ρ) ◦ σ)(j) = (g ◦ τ)(j)

so f ◦ τ and γ ◦ τ are decreasing. Also,

(f ◦ τ)(i)(g ◦ τ)(j) = ((f ◦ ρ) ◦ σ)(i)((g ◦ ρ) ◦ σ)(j)
≤ ((f ◦ ρ) ◦ σ)(j)((g ◦ ρ) ◦ σ)(i)
= (f ◦ τ)(j)(g ◦ τ)(i)

If n ≤ j then σ1(j) = j and ρ1(j) ∈ A, so (f ◦ τ)(j) = (g ◦ τ)(j) = 0. Thus
(f ◦ τ)(i) ≥ (f ◦ τ)(j), (g ◦ τ)(i) ≥ (g ◦ τ)(j), and (f ◦ τ)(i)(g ◦ τ)(j) = 0 ≤
(f ◦ τ)(j)(g ◦ τ)(i).
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If m ∈ ω and f(m) > 0 or g(m) > 0 then m ∈ A and there is j ∈ n such that
ρ(j) = m. Let i = σ−1(j). Then τ(i) = (ρ1 ◦ σ1)(i) = m. Therefore τ ∈ T (f, g)
and f ≤ g. So φ is an order isomorphism.

For the proofs of parts 2 and 3, let ρ : ω → A be strictly increasing and onto.
Set φ(f) = f ◦ ρ. The proof that φ : ∆ω(A) → ∆ω or φ : ∆ω

+(A) → ∆ω
+ is

an order isomorphism is similar to the proof of part 1. The only part in which we
must be careful is in showing that φ preserves order. Let f, g ∈ ∆ω(A) with f ≤ g
and let σ ∈ T (f, g). We would like to proceed as before in using σ to create a
one-to-one function σ1 : ω → ω such that σ1 ∈ T (f, g), then using τ = ρ−1 ◦ σ1.
The problem arises from the fact that ρ−1 ◦ σ need not be defined on all of ω, so
we must make some adjustments to σ in order to create σ1. If ranσ ⊆ A then we
can just set σ1 = σ.

Assume that ran σ 6⊆ A. If n ∈ (ran σ) − A and m ∈ ω such that σ(m) = n
then (f◦σ)(m) = 0. But then {n ∈ ω : f(n) > 0} is finite, so {n ∈ A : f(n) = 0}
is infinite. Also, {n ∈ ω : (f ◦σ)(n) = 0} is infinite, so we can define a one-to-one
function σ1 : ω → ω such that σ1(n) = σ(n) if (f ◦ σ)(n) > 0 and σ1(n) ∈ A
with f(σ1(n)) = 0 if (f ◦ σ)(n) = 0. Then σ1 ∈ T (f, g) and ρ−1 ◦ σ1 is a one-to-
one function from ω into ω as desired. ut

The model ∆n can be nicely broken into sections that depend upon how the
elements within the section can be written in decreasing order. Each permutation σ
on n defines a section, which consists of those functions f with the property that
f ◦σ is decreasing. The section based on the identity permutation is the section of
functions that are already decreasing. The model ∆ω is also sectioned in the same
way.

Definition 26 For every one-to-one function σ : ω → ω let ∆ω
σ = {f ∈ ∆ω : σ ∈

R(f)}. If id is the identity function then Λω = ∆ω
id = {f ∈ ∆ω : f is decreasing}.

Set Λω
+ = {f ∈ ∆ω : ∀n ∈ ω(f(n) > 0)}.

Theorem 27 For every one-to-one function σ : ω → ω, ∆ω
σ ' Λω.

Proof For the order isomorphism use the restriction s of the function rσ defined
in Lemma 23 to the set ∆ω

σ . The proof of Lemma 23 shows that s is one-to-one
and that both s and s−1 are strictly increasing. That ran s = Λω follows from the
fact that dom s = ∆ω

s . ut
Theorem 28 For every one-to-one function σ : ω → ω, ∆ω

σ is closed under
suprema of directed subsets.

Proof If 〈fn : n ∈ ω〉 is an increasing sequence in Λω then it has a supremum f
in ∆ω by Corollary 20. Now

f(m) = lim
n∈ω

(fn(m)) ≥ lim
n∈ω

(fn(m + 1)) = f(m + 1)

for all m ∈ ω and therefore f ∈ Λω. That Λω is closed under the suprema of
directed sets follows again from Corollary 20. That every ∆ω

σ is follows from
Theorem 27. ut
Lemma 29 Let f, g ∈ ∆ω. If g ∈ Λω

+ and f ≤ g then f ∈ Λω
+.
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Proof If follows from Lemma 8 that f(n) > 0 for all n ∈ ω. Assume that there is
m ∈ ω such that f(m) ≤ f(m + 1). Let σ ∈ T (f, g). There are j, k ∈ ω such that
σ(j) = m + 1, σ(k) = m, and j < k. Then g(m) = (g ◦ σ)(k) ≤ (g ◦ σ)(j) =
g(m+1). But g(m1) ≤ g(m), so g(m) = g(m+1). Therefore f(m) = f(m+1),
and f is decreasing. ut

Theorem 30 ∆ω contains no minimal elements.

Proof Let f ∈ Λω. First assume that {n ∈ ω : f(n) > 0} is finite. Choose m ∈ ω
such that if n ∈ ω and f(n) > 0 then n < m and 1/m < f(n). Define g as
follows.

g(n) =





1
m

, if n < m

0, if m ≤ n

Then g ∈ Λω. If n + 1 < m then

g(n)f(n + 1) =
1
m

f(n + 1) ≤ 1
m

f(n) = g(n + 1)f(n)

If m ≤ n + 1 then f(n + 1) = 0 and g(n)f(n + 1) ≤ g(n + 1)f(n). Therefore
g < f .

Now assume that {n ∈ ω : f(n) > 0} is infinite. Since f ∈ ∆ω this means
that f(n) > 0 for all n ∈ ω. We can think creating a function g from f by mul-
tiplying each f(n) by a number an. Of course, we want g ∈ Λω so we need∑

n∈ω anf(n) = 1. We also need for g to be decreasing. Therefore we want

an+1f(n + 1) ≤ anf(n) or an+1 ≤ an
f(n)

f(n + 1)
. To get g < f , the maximum

value of g, which is g(0), must be less than the maximum value of f , which is f(0).
Finally, we must have g(n)f(n + 1) ≤ g(n + 1)f(n) for all n. This is equivalent
to anf(n)f(n+1) ≤ an+1f(n+1)f(n), so we need an ≤ an+1. If we generate a
sequence 〈an〉 of positive real numbers that satisfy the following conditions, then
g(n) = anf(n) will give us the desired function.

1. a0 < 1
2.

∑
n∈ω

anf(n) = 1

3. ∀n ∈ ω

(
an ≤ an+1 ≤ an

f(n)
f(n + 1)

)

We will generate such a sequence as follows. Pick an index m such that f(m) >
f(m + 1). At or below m, we will use a single number a for an, and above m we
will use another number b for an. First use property 2 to see how b must be related
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to a.

1 =
∑
n∈ω

anf(n)

= a

m∑
n=0

f(n) + b

∞∑
n=m+1

f(n)

= a

m∑
n=0

f(n) + b

(
1−

m∑
n=0

f(n)

)

b

(
1−

m∑
n=0

f(n)

)
= 1− a

m∑
n=0

f(n)

b =
1− a

∑m
n=0 f(n)

1−∑m
n=0 f(n)

Whatever we use for a, this definition of b will ensure that property 2 is satisfied.
To simplify the notation, we will use c =

∑m
n=0 f(n). Note that 0 < c < 1. Now

consider property 3. If n+1 ≤ m or m < n then an = an+1 and property 3 holds.
We want a = am ≤ am+1 = b and

b = am+1 ≤ am
f(m)

f(m + 1)
= a

f(m)
f(m + 1)

Make this inequality an equality and solve for a.

1− ac

1− c
= a

f(m)
f(m + 1)

f(m + 1)(1− ac) = af(m)(1− c)
f(m + 1)− af(m + 1)c = af(m)(1− c)

a[f(m + 1)c + f(m)(1− c)] = f(m + 1)

a =
f(m + 1)

f(m + 1)c + f(m)(1− c)

Now f(m + 1) < f(m). Therefore

f(m + 1)(1− c) < f(m)(1− c)
f(m + 1)− f(m + 1)c < f(m)(1− c)

f(m + 1) < f(m + 1)c + f(m)(1− c)

So 0 < a < 1.

The definition of a and b guarantees that b = a
f(m)

f(m + 1)
, so property 3 is

satisfied. Therefore g < f .
The result now holds for all f ∈ ∆ω because each ∆ω

σ is order isomorphic
to Λω. ut
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5 Approximation

In this section we will investigate the notion of approximation in ∆ω. The ability
to tell when the information contained in one state is essential to the information
contained in another is a powerful property of ∆n. An important tool in the study
of this property in [3] is the path from the least element of ∆n to another given
element. We will lose the ability to approximate in the sense of [3] because of
the fact that ∆ω does not have a minimum element. These paths will play an
significant role in our investigation.

Definition 31 Let f, g ∈ ∆ω. The path from f to g is the function
πfg : [0, 1] → ∆ω given by πfg(t) = (1− t)f + tg for every t ∈ [0, 1].

The Mixing Law tells us that if f ≤ g then the range of πf,g is a chain. In ∆n

these paths are used to determine when one element is weakly way below another.
There f ¿w g if and only if there is t ∈ [0, 1) such that f ≤ πfg(t). In ∆ω, we
will use these paths to show that, in fact, no element of ∆ω is weakly way below
another.

Theorem 32 For every f ∈ ∆ω, ↑↑wf = ∅.

Proof Let f, h ∈ Λω with f < h. First assume that {n ∈ ω : h(n) > 0} and
{n ∈ ω : f(n) > 0} are both finite. Pick m ∈ ω such that m ≥ 1, f(n) = 0 for
all n ≥ m, and 1/(m + 1) < min{h(n) : h(n) > 0}. Define g : ω → [0, 1] as
follows.

g(n) =

{
1

m+1 0 ≤ n ≤ m

0 m < n

Then g ∈ Λω. If n < m then

g(n)h(n) =
1

m + 1
h(n + 1) ≤ 1

m + 1
h(n) = g(n + 1)h(n)

If m ≤ n then h(n) = 0 so g(n)h(n + 1) = g(n + 1)h(n). Therefore g < h.
Then C = πgh[[0, 1)] is a chain in Λω whose supremum is h. Let t ∈ [0, 1) and let
k < m such that f(k) > f(k + 1) = 0. Then h(k + 1) = 0 and

f(k)πgh(t)(k + 1) = f(k)
[

1− t

m + 1
+ th(k + 1)

]

=
f(k)(1− t)

m + 1
> 0 = f(k + 1)πgh(t)(k)

Therefore C ∩ ↑ f = ∅ and f 6¿w h.
Next assume that {n ∈ ω : h(n) > 0} is finite and {n ∈ ω : f(n) > 0} is

infinite. Since f ∈ Λω this means that f(n) > 0 for all n ∈ ω. Choose m ∈ ω such
that m ≥ 1, h(n) = 0 for all n ≥ m, and f(m + 1) < f(m). Define g : ω → [0, 1]
as follows.

g(n) =

{
1

m+2 n ≤ m + 1
0 m + 1 < n
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Then g ∈ Λω. If n < m then

g(n)h(n + 1) =
1

m + 2
h(n + 1) ≤ 1

m + 2
h(n) = g(n + 1)h(n)

If m ≤ n then h(n) = 0 so g(n)h(n + 1) = g(n + 1)h(n). Therefore g < h.
Again, C = πgh[[0, 1)] is a chain in Λω whose supremum is h. Let t ∈ [0, 1).

f(m)πgh(t)(m + 1) = f(m)
1− t

m + 2
> f(m + 1)

1− t

m + 2
= f(m + 1)πgh(t)(m)

Therefore C ∩ ↑ f = ∅ and f 6¿w h.
Finally, assume that {n ∈ ω : h(n) > 0} is infinite. Then h(n) > 0 for

all n ∈ ω, as is f(n). Let m ∈ ω such that m ≥ 1, there is j < m such that
f(j + 1) < f(j), and there is j < m such that h(j + 1) < h(j). Set

b =
1

(m + 1)h(m) +
∑∞

n=m+1 h(n)

and a = bh(m). Define g : ω → [0, 1] as follows.

g(n) =

{
a 0 ≤ n ≤ m

bh(n) m < n

Then g(n) > 0 and g(n) ≥ g(n + 1) for all n ∈ ω.

∑
n∈ω

g(n) = a(m + 1) + b

∞∑
n=m+1

h(n)

= b

[
(m + 1)h(m) +

∞∑
n=m+1

h(n)

]

= 1

Therefore g ∈ Λω. If n + 1 < m then

g(n)h(n + 1) = ah(n + 1) ≤ ah(n) = g(n + 1)g(n)

If m < n then g(n)h(n + 1) = bh(n)h(n + 1) = g(n + 1)h(n). Finally,

g(m)h(m + 1) = ah(m + 1) = bh(m)h(m + 1) = g(m + 1)h(m)

Therefore g < h and C = πgh[[0, 1)] is a chain in Λω whose supremum is h.
Let k < m such that f(k + 1) < f(k) and let t ∈ [0, 1). If f(k)πgh(t)(k) ≤
f(k + 1)πgh(t)(k + 1) then

f(k)[(1− t)a + th(k + 1)] ≤ f(k + 1)[(1− t)a + th(k)]
(1− t)af(k) + tf(k)h(k + 1) ≤ (1− t)af(k + 1) + tf(k + 1)h(k)
0 < (1− t)a[f(k)− f(k + 1)] ≤ t[f(k + 1)h(k)− f(k)h(k + 1)] ≤ 0

Therefore C ∩ ↑ f = ∅ and f 6¿w h. The result follows because ∆ω
σ is order

isomorphic to Λω for all σ. ut
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It is easy to see that in ∆n the sets ↓ f are not directed as long as f 6= min ∆n.
For example, 〈.5, .5, 0〉 and 〈.5, 0, .5〉 are both smaller than 〈1, 0, 0〉, but they have
no common successor other than 〈1, 0, 0〉. It is conceivable that, due to the breadth
of ∆ω, if f ∈ ∆ω and {n ∈ ω : f(n) > 0} is infinite, then ↓ f is directed. But this
does not happen.

Theorem 33 For every h ∈ ∆ω, ↓ h is not directed.

Proof The argument that ↓ e0 is not directed is essentially the same as the example
given above for ∆n. Just put an infinite string of zeros at the end of each 3-tuple.
We will prove our result for h ∈ Λω. The general result then follows. Assume that
h ∈ Λω with h 6= e0 and that {n ∈ ω : h(n) > 0} is finite. Let m = max{n ∈
ω : h(n) > 0} and set a = 1/(1 + h(m)) and b = h(m)/(1 + h(m)). Note that
0 < a < 1, 0 < b < 1, and b = ah(m). Define f and g as follows.

f(n) =





ah(n) n ≤ m

2b/3 n = m + 1
b/3 n = m + 2
0 m + 2 < n

g(n) =





ah(n) n ≤ m

b/3 n = m + 1
2b/3 n = m + 2
0 m + 2 < n

Then
∑
n∈ω

f(n) =
m∑

n=0

ah(n) + b = a + b = 1

and
∑

n∈ω g(n) = 1 by the same argument. So f, g ∈ ∆ω. If n < m then f(n +
1) = ah(n + 1) ≤ ah(n) = f(n). Also, f(m + 1) = 2b/3 < b = ah(m) = f(m)
and f(m+2) = b/3 < 2b/3 = f(m+1). If n ≥ m+2 then f(n+1) = 0 ≤ f(n).
Therefore f ∈ Λω. If n < m then f(n)h(n+1) = ah(n)h(n+1) = f(n+1)f(n).
If m ≤ n then f(n)h(n + 1) = 0 ≤ f(n + 1)h(n). Thus f ≤ h.

Let ρ be the function from ω onto ω which sends m + 1 to m + 2 and m + 2
to m + 1, and is the identity everywhere else. If n < m then (h ◦ ρ)(n + 1) =
h(n+1) ≤ h(n) = (h◦ρ)(n). If n ≥ m then ρ(n+1) ≥ m+1 so (h◦ρ)(n+1) =
0 ≤ (h ◦ ρ)(n). Thus ρ ∈ R(h).

If n < m then

(g ◦ ρ)(n + 1) = g(n + 1) = ah(n + 1) ≤ ah(n) = g(n) = (g ◦ ρ)(n)

Now ρ(m) = m and ρ(m + 1) = m + 2 so

(g ◦ ρ)(m + 1) = g(m + 2) =
2b

3
< b = ah(m) = g(m) = (g ◦ ρ)(m)

Also, ρ(m + 2) = m + 1 so

(g ◦ ρ)(m + 2) = g(m + 1) =
b

3
<

2b

3
= g(m + 2) = (g ◦ ρ)(m + 1)

Finally, if n ≥ m + 2 then ρ(n + 1) = n + 1 > m + 2 so (g ◦ ρ)(n + 1) = 0 ≤
(g ◦ ρ)(n). Therefore ρ ∈ R(g). We will next show that ρ ∈ T (g, h).
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If n < m then

(g ◦ ρ)(n)(h ◦ ρ)(n + 1) = g(n)h(n + 1) = ah(n)h(n + 1)
= g(n + 1)h(n) = (g ◦ ρ)(n + 1)(h ◦ ρ)(n)

If m ≤ n then n + 1 ≥ m + 1 so ρ(n + 1) ≥ m + 1. Therefore (g ◦ ρ)(n)(h ◦
ρ)(n + 1) = 0 ≤ (g ◦ ρ)(n + 1)(h ◦ ρ)(n), and ρ ∈ T (g, h).

Now let p ∈↓ h such that f ≤ p and g ≤ p. If n > m+2 then f(n) = g(n) = 0
so p(n) = 0. Let σ ∈ T (f, p) and τ ∈ T (f, p). Since σ ∈ R(f) we know that
σ(m + 1) = m + 1 and σ(m + 2) = m + 2. Since τ ∈ R(g) we know that
τ(m + 1) = m + 2 and τ(m + 2) = m + 1. Therefore

p(m + 1) = (p ◦ σ)(m + 1) = (p ◦ τ)(m + 1) = p(m + 2)

By Degeneration it must be true that p(m + 1) = p(m + 2) = 0.
Because p < h, p+ < h+ by Lemma 12, so p(0) < h(0). There must be some

k < m such that p(k) < h(k) and h(k + 1) < p(k + 1). It is obvious from the
second inequality that 0 < p(k+1), but it is also true that 0 < p(k) because p < h
and h(k) > 0. Therefore there are i, j ∈ ω such that σ(i) = k and σ(j) = k + 1.
We also know that i < j because h is decreasing. But

(f ◦ σ)(i)(p ◦ σ)(j) = f(k)p(k + 1) = ah(k)p(k + 1)
> ah(k + 1)p(k) = f(k + 1)p(k) = (f ◦ σ)(j)(p ◦ σ)(i)

a contradiction.
Now assume that h(n) > 0 for all n ∈ ω. Let k0, k1 ∈ ω such that k0 < k1,

h(k0 +1) < h(k0), and h(k1 +1) < h(k1). Define f and g as in Theorem 30 using
k0 in the definition of f and k1 in the definition of g. Let a1 and b1 be the constants
used in the definition of f , and let a2 and b2 be the constants used in the definition
of g. Let p ∈ ↓ h such that f, g ≤ p. Note that f, g, p ∈ Λω

+ by Lemma 29. If
n < k0 then

h(n)
h(n + 1)

=
a1h(n)

a1h(n + 1)
=

f(n)
f(n + 1)

≤ p(n)
p(n + 1)

If k0 ≤ n < k1 then

h(n)
h(n + 1)

=
a2h(n)

a2h(n + 1)
=

g(n)
g(n + 1)

≤ p(n)
p(n + 1)

If k1 ≤ n then

h(n)
h(n + 1)

=
b1h(n)

b1h(n + 1)
=

f(n)
f(n + 1)

≤ p(n)
p(n + 1)

Therefore h ≤ p. ut

This means that for every g ∈ ∆ω there is no f < g such that f is a natural
starting point for a path to g. We can always bypass f to get to g.
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6 Continuous Functions and Measurements

The next theorem corresponds to Corollary 2.18 in [3] and the following corollary
to Corollary 2.19 in [3]. They are proved in same way.

Theorem 34 Let X be a dcpo. An increasing function φ : ∆ω → X is Scott
continuous if and only if φ(supn∈ω fn) = supn∈ω φ(fn) for every increasing se-
quence 〈fn : n ∈ ω〉 in ∆ω.

Let [0,∞)∗ represent the set [0,∞) with its reverse order.

Corollary 35 The function s : ∆ω → [0,∞)∗ given by s(f) = − ln(f+) for all
f ∈ ∆ω is Scott continuous and has the following properties.

1. For all f, g ∈ ∆ω, if f ≤ g and s(f) = s(g) then f = g. That is, if f < g then
s(f) < s(g).

2. For all f ∈ ∆ω, s(f) = 0 if and only if f ∈ max∆ω.

Definition 36 The natural retraction of ∆ω is the function r : ∆ω → Λω given
by r(f) = f ◦ σ for all f ∈ ∆ω and σ ∈ R(f).

That r is a function follows from the fact the f ◦ σ = f ◦ τ for all σ, τ ∈ R(f).

Theorem 37 The natural retraction is a Scott continuous retraction from ∆ω

onto Λω.

Proof It is obvious from the definition of r that r is the identity on Λω and that
ran r = Λω. If f, g ∈ ∆ω and f < g then there is σ ∈ R(f) ∩ R(g). By the
comments after Lemma 23, r(f) = rσ(f) < rσ(g) = r(g). If f, g ∈ ∆ω

σ and
f ◦ σ < g ◦ σ then σ also shows that f < g. Thus r is strictly increasing and
r ¹ ∆ω

σ is an order isomorphism. It follows from Theorem 34 that r is Scott
continuous. ut

The natural retraction is also an open mapping under the Scott topology. We
will use the following lemma to prove this.

Lemma 38 Let g ∈ Λω and let σ : ω → ω be one-to-one. If

f(n) =

{
g(σ−1(n)) n ∈ ranσ

0 n /∈ ranσ

for all n ∈ ω then f ∈ ∆ω and σ ∈ R(f).

Proof Obviously f is a function from ω into [0, 1]. If f(n) > 0 then n ∈ ranσ.
Also, (f ◦ σ)(n) = f(σ(n)) = g(σ−1(σ(n))) = g(n) for every n ∈ ω. Therefore

∑
n∈ω

f(n) =
∑

m∈ran σ

f(n) =
∑
n∈ω

f(σ(n)) =
∑
n∈ω

g(n) = 1

Thus f ∈ ∆ω and, since f ◦ σ = g ∈ Λω, we also have σ ∈ R(f). ut
Theorem 39 If U is a Scott-open subset of ∆ω and r is the natural retraction then
r[U ] is a Scott-open subset of Λω.
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Proof Let s ∈ r[U ] and let t ∈ Λω with s < t. Let f ∈ U such that s = r(f).
There is σ ∈ R(f) such that r(f) = f ◦ σ. Set

g(n) =

{
t(σ−1(n)) n ∈ ran σ

0 n /∈ ran σ

for all n ∈ ω. Then g ∈ ∆ω and σ ∈ R(g). If n ∈ ω then

(f ◦σ)(n)(g◦σ)(n+1) = s(n)t(n+1) ≤ s(n+1)t(n) = (f ◦σ)(n+1)(g◦σ)(n)

so f ≤ g. But U is increasing, so g ∈ U . Therefore t = r(g) ∈ r[U ].
Let 〈tk : k ∈ ω〉 be an increasing sequence in Λω such that supn∈ω tk = s ∈

r[U ]. Let f ∈ U and let σ ∈ R(f) such that f ◦ σ = r(f) = s. For every k ∈ ω
and every n ∈ ω define fk(n) by the following equation.

fk(n) =

{
tk(σ−1(n)) n ∈ ranσ

0 n /∈ ranσ

Then 〈fk : k ∈ ω〉 is a sequence in ∆ω and σ ∈ R(fk) for every k ∈ ω. If k, n ∈ ω
then

(fk ◦ σ)(n)(fk+1 ◦ σ)(n + 1) = tk(n)tk+1(n + 1)
≤ tk(n + 1)tk+1(n) = (fk ◦ σ)(n + 1)(fk+1 ◦ σ)(n)

so fk ≤ fk+1.
If n ∈ ranσ then

lim
k→∞

fk(n) = lim
k→∞

tk(σ−1(n)) = s(σ−1(n)) = f(n)

so f = supk→∞ fk by Theorem 19. But f ∈ U and U is Scott-open, so there is
k ∈ ω such that fk ∈ U . Then tk = r(fk) ∈ r[U ] and r[U ] is Scott-open. ut

The following definition is from [3].

Definition 40 Let X be a set. A function φ : ∆ω → X is symmetric if and only if
φ(f ◦ σ) = φ(f) for every one-to-one function σ from ω onto ω.

The next theorem corresponds to Lemma 2.29 in [3] and is proved the same
way.

Theorem 41 If X is a set and φ : Λω → X then there is a unique symmetric
extension φ : ∆ω → X given by φ = φ ◦ r. If X is an ordered set and φ is
increasing, strictly increasing, or Scott continuous, then so is φ.

The examples of symmetric functions given in [3] apply here, except for Shan-
non entropy. Shannon entropy for ∆n is defined by

S(f) = −
n−1∑

k=0

f(k) ln(f(k))
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where the summand is assumed to be 0 when f(k) = 0. There is no problem
with the existence of this function for finite sequences. However, there are some
elements of ∆ω for which the infinite version of the series diverges. I am indebted
to my University of Dayton colleague, Bob Gorton, for the following example. Let

f(n) =
1

(n + 2) ln(n + 2)
and g(n) =

1
(n + 2)(ln(n + 2))2

for n ∈ ω. A simple

integral test shows that
∑

n∈ω f(n) diverges and
∑

n∈ω g(n) converges. Also

f(n) =
ln(n + 2)

(n + 2)(ln(n + 2))2

≤ ln[(n + 2)(ln(n + 2))2]
(n + 2)(ln(n + 2))2

= |g(n + 2) ln(g(n + 2))|

for all n ≥ 1. Therefore
∑

n∈ω g(n) ln(g(n)) diverges. Of course, g /∈ ∆ω, but
we can rectify that by multiplying g by a constant. The resulting element of ∆ω

has the same convergence properties as g. We will say that the states for which
the Shannon entropy diverges have infinite Shannon entropy. One can think of
these states as having probabilities that are so close to one another that the entropy
measurement sees all the outcomes as essentially the same and therefore gives
an infinite value to the state. Or one can think of these states as having so much
noise that any underlying structure is completely lost. As we will see the relation
between the states with finite Shannon entropy and those with infinite Shannon
entropy is rather interesting. One would expect that if state f has finite Shannon
entropy and state g is larger than f and therefore carries more information than f ,
then g would not only have finite Shannon entropy but would have a lower entropy
value than f . This is precisely what happens. But we can also find a sequence of
states, each with infinite Shannon entropy, which converge to a pure state, which
has Shannon entropy 0. This would be like having an infinite number of com-
pletely unintelligible messages suddenly resolving themselves into one in which
the message is certain.

It is not hard to use the properties of the function−x ln x to show that if f < g
and f has finite Shannon entropy, then g has finite Shannon entropy. It is not so
easy to show that the value of the entropy is actually decreasing. We will follow
the approach used in [3].

Definition 42 For every f, g ∈ ∆ω the relative Shannon entropy of g given f is

S(g‖f) =
∑
n∈ω

g(n) ln
[

g(n)
f(n)

]

if the series converges.

If f(m) = 0 and g(m) 6= 0 for some m then we may assign the value ∞ to
g(m) ln[g(m)/f(m)] and therefore to

∑
g(n) ln[g(n)/f(n)]. If g(m) = 0 then

g(m) ln[g(m)/f(m)] is assumed to be 0 regardless of the value of f(m).

Lemma 43 S(g‖f) ≥ 0 for all f, g ∈ ∆ω and S(g‖f) = 0 if and only if f = g.
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Proof Fix g ∈ ∆ω. Then
∑

g(n) = 1. Let U(f) =
∑

g(n) ln[g(n)/f(n)]. The
maximum value of U(f) is obviously ∞. We will use the method of Lagrange
multipliers to show that the minimum value of U(f) subject to

∑
f(n) = 1 is 0

and it occurs when f = g. We need consider only those functions f which are 0
only when g is also 0.

For every n ∈ ω when we take a partial derivative of U(f) with respect to
the variable f(n) we get −g(n)/f(n) = λ or −g(n) = λf(n). Therefore −1 =
−∑

g(n) = λ
∑

f(n) = λ. It follows that U reaches its minimum if and only if
f = g. In that case, U(f) =

∑
g(n) ln[g(n)/f(n)] = 0. ut

Theorem 44 If f, g ∈ ∆ω and f has finite Shannon entropy then g has finite
Shannon entropy and S(f) > S(g).

Proof Assume that f, g ∈ Λω. There is m ∈ ω such that if n ≤ m then f(n) <
g(n) and if n > m then f(n) ≥ g(n). Note that if f(m) = 0 and f(k) = 0
then g(k) = 0 and we may assign the value 0 to [g(k) − f(k)] ln[f(k)/f(m)].
Furthermore, if f(m) = 0 and f(k) 6= 0 then k < m so f(k) < g(k) and we
may assign the value ∞ to [g(k)− f(k)] ln[f(k)/f(m)]. If follows that for every
n > m

n∑

k=0

[g(k)− f(k)] ln f(k)

=
m−1∑

k=0

ln
[

f(k)
f(m)

]
+

n∑

k=m+1

[g(k)− f(k)] ln
[

f(k)
f(m)

]
≥ 0

and therefore
n∑

k=0

g(k) ln f(k)−
n∑

k=0

f(k) ln f(k) ≥ 0

or

−
n∑

k=0

f(k) ln f(k) ≥ −
n∑

k=0

g(k) ln f(k).

By Lemma 43 we have
∑n

k=0 g(k) ln[g(k)/f(k)] ≥ 0, so

−
n∑

k=0

g(k) ln f(k) ≥ −
n∑

k=0

ln g(k)

and

−
n∑

k=0

f(k) ln f(k) ≥ −
n∑

k=0

g(k) ln g(k).

Thus limn→∞
∑n

k=0 g(k) ln g(k) converges, g has finite entropy, and S(f) ≥
S(g).

If S(f) = S(g) then

−
∞∑

k=0

g(k) ln f(k) = −
∞∑

k=0

g(k) ln g(k)

and S(g‖f) = 0, which means that f = g. The result for general f and g follows
from symmetry. ut
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As a consequence, S is increasing as a function into [0,∞)∗. Also, if f ≤ g
and g has infinite entropy then so does f .

We will use the following lemma in an example of a sequence of states with
infinite entropy which converge to a state with finite entropy.

Lemma 45 Let f ∈ ∆ω. If f has infinite Shannon entropy and 0 < a then af has
infinite Shannon entropy.

Proof If the series S(af) =
∑

n∈ω af(n) ln[af(n)] converges, then so does the
series

∑
n∈ω[f(n) ln[af(n)]− f(n) ln a] =

∑
n∈ω f(n) ln f(n) = S(f). ut

Example 46 There is an increasing sequence 〈fn〉 in ∆ω such that each fn has
infinite Shannon entropy and limn→∞ fn = e0.

Let f ∈ Λω with infinite Shannon entropy. Let a be a number between 0 and 1,

and set b =
a[f(0)− 1] + 1

f(0)
. Then

a < 1
a[f(0)− 1] > f(0)− 1

b =
a[f(0)− 1] + 1

f(0)
> 1

If we set g(0) = bf(0) and g(n) = af(n) for all n > 0 then
∑
n∈ω

g(n) = bf(0) + a
∑
n∈ω

f(n)

= bf(0) + a[1− f(0)]
= 1

So g ∈ Λω. Furthermore,

f(0)g(1) = af(0)f(1) ≤ bf(0)f(1) = f(1)g(0)

and, for n > 0,

f(n)g(n + 1) = af(n)f(n + 1) = f(n + 1)g(n)

and therefore f < g.
Set f0 = f and, for every n ∈ ω, set fn+1(0) = bfn(0) and fn+1(m) =

afn(m) for m > 0. Then 〈fn〉 is an increasing sequence of states in Λω each
of which has infinite Shannon entropy by Lemma 45. But for every m > 0 we
have limn→∞ fn(m) = limn→∞ anf(m) = 0. Thus limn→∞ fn(0) = 1 and
limn→∞ fn = e0.

The examples of symmetric functions in [3] play a very important role in the
model ∆n. They are measurements. They measure the information content of an
element of ∆n and can tell us how close to a pure state a particular element of ∆n

lies. But ∆ω offers too many ways to approach a maximal element. These sym-
metric functions cannot keep track of all the elements as well in this setting. This
means, in particular, that entropy is no longer a measurement.
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Definition 47 Let X be an ordered set and b ∈ X . A Scott continuous map
µ : X → [0,∞)∗ measures the content of b if and only if for every Scott neighbor-
hood U of b there is a Scott neighborhood V of µ(b) such that µ−1[V ]∩ ↓ b ⊆ U .

We say that µ measures A ⊆ X when µ measures the content of every element
of A.

Definition 48 Let X be an ordered set. A Scott continuous function µ : X →
[0,∞)∗ is a measurement of X if and only if µ measures kerµ = {a ∈ X :
µ(a) = 0}.

These definitions can be generalized by replacing [0,∞)∗ by a dcpo.

Theorem 49 If µ : ∆ω → [0,∞)∗ is symmetric and kerµ = max ∆ω then µ is
not a measurement of ∆ω.

Proof In order to be a measurement, µ must be Scott continuous, so we may
assume that µ is Scott continuous. For every k ∈ ω let fk be the element of ∆ω

such that fk(0) = 1− 2−k−1, fk(1) = 2−k−1, and fk(n) = 0 for all n > 1. Then
〈fk : k ∈ ω〉 is an increasing sequence in Λω and supk∈ω fk = e0. Define a new
sequence by setting gk(0) = 1−2−k−1, gk(k+1) = 2−k−1, and gk(n) = 0 for all
other values of n. We will show that K =

⋃
k∈ω ↓ gk is Scott-closed. It is clearly

decreasing.
Assume that there is f ∈ ∆ω such that B = {k ∈ ω : f ≤ gk} is infinite. We

can write B = {kj : j ∈ ω} in such a way that ki < kj when i < j. Let j ∈ ω
with j > 0, and let σ ∈ R(f) ∩ R(gk0) and τ ∈ R(f) ∩ R(gkj ). Now σ(0) = 0
and σ(1) = k0 + 1 by the definition of gk0 . Therefore f(k0 + 1) ≥ f(kj + 1). But
τ(0) = 0 and τ(1) = kj+1 by the definition of gkj , so f(kj+1) ≥ f(k0+1). Thus
f(kj + 1) = f(k0 + 1) for all j ∈ ω. But then f(kj + 1) = 0 for all j ∈ ω, which
is impossible because gkj (kj +1) > 0. Therefore if f ∈ K then {k ∈ ω : f ≤ gk}
is finite.

Let 〈hn : n ∈ ω〉 be an increasing sequence in K. There is a finite F ⊆ ω
such that {hn : n ∈ ω} ⊆ ⋃

k∈F ↓ gk. This means that there is k ∈ ω such that
{hn : n ∈ ω} ⊆ ↓ gk. Then supn∈ω hn ∈ ↓ gk ⊆ K. It follows that K is closed
under the suprema of directed subsets and that K is Scott-closed.

Set U = ∆ω − K. U is a Scott neighborhood of e0. Let V be a Scott neigh-
borhood of µ(e0) = 0. There is k ∈ ω such that µ(fk) ∈ V . But µ(gk) = µ(fk)
because µ is symmetric, so gk ∈ µ−1[V ]∩ ↓ e0 and µ−1[V ]∩ ↓ e0 * U . ut

It is hard to imagine a meaningful measurement which is not symmetric, that
is, which can tell the difference between various outcomes within a state and will
assign a different measure of information to the state when the same probabilities
are rearranged among the outcomes.

7 Conclusion

We have seen that the model of Coecke and Martin can be extended to the infinite
dimensional classical states with mixed results. It does provide a picture of in-
creasing certainty or increasing information about the system and it also satisfies
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some basic principles such as Degeneracy. But the important ability to approxi-
mate total or pure states by partial states completely vanishes as does, for the most
part, the ability to measure content of a state in the sense of Martin. Thermody-
namic entropy is still defined on the model and behaves as it should, but Shannon
entropy is not defined over the entire model and displays some surprising behav-
ior. It is not unusual for problems to arise when passing from a finite dimensional
to an infinite dimensional model for quantum physics. It would be nice to know
whether such difficulties are inherit in the systems.
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