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Abstract. We apply an easy and simple technique, the generalized ap-
proximation method (GAM) to investigate the temperature field associated
with the Falkner-Skan boundary-layer problem. The nonlinear partial differ-
ential equations are transformed to nonlinear ordinary differential equations
using the similarity transformations. An iterative scheme for the non-linear
ordinary differential equations associated with the velocity and temperature
profiles are developed via GAM. Numerical results for the dimensionless ve-
locity and temperature profiles of the wedge flow are presented graphically for
different values of the wedge angle and Prandtl number.
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1. Introduction

One of the well-known problems of classical fluid mechanics is the laminar
flow along a stationary plate. When a free stream is parallel to a plate and
the velocity is constant, the situation is known as the Blasius problem. When
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the wall makes a positive angle with the free stream, then the problem is
called a wedge flow problem. The temperature distribution associated with
two-dimensional steady and incompressible wedge flow was first analyzed in
1930s by Falkner and Skan to illustrate the application of Prandtl’s boundary
layer theory. Falkner and Skan developed a similarity transformation method
which reduced a partial differential boundary-layer equation to a nonlinear
third order ordinary differential equation. For further historical context, we
refer the readers to the recent paper by T. Fang and J. Zhanga [7]. Since then
several researchers, including mathematicians, engineers and physicists have
introduced new computational techniques to solve the wedge flow problem.
For example, Lin and Lin [18] provided a very accurate numerical solution us-
ing Runge-Kutta method for forced convection heat transfer from isothermal or
uniform-flux surfaces to fluids of any Prandtl number. Hsu et al. [8] studied the
temperature and flow fields of the flow past a wedge using three methods: the
series expansion method, Runge Kutta integration and the shooting method.
Kuo [13] investigated the temperature field associated with the Falkner- Skan
boundary-layer problem by the differential transformation method. More re-
cently, Yao [21] studied series solution of the temperature distribution in the
Falkner-Skan wedge flow by the homotopy analysis method. N. S. Elgazery [2]
studies the Falkner-Skan equation using Adomian Decomposition Method and
shooting method.

Motivated by [13, 21], in this paper, we revisited the problem of flow of an
incompressible viscous fluid along a wedge placed in a flowing fluid and obtain
estimates for the exact solution of the problem. Here we remark that mesh
generation for the problem domain is the prerequisite for the numerical simu-
lations of most of the numerical methods and in most cases it becomes more
expensive than solving the problem itself. Moreover, series solution methods
such as the series expansion method, homotopy analysis method, Adomian De-
composition Method etc yield wonderful results for a very short domain and
for very small values of the parameters. But in most cases with large domain
and big values of the parameters, the series may not converges and yield inac-
curate results. Our contribution to this problem is that, we provide estimates
for the exact solution and study the effect of the fluid parameters on the ve-
locity field. These estimates determine the region of existence for the solution.
Based on these estimates, we apply a simple analytical technique, the general-
ized approximation method (GAM), [9, 10, 11, 12], a kind of quasilinearization
method [3, 4, 5, 14, 15, 16, 17, 19] which uses linear iterations to approximate
the solution of the nonlinear problems. It is worthwhile to note that GAM
is a theoretical iterative scheme which for each practical problem need to be
developed and such iterative scheme for the problem under consideration have
not been developed previously. For practical point of view, the importance
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of the method is that it uses linear problems to generates a bounded mono-
tone sequence which converges uniformly and rapidly to the solution of the
original problem. The boundedness and monotonicity of the sequence guaran-
teed convergence of the sequence to the exact solution of the problem which
most of the stated methods fail to guarantee. For Mathematical point of view,
the important feature of the method is that, at each iteration, the solution
is bracketed between the iterates and a fixed upper solution. Moreover, our
results are accurate and consistent with the theoretical results for any value of
the parameters and any domain.

The remaining part of this paper is organized as follows: In Section 2, we
will present the problem under consideration. In Section 3, we will discuss
some theorems and definitions about upper and lower solutions of the prob-
lem. In Sections 4 and 5, we formulate the generalized approximation method
and study error analysis, while numerical simulations are presented in Section
6. Finally we present a brief conclusion in Section 7. We have used MATHE-
MATICA for numerical simulations.

2. THE MATHEMATICAL MODEL

The temperature of the wall Tw is assumed to be uniform and constant
and is greater than the free stream temperature T∞. It is further assumed
that the mainstream velocity U∞ is uniform and constant and that the flow
in the laminar boundary layer is two-dimensional, and that the changes in
temperature due to viscous dissipation are small, the flow and heat transfer
are governed by the following equations [13]:

• continuity equation

∂u

∂x
+
∂v

∂y
= 0,(2.1)

• momentum equation

u
∂u

∂x
+ v

∂v

∂y
= U

dU

dx
+ ν

∂2u

∂y2
,(2.2)

• energy equation

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,(2.3)

where u, v are components of velocity in x and y directions of the fluid flow, ν
is the viscosity, U(x) is the reference velocity at the edge of the boundary layer,
α is the thermal diffusivity of the fluid and T is the temperature. Consider a
general case of a power law free stream velocity, that is, U(x) = U∞(x/L)m,
where L is the length of the wedge, x is measured from the tip of the wedge
and m is the Falkner-Skan power-law parameter. For the sketch of the flow
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layout, we refer the readers to [13]. The appropriate boundary conditions are
given by [13]

u(x, 0) = v(x, 0) = 0, T (x, 0) = Tw,

u(x, y) → U(x), T (x, y) → T∞ as y → ∞.
(2.4)

The continuity equation (2.1) is automatically satisfied by the stream func-
tion ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

and the momentum equation (2.2) takes the form

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= U

dU

dx
+ ν

∂3ψ

∂y3
.(2.5)

By the transformation [13]

f(η) =
[1 +m

2

Lm

μU∞

1

x1+m

] 1
2
ψ, η =

[1 +m

2

U∞
μLm

1

x1−m

] 1
2
y, θ =

T − Tw

T∞ − Tw

,

where f is a dimensionless stream function and η is a similarity variable, the
dimensionless momentum equation (2.5) and the dimensionless boundary-layer
energy equation (2.3) become:

f ′′′(η) + f(η)f ′′(η) + λ[1 − (f ′(η))2] = 0, η ∈ (0,∞),(2.6)

θ′′(η) + Pr.f(η)θ′(η) = 0, η ∈ (0,∞),(2.7)

where λπ is the wedge angle and is related to the Falkner–Skan power-law
parameter m through the expression λ = 2m

1+m
, and Pr is the Prandtl number,

equal to the ratio of the momentum diffusivity to thermal diffusivity (Pr =
ν/α) of the fluid and prime ′ denotes differentiation with respect to η.

The boundary conditions (2.4) can be written as

f(0) = f ′(0) = 0, θ(0) = 0, and f ′(η) → 1, θ(η) → 1 as η → ∞.(2.8)

Here we remark that the system of boundary value problems (2.6), (2.7), (2.8)
is nonlinear and the available applied mathematical techniques will not be
sufficient to solve exactly the system. We need to construct computational
algorithm via GAM. Our main contribution is to study the nonlinear system
(2.6), (2.7) under the boundary conditions (2.8). Using the transformation
f(η) =

∫ η

0
w(s)ds, the boundary value problem (2.6), (2.7), (2.8) can be written

as a second order nonlinear boundary value problem

−w′′(η) − w′(η) = g(w,w′), η ∈ (0,∞),

w(0) = 0, w(∞) = 1,
(2.9)
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θ′′(η) + Pr.θ′(η)
∫ η

0

w(s)ds = 0, η ∈ (0,∞),

θ(0) = 0, θ(∞) = 1,

(2.10)

where g(w,w′) = (
∫ η

0
w(s)ds− 1)w′(η) + λ[1 − w2(η)]. To determine the tem-

perature distribution using (2.10), we need to solve the nonlinear boundary
value problem (2.9) for w(η). Equivalently a solution of (2.9), is a solution of
the corresponding integral equation

w(η) = (1 − e−η) +

∫ ∞

0

G(η, s)g(w(s), w′(s))ds, η ∈ (0,∞),(2.11)

where

G(η, s) =

{
1 − e−η, 0 ≤ η < s ≤ ∞
(1 − e−η)es−η, 0 ≤ s < η ≤ ∞

is the Green’s function of the corresponding homogeneous linear problem.
Clearly, G(η, s) > 0 on (0,∞) × (0,∞).

3. Upper and Lower Solutions: Estimates for the exact

solution

Recall the concept of lower and upper solutions corresponding to the BVP
(2.9).

Definition 3.1. A function α ∈ C1(I) is called a lower solution of the BVP
(2.9) if it satisfies the following inequalities,

−α′′ (η) − α′(η) ≤ g(α(η), α′(η)), η ∈ (0,∞)
α(0) ≤ 0, α(∞) ≤ 1.

An upper solution β ∈ C1(I) of the BVP (2.9) is defined similarly by reversing
the inequalities.

Here, α = 0 and β = 1 are lower and upper solutions of the BVP (2.9).

Definition 3.2. For T > 0, a continuous function ω : (0,∞) → (0,∞) is
called a Nagumo function if ∫ ∞

γ

sds

ω(s)
= ∞,

where γ = max{|α(0) − β(T )|, |α(T ) − β(0)|}. We say that g ∈ C[R × R]
satisfies a Nagumo condition on [0, T ] relative to α, β if for x ∈ [minα,maxβ],
there exists a Nagumo function ω such that |g(w,w′)| ≤ ω(|w′|).

The following result is known [1] (Theorem 1.7.1, Page 31).
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Theorem 3.3. Assume that for each T > 0, g(w,w′) satisfies Nagumo’s con-
dition on [0, T ] relative to the pair α, β ∈ C1[[0,∞),R] with α ≤ β on [0,∞).
Suppose also that α, β are lower and upper solutions of (2.9) on [0,∞), re-
spectively. Then the BVP (2.9) has a solution w ∈ C2[[0,∞),R] such that
α ≤ w ≤ β on [0,∞).

Since α = 0, β = 1, therefore for each T > 0, η ∈ [0, T ] and w(η) ∈ [0, 1],
we have

|g(w,w′)| = |(
∫ η

0

w(s)ds−1)w′(η)+λ[1−w2(η)]| ≤ (T+1)|w′(η)|+|λ| = ω(|w′|).

Hence, for each T > 0, g satisfies a Nagomo condition with ω(s) = (T+1)s+|λ|
as a Nagumo function and γ = 1. By Theorem 3.3, the the BVP (2.9) has a
solution u such that α ≤ w ≤ β on [0,∞). Hence

0 ≤ w(η) ≤ 1, 0 ≤ f(η) ≤ η, η ∈ [0,∞).

These are the estimates for w and f .

4. GENERALIZED APPROXIMATION METHOD (GAM)

Differentiating g with respect to w, w′, we obtain

gw = −2λw, gw′ = f(η) − 1, gww = −2λ, gww′ = 0, gw′w′ = 0.

The quadratic form

(w − z)2gww(z, z′) + 2(w − z)(w′ − z′)gww′(z, z′) + (w′ − z′)2gw′w′(z, z′) ≤ 0,

which implies that

g(w,w′) ≤ g(z, z′) + gw(z, z′)(w − z) + gw′(z, z′)(w′ − z′)

= B(z, z′) + (

∫ η

0

z(s)ds− 1)w′ − 2λzw,
(4.1)

where z, z′ ∈ R, B(z, z′) = λ(1 − z2(η) + 2z(η)).
Define h : R

4 → R by

h(w,w′; z, z′) = B(z, z′) + (

∫ η

0

z(s)ds− 1)w′ − 2λzw.

Clearly, h is continuous and satisfies the following relations{
g(w,w′) ≤ h(w,w′; z, z′),

g(w,w′) = h(w,w′;w,w′).
(4.2)

As an initial approximation, choose w0 = β = 1 and consider the following
linear BVP

w′′(η) − w′(η) = h(w(η), w′(η);w′
0(η), w

′
0(η)),

w(0) = 0, w(∞) = 1.
(4.3)
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Using (4.2) and the definition of lower and upper solutions, we obtain

h(w0(η), w
′
0(η); w0(η), w

′
0(η)) = g(w0(η), w

′
0(η)) ≤ −w′′

0(η) − w′
0(η), η ∈ (0,∞)

h(α(η), α′(η); w0(η), w
′
0(η)) ≥ g(α(η), α′(η)) ≥ −α′′(η) − αβ ′(η), η ∈ (0,∞),

which implies that α and w0 are lower and upper solutions of (4.3). Hence, by
Theorem 3.3, solution w1 of (4.3) satisfies α ≤ w1 ≤ w0 on [0,∞). Moreover,
in view of (4.2) and the fact that w1 is a solution of (4.3), we obtain

−w′′
1(η) − w′

1(η) = h(w1(η), w
′
1(η); w0(η), w

′
0(η)) ≥ g(w1(η), w

′
1(η)), η ∈ (0,∞),

(4.4)

which implies that w1 is an upper solution of (2.9).
Similarly, we can show that α and w1 are lower and upper solutions of the

linear BVP

−w′′(η) − w′(η) = h(w(η), w′(η);w′
1(η), w

′
1(η)),

w(0) = 0, w(∞) = 1.
(4.5)

By Theorem 3.3, there exists a solution w2 of (4.5) such that α ≤ w2 ≤ w1 on
(0,∞).

Continuing this process we obtain a monotone sequence {wn} of solutions
of linear problems satisfying

β = w0 ≥ w1 ≥ w2 ≥ w3 ≥ ... ≥ wn−1 ≥ wn ≥ α on (0,∞),

where the element wn is a solution of the following linear problem

−w′′(η) − w′(η) = g(w(η), w′(η);wn−1(η), w
′
n−1(η)),

w(0) = 0, w(∞) = 1,

and is given by

wn(y) = (1 − e−η) +

∫ ∞

0

G(η, s)h(wn(s), w
′
n(s);wn−1(s), w

′
n−1(s))ds, η ∈ (0,∞).

(4.6)

The sequence of functions wn is uniformly bounded and equicontinuous. The
monotonicity and uniform boundedness of the sequence {wn} implies the ex-
istence of a pointwise limit ω on (0,∞). From the boundary conditions, we
have

0 = wn(0) → ω(0) and 1 = wn(∞) → ω(∞).

Hence ω satisfy the boundary conditions. Moreover, by the dominated con-
vergence theorem, for any η ∈ (0,∞), we have∫ ∞

0

G(η, s)h(wn(s), w
′
n(s);wn−1(s), w

′
n−1(s))ds→

∫ ∞

0

G(η, s)g(ω(s), ω′(s))ds.
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Passing to the limit as n→ ∞, (4.6) yields

ω(η) = (1 − e−η) +

∫ ∞

0

G(η, s)g(ω(s), ω′(s))ds, η ∈ (0,∞),(4.7)

which implies that ω is a solution of (2.9). Hence, the BVP (2.10) takes the
form

θ′′(η) + Pr.θ′(η)
∫ η

0

ω(s)ds = 0, η ∈ (0,∞),

θ(0) = 0, θ(∞) = 1.

(4.8)

5. Error Analysis: Rapid convergence

In order to justify that the convergence is faster, we study error analysis
and show that the convergence is quadratic. Define en = wn − w on I, then
we have en(0) = 0, en(∞) = 0 and

−e′′n(η) − e′n(η) = h(η, wn, w
′
n;wn−1, w

′
n−1) − g(η, w, w′), t ∈ [0,∞),

which in view of the mean value theorem, the definition of h and the relation
gu ≤ 0, yields

−e′′n(η) − e′n(η) ≤ (f(η) − 1)e′n(η) + λe′2n−1.

By comparison result, we have en ≤ r on [0,∞), where r is a solution of the
linear boundary value problem,

−r′′n(η) − r′n(η) = (f(η) − 1)r′n(η) + λe′2n−1, r(0) = r(∞) = 0

and is given by

r(η) =

∫ ∞

0

G(η, s)[(f(s) − 1)r′n(s) + λe′2n−1]ds.(5.1)

In view of the boundary conditions, there exists t1 ∈ (0,∞) such that r′(t1) = 0
and in view of the differential equation in (5.1), it follows that the function
r′e

�
f is decreasing. Hence r′(η) ≥ 0, η ∈ [0, t1] and r′(η) ≤ 0, η ∈ [t1,∞)].

Moreover, f(η) being an increasing function of η ensure the existence of t2 ∈
(0,∞) such that f(η) ≤ 1, η ∈ [0, t2] and f(η) ≥ 1, η ∈ [t2,∞)]. Choose
t3 = min{t1, t2} and t4 = max{t1, t2}, then

(f(η)−1)r′n(η) ≤ 0, η ∈ [0, t3], (f(η)−1)r′n(η) ≥ 0, η ∈ [t3, t4], (f(η)−1)r′n(η) ≤ 0, t ∈ [t4,∞).

The negative part of the function (f(η) − 1)r′n(η) is larger than its positive
part. Hence, ∫ ∞

0

G(η, s)[(f(s) − 1)r′n(s)]ds ≤ 0

and consequently, (5.1) reduces to

r(η) =

∫ ∞

0

G(η, s)λe′2n−1ds ≤
∫ ∞

0

(1 − e−s)λe′2n−1dsλ‖e′n−1‖2,(5.2)
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where ‖x‖ =
∫ ∞
0

(1 − e−s)
1
2x(s)ds is the L norm.

6. NUMERICAL RESULTS and DISCUSSION

Results for f, f ′, f ′′ and θ via GAM for different values of the parameter λ
and the Prandtl number Pr are obtained. Numerical simulations show that
only few iterations generated by the GAM is enough to approximate the exact
solution of the problem independent of the choices of the parameters and
the convergence is very fast. For example, see Figures 6.1 for f ′(η) [or u(η)]
corresponding to λ = 0.5 and λ = 1. The corresponding results for λ = 0.5
is also shown in Table 1. Recall that λ = 0 corresponds to the flat plane and
λ = 1 corresponds to the plane stagnation point. The behavior of f, f ′, f ′′

are shown in Fig.6.2 corresponding to λ = 0.5 and λ = 1. The velocity profile
corresponding to λ = 0, 0.5, 1 is shown in Table 2. From Table 2, it follows
that the asymptotic behavior of f ′(η) is observed quicker for larger values
of λ which show the effect of the parameter λ on f ′(η). Thus f ′ achieve its
asymptotic behavior faster as the value of λ increases. In Fig. 6.3, we study the
effect of the Prandtl number Pr on the temperature distribution θ. We observe
that both Prandtl number Pr and λ produce some effect on the temperature
field θ. For λ = 0.5, 1, the temperature field θ is shown for different Prandtl
number Pr = 1, 2, 3, 4, 5 in Fig 6.3. We observe that θ increases and achieve
its asymptotic behavior faster as the value of Pr and λ increases.

,
1 2 3 4

Η�axis

0.2

0.4

0.6

0.8

1

f’�axis u or f’�plot

Fig.1, Results for f ′(η) via GAM for λ = 0.5(left) and λ = 1 (right)
indicating that the iterations converges rapidly to the exact solution
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,

1 2 3 4
Η�axis

0.5

1

1.5

2

2.5

3

� f, f’, f’’�plot

f f’ f’’

Fig.2, Results for f(η), f ′(η) and f ′′(η) via GAM for λ = 0.5 (left) and
λ = 1(right)

1 2 3 4
Η�axis

0.2

0.4

0.6

0.8

1

Θ�axis Θ�plot

Θ1 Θ2 Θ3 Θ4 Θ5

,

1 2 3 4
Η�axis

0.2

0.4

0.6

0.8

1

Θ�axis Θ�plot

Θ1 Θ2 Θ3 Θ4 Θ5

Fig.3, Results for Pr = 1, 2, 3, 4, 5, results via GAM for θ(η) with λ = 1(left)
and λ = 2(right)
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η 0.5 1 1.5 2 2.5 3 3.5 4

w1 0.504121 0.79113 0.926534 0.978723 0.994987 0.999055 0.999869 1
w2 0.412332 0.697532 0.866992 0.950988 0.985119 0.996366 0.999354 1
w3 0.402634 0.683055 0.854516 0.943547 0.981855 0.995298 0.999115 1
w4 0.401596 0.681362 0.852888 0.942472 0.981341 0.995118 0.999073 1
w5 0.401482 0.681173 0.852702 0.942346 0.98128 0.995096 0.999067 1
w6 0.401469 0.681152 0.852681 0.942332 0.981273 0.995093 0.999067 1

Table 1; Results for f ′ obtained via GAM corresponding to λ = 0.5

η 0.5 1 1.5 2 2.5 3 3.5 4

f ′[λ = 0.5] 0.401467 0.68115 0.852678 0.94233 0.981272 0.995093 0.999067 1
f ′[λ = 1] 0.494612 0.777848 0.916165 0.973223 0.992865 0.998446 0.999747 1
f ′[λ = 1.5] 0.609368 0.871622 0.96405 0.991449 0.998288 0.999715 0.999963 1

Table 2; Results for f ′ obtained via GAM corresponding to λ = 0.5, 1, 1.5

7. CONCLUSIONS

In this paper, we have used the generalized approximation method (GAM)
to solve the third-order boundary value problem characterized by the well-
known Falkner-Skan equation. The effectiveness of the method is illustrated
by applying it successfully to various instances of the Falkner-Skan equation.
Effect of parameters on the flow is simulated using MATHEMATICA. Nu-
merical simulations show that the sequence of iterates (approximate solutions)
converges rapidly to the exact solution of the problem.
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