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Abstract 

In this paper we present a numerical solution of a family of generalized fifth-order Korteweg-de 

Vries equations using a meshless method of lines. This method uses radial basis functions for 

spatial derivatives and Runge-Kutta method as a time integrator. This method exhibits high 

accuracy as seen from the comparison with the exact solutions. 
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1. Introduction 

Most of the physical phenomena in nature are modeled by nonlinear partial differential equations 

(PDEs). In general, nonlinear PDEs cannot be solved analytically, and hence need to be solved 

numerically in order to predict the behavior of the system. 

Commonly used numerical methods to approximate the solutions of nonlinear PDEs include 

finite difference methods, collocation methods and Galerkin methods. However, some of these 

methods are not easy to use and sometimes require tedious work and calculation (Wazwaz, 2006; 

Darvishi and Khani, 2007). 

Finite-difference methods are known as effective tools for solving a variety of PDEs (Dehghan 

and Tatari, 2006). Conditional stability of explicit finite-difference schemes puts a severe 

constraint on the time step, while implicit finite-difference schemes are computationally 

expensive (Dehghan, 2006). Furthermore, these methods can be made highly accurate, but 

require a structured grid. Another class of methods known as spectral methods is found to be 

even more accurate but have restriction on the geometry of the problem; for example, in the 

Fourier case we need to have periodic boundary conditions. Finite-element methods have been 

used as an alternative method for numerical solution of PDEs. This family of numerical 

techniques is efficient particularly for solving problems with arbitrary geometry. But the need to 

produce a body-fitted mesh in two- and three-dimensional problems makes these methods quite 

time-consuming and difficult to use (Chantrasirivan, 2004). Overall, finite-element techniques 

are highly flexible, but it is hard to obtain results with high-order accuracy. 

Consequently, to avoid the mesh generation, meshless techniques have attracted the attention of 

researchers in recent years as alternatives to traditional finite element, finite volume and finite 

difference methods. In a meshless (meshfree) method a set of scattered nodes, with no 

connectivity information required among the set of points, is used instead of meshing the domain 

of the problem. Examples of some meshless schemes are the element free Galerkin method, the 

reproducing kernel particle, the local point interpolation, etc (e.g. see Liu and Gu, 2004 and 

references therein). 



Over the last two decades, the radial basis function methods have emerged as a powerful tool for 

scattered data interpolation problems. The use of radial basis functions as a meshless procedure 

for numerical solution of PDEs is based on the collocation scheme. Due to the collocation 

technique, this method does not need to evaluate any integral. The main advantage of numerical 

procedures that use radial basis functions over traditional techniques is the meshless property of 

these methods. Radial basis functions are actively used for solving PDEs (Dehghan and Shokri, 

2006; Uddin et al., 2009; Haq et al., 2010 and references therein). In the above cited work, RBFs 

are used to replace the function and its spatial derivatives, while a finite difference scheme is 

used to march in time. 

This method was first introduced by Kansa in 1990, for the numerical solutions of the PDEs. 

Kansa used the Multiquadric (MQ) RBF to solve the elliptic and parabolic PDEs. Recently, Flyer 

and Wright (2007) indicated RBFs allowed for a much lower spatial resolution, while being able 

to take unusually large time-steps to achieve the same accuracy compared to other methods. 

In this paper we will use method of lines coupled with RBFs to find the numerical solution of the 

family of generalized fifth order KdV (henceforth gfKdV) equation: 

)1(,02  xxxxxxxxxxxxt ducuuubuuauu

where a, b, c and d are constants.  

Eq. (1) is known as Lax’s fifth-order KdV equation (Wazwaz, 2006), if we set a = 30, b = 30, c = 

10 and d = 1 and the Sawada-Kotera equation for a = 45, b =15, c = 15, d = 1 (Lei et al., 2002). 

The method of lines (henceforth MOL) (Schiesser, 1991) is generally recognized as a 

comprehensive and powerful approach to the numerical solution of time-dependent PDEs. This 

method is comprised of two steps: first, approximating the spatial derivatives, and second 

resulting system of semi- discrete ordinary differential equations (ODEs) is then integrated in 

time. Hence the method of lines approximates the solution of PDEs using ODEs integrators. 

In this paper, we will use radial basis functions combined with the MOL, hence calling it MOL-

RBF, to solve the gfKdV equation inspired by (Shen, 2009). As evident from our results, this 

method possesses high accuracy and ease of implementation. The computed results are compared 

with the analytic solutions and good agreement is indicated. The remainder of the paper is 

organized as follows. In Section 2, we show the formulation of RBF method and then we couple 

the RBFs meshless method with the MOL to solve the gfKdV equations. In Section 3, we apply 

this method to Lax’s fifth-order KdV equation and the Sawada-Kotera equation as two examples 

of gfKdV. Section 4 is a comparison of our results with the exact solution and analysis of our 

method. The last section is a brief conclusion.  

 

2. The MOL-RBF method 

A radial basis function is a kind of function with the independent variable ||||),( iii xxxxrr  . 

Some of the commonly used RBFs in the literature are: 
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Inverse Multiquadric (IMQ), 
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               Gaussian (GA), 

where the free parameter c is called the shape parameter of the RBFs. In the above definition x = 

(x, y) are the cartesian coordinates in 2R  and the radius is given by 
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where ),( jj yx  is called the thj  source point of the RBF and is denoted by jx . We choose N 

nodes  si Nix in),...,2,1,( .  Any given smooth function can be represented as a 

linear combination of RBFs: 
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is called the interpolation matrix, consisting of functions forming the basis of the approximation 

space. It follows from Eq. (2) and ,uA   that 

,)()()( uVuAΦ
1 xxxu TN    

where 

.)()( 1
AΦV

 xx T  

The convergence of RBF interpolation is given by the theorems in (Wu, 2002; Wu and 

Schaback, 1993): 

Assuming  N

iix
1
are N source points in s which is convex, the radial distance is defined as 

)3(,minmax),(:
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we have 

)4(),()()( /cN Oxuxu 

where 10  is a real number and )exp(   with 0 . 

From (4) it is clear that the convergence depends on parameter c and radial distance   the rate 

of convergence. 

The exponential convergence proofs in applying RBFs in Sobolov space was given by Yoon 

(1999); spectral convergence of the method in the limit of flat RBFs was given by Fornberg et al. 

(2004). The exponential convergence rate was verified numerically by Fedseyev et al. (2002). 

The exponential convergence cited above is limited to certain classes of functions that are 

smooth enough and well-behaved in the domain of approximation. 

In 1971, Hardy (1971) developed multi-quadric MQ to approximate two-dimensional 

geographical surfaces. In Franke’s (1982) review paper, the MQ was rated as one of the best 

methods among 29 scattered data interpolation schemes based on their accuracy, stability, 



efficiency, ease of implementation, and memory requirement. Further, the interpolation matrix 

for MQ is invertible. In 1990, since Kansa (1990) modified the MQ for the solution of elliptic, 

parabolic and hyperbolic type PDEs, radial basis functions has been used to solve partial 

differential equations numerically (Chen and Wu, 2007; Inc., 2005;Uddin et al., 2009; Haq et al., 

2010; Rafei and Daniali, 2007; Shen, 2009). The accuracy of MQ depends on the choice of a 

user defined parameter c called the shape parameter that affects the shape of the RBFs. Golberg, 

Chen, and Karur (Golberg et al., 1996) and Hickernell and Hon (1998) applied the technique of 

cross validation to obtain an optimal value of the shape parameter c.  

The non-singularity of the collocation matrix A depends on the properties of RBFs used. 

According to (Micchelli, 1986), the matrix A is conditionally positive definite for MQ radial 

basis functions. This fact guarantees the non-singularity of the matrix A for distinct supporting 

points. 

Now, we apply the method of lines combined with the RBFs (MOL-RBFs) for gfKdV. 

],[,02 baxducuuubuuauu xxxxxxxxxxxxt   

with the following initial condition and boundary conditions 

),(),(),(),( ,0),(),(),(),(),( 00 tgtbutbutbutautftauxutxu xxxx   

where a, b, c and d are real constants and )(),(0 xfxu  and )(xg are known functions. 

First, we choose N nodes in [a, b] 
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By applying this method to the gfKdV, we obtain 
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If we apply the collocation to gfKdV, Eq. (1) will take the form 
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and   denotes the component by component multiplication of two vectors. We can rewrite (6) 

as: 
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The initial condition vector is 

  ,)(),...,(),( 020100

T

Nxuxuxu)(t U  

and we use two dirichlet boundary conditions; 
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It is obvious that our PDE has become an ODE and this ODE can be solved by any of several 

ODE solvers, we choose the fourth order Runge-Kutta scheme (RK4) 

,
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Now we are ready to apply this method to solve gfKdV numerically. 

 

3. Application 

We apply the MOL-RBF method to Lax’s and Swada-Kotera cases of gfKdV equations. 

 

Lax’s fifth-order KdV equation 

)7(,0103030 2  xxxxxxxxxxxxt uuuuuuuu

with the initial condition 

))).((tanh32(2)0,( 0

22 xxkkxu   

The exact solution is given by 
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Sawada-Kotera (SK) equation 

Next, we consider the Sawada-Kotera equation 

)8(,0151545 2  xxxxxxxxxxxxt uuuuuuuu

with initial condition is given by 

)).((sec2)0,( 0

22 xxkhkxu   

The exact solution is given by 
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422 xtkxkhktxu   

 

We apply the numerical method and evaluate and compare the solutions with exact solutions and 

present the results in Tables1- 4. We use the Max-error, L2-error and Root Mean Square (RMS) 

error 
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where 
Nu is the approximate solution and u is the exact solution of Eq. (1). 

 

4. The analysis of numerical experiment 

We have applied the meshless method of lines (MOL-RBF) to Lax and SK. Figures 1 and 2 show 

the 3d plots of computed solutions of the gfKdV equation for Lax and SK cases respectively. We 

have omitted the 3d plots of exact solutions as they appear identical to the computed solutions. 

Figures 4- 7 show Lax and SK solutions at t =2 for k = 0.001 and k = 0.00001, for different 

RBFs. Since the accuracy depends upon the number of nodes and the value of the shape 

parameter c, choosing the optimal value of the shape parameter is still an open problem. Many 

researchers proposed methods to find the optimal c. For example Hardy’s formula 

c = 0.815d    with ,
1

1





N

i

id
N

d  

where id  is the distance from the 
thi center to the nearest neighbor and N is the number of 

centers. 

Franke’s formula for the shape parameter is 

,
25.1

N

D
c   

where D is the diameter of the smallest circle encompassing all the centers and, as before, N 

represents the total number of centers. 

According to (Rippa, 1999) the shape parameter should depend on factors like: number of grid 

points, distribution of grid points, interpolation function , condition number of the matrix, and 

computer precision. We have used the very common brute force method to find the optimal value 

of the shape parameter. In this method we plotted the error vs. shape parameter and then picked c 

corresponding to minimum error and not too high condition number. We have solved the gfKdV 



equation using the meshless method of lines for the values 001.0,00  kx  and

00001.0,00  kx . We have presented our results of Max-error, 2L -error and RMS error in 

Tables 1 and 2. For both cases (Lax and SK) the optimal value of the shape parameter is of the 

same order of magnitude for GA, MQ and IMQ. 

One more point to be noted here is that the condition number is approximately the same for both 

Lax and SK in each of GA, MQ and IMQ case. Table 2 also shows a tradeoff between the 

accuracy and condition number for the radial basis function IMQ; this is termed as uncertainty or 

trade-off principle in (Fasshauer, 2007). Figure 3 is the plot for the solution of gfKdV (Lax) 

using GA radial basis function and non-optimal value of shape parameter c = 3690. It is clear 

that the error is higher at the end of the interval as pointed in (Fasshauer, 2007; Liu, 2003) for 

non-optimal shape parameters. In Table 3 and 4 we have computed the conserved densities 

(Goktas and Hereman, 2008),  dxuI1  (Lax and SK),   dxuuI x

23

2
3

1
 (SK), 

  dxuuI x

23

2
6

1

3

1
for Lax. 

 

5. Conclusion 

In this paper, we have solved the family of generalized-fifth order Korteweg-de Vries (gfKdV) 

equations. We proposed a meshless MOL with the use of RBFs for solving the gfKdV equations. 

The numerical results given in the previous section demonstrate the good accuracy of this 

method. It has to be emphasized that the shape parameter for all the calculations performed in 

this paper was found experimentally. Results of numerical experiments indicate that the 

Gaussian RBF has the best accuracy in this method for gKdV equation with the condition 

number of exactly one. Also, the RBFs allow for a much lower spatial resolution (i.e., lower 

number of nodes) to obtain much higher accuracy. The two major advantages of this method are 

the meshless property and use of ODE solvers of high quality and their codes that approach to 

the solutions of PDEs. This method can be extended to solve the PDE with higher order 

derivatives with respect to x, e.g., Kuramoto-Sivashinsky equation, without any difficulties 

because the radial basis functions MQ, IMQ, and GA are infinitely differentiable. We consider 

this method as an efficient method as it is easy to implement for the numerical solutions of 

PDEs. We have used the fixed value of shape parameter that minimizes the error because of 

known exact solution. Interested readers can try a different approach, for example optimization 

via residual error to choose the shape parameter if an analytical solution of the problem is not 

known or recently Sarra and Sturgill (2009) shows the use of random values for the shape 

parameter and in (Driscoll, 2007) adaptive residual subsampling method has been proposed. 

 



 

Figure 1: Mesh plot for numerical solution (Lax), k=0.001 

 

Figure 2: Mesh plot for numerical solution (SK), k=0.001 
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Figure 3: Error distribution for the solution of Lax for GA and non optimal  

 

Figure 4: Solution of Lax for t=2, k=0.001 
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Figure 5: Solution of SK for t=2, k=0.001 

 

Figure 6: Solution of Lax for t=2, k=0.00001 
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Figure 7: Solution of SK for t=2, k=0.00001 

 

Figure 8: Shape vs. Max Error, Lax, k=0.001 
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Figure 9: Shape vs. Max Error, Lax, k=0.001 

 

Figure 10: Shape vs. Max Error, Lax, k=0.001 
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Figure 11: Shape vs. Max Error, SK, k=0.001 

  

Figure 12: Shape vs. Max Error, SK, k=0.001 
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Figure 13: Shape vs. Max Error, SK, k=0.001 

  

Figure 14: Shape vs. Max Error, SK, k=0.001 
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Table 1: Error Comparison for gfKdV (Lax) with 001.0,00  kx  

 

Table 2: Error Comparison for gfKdV (Lax) with 00001.0,00  kx  

 

Table 3: Table of Conserved Quantities for gfKdV (Lax) 

 

 

 

 

Table 3: Table of Conserved Quantities for gfKdV (SK) 

 

 

 

 

 
Shape 

Parameter 
RBF Max-error 2L -error RMS error Cond No. 

LAX 

5451 GA 21104703.8   20105962.1   21105886.4   1 
5102   MQ 11101421.4   11100851.5   11104619.1   4100174.1   

3987 IMQ 21104703.8   20105962.1   21105886.4   17102385.1   

SK 

5451 GA 21102705.1   21109774.1   22106847.5   1 
510  MQ 12102896.3   12109692.5   12107160.1   4100174.1   

3987 IMQ 21102705.1   21109774.1   22106847.5   17100915.4   

 
Shape 

Parameter 
RBF Max-error 2L -error RMS error 

Condition 

No. 

LAX 

4790 GA 23100340.1   24102697.3   25103998.9   1 
8104.8   MQ 20106374.4   

20106520.8   
20104873.2   

4100170.1   

1432 IMQ 23100340.1   24106241.4   24103293.1   17103602.2   
7103   IMQ 10102618.2   10103818.3   11107220.9   1 

SK 

4792 GA 24101699.5   24106349.1   25106999.4   1 
81066.3   MQ 21103996.4   21102079.8   21103596.2   4100170.1   

1324 IMQ 24101699.5   23102664.1   24106405.3   18107591.1   
81025   IMQ 11102398.5   10101609.1   11103373.3   1 

RBF 1I  2I  

GA 5107999.4   16105812.2   

MQ 5107999.4   16105812.2   

IMQ 5107999.4   16105812.2   

RBF 1I  2I  

GA 5104000.2   
17102263.3   

MQ 5104000.2   
17102263.3   

IMQ 5104000.2   
17102263.3   
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