
University of Dayton
eCommons

MIS/OM/DS Faculty Publications Department of Management Information Systems,
Operations Management, and Decision Sciences

4-2013

Integrating Strategic and Tactical Rolling Stock
Models with Cyclical Demand
Michael F. Gorman
University of Dayton, mgorman1@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/mis_fac_pub

Part of the Business Administration, Management, and Operations Commons, Databases and
Information Systems Commons, Management Information Systems Commons, Management
Sciences and Quantitative Methods Commons, Operations and Supply Chain Management
Commons, and the Other Computer Sciences Commons

This Article is brought to you for free and open access by the Department of Management Information Systems, Operations Management, and
Decision Sciences at eCommons. It has been accepted for inclusion in MIS/OM/DS Faculty Publications by an authorized administrator of
eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Gorman, Michael F., "Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand" (2013). MIS/OM/DS Faculty
Publications. 86.
https://ecommons.udayton.edu/mis_fac_pub/86

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232844993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mis_fac_pub?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mis?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mis?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mis_fac_pub?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/mis_fac_pub/86?utm_source=ecommons.udayton.edu%2Fmis_fac_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Journal of Transportation Technologies, 2013, 3, 162-173 
http://dx.doi.org/10.4236/jtts.2013.32016 Published Online April 2013 (http://www.scirp.org/journal/jtts) 

Integrating Strategic and Tactical Rolling Stock Models 
with Cyclical Demand 

Michael F. Gorman 
Department of MIS, Operations and Decision Sciences, University of Dayton, 

 Dayton, USA 
Email: Michael.gorman@udayton.edu 

 
Received March 11, 2013; revised April 12, 2013; accepted April 20, 2013 

 
Copyright © 2013 Michael F. Gorman. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In the transportation industry, companies position rolling stock where it is likely to be needed in the face of a pro- 
nounced weekly cyclical demand pattern in orders. Strategic policies based on assumptions of repetition of cyclical 
weekly patterns set rolling stock targets; during tactical execution, a myriad dynamic influences cause deviations from 
strategically set targets. We find that optimal strategic plans do not agree with results of tactical modeling; strategic 
results are in fact suboptimal in many tactical situations. We discuss managerial implications of this finding and how 
the two modeling paradigms can be reconciled. 
 
Keywords: Rolling Stock; Network Management; Strategic; Tactical 

1. Introduction 

Many freight transportation companies managing rolling 
stock fleets (e.g., containers, trailers, truck tractors, rail- 
cars, locomotives, etc.) face highly regular weekly cycles 
in supply of and demand patterns for these resources. For 
examples, supply and demand for rail locomotives may 
depend on the number of train terminations and origina- 
tions, or in trucking, delivered loads contribute to con- 
tainer supply and historical order patterns indicate likely 
demand.  These supply and demand vectors are heavily 
influenced by day of week (e.g., weekday versus week- 
end patterns). In this paper, we refer to “strategic” mod- 
els as those based on this regular repeating patterns. 

At a more tactical level, a transportation company 
must establish the best levels of rolling stock assets each 
day to support these highly cyclical and uncoordinated 
supply and demand patterns; transportation companies 
often keep non-zero levels of rolling stock capacity at 
locations in their network in anticipation of future de- 
mand because of the costs and time constraints of reposi- 
tioning rolling stock. Because of the strong repeating 
weekly patterns of supply and demand, a company might 
develop target rolling stock levels based on strategic 
planning models that assume a regular weekly pattern to 
maximize the return on its rolling stock asset. 

Although these regular patterns can be used for strate- 
gic planning, each week actual supply and demand levels  

vary around those patterns because of the stochastic na- 
ture of supply and demand, resulting in a deviation from 
the strategic plan. In this “tactical” setting, actual rolling 
stock inventory varies from the strategic targets; tactical 
models are deployed based on a starting condition for- 
rolling stock levels. 

In the tactical setting, in order to resolve such devia- 
tions and return to strategic target rolling stock levels, a 
company might make efforts to return to the optimal 
strategic inventory capacity levels such as increased or 
decreased allocation of the asset. However, the recovery 
or adjustment path often carries its own costs, so the 
company must assess if and when to adjust back to stra- 
tegic targets. 

Both strategic and tactical models have problems in 
implementation. The strategic model is difficult to man- 
age in real time environment because of the assumption 
of cyclical repetition. The strategic model gives no indi- 
cation how to react to deviations from the long run stra- 
tegic optimum. On the other hand, strictly tactical mod- 
eling reflects current conditions in the network given 
prior events, and doesn’t necessarily lead to any long run 
goals or targets. One intuitive solution in the tactical 
model paradigm is to start with current conditions, but at 
the end of the cycle, “recover”, or return to the strategic 
target levels. 

This research evaluates recovery strategies from a de-  
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viation from the strategic target rolling stock levels and 
the appropriate integration of strategic and tactical mod- 
els. We find that in some cases deviations from strategic 
optima are in fact advantageous; that is, the strategic op- 
tima may not be optimal in a tactical setting, calling into 
question the utility of strategic modeling of problems of 
this type. Managing to a target rolling stock level can be 
misdirected effort, creating additional costs with ques- 
tionable incremental benefits. We evaluate conditions 
that give rise to this situation and make recommendations 
on how to reconcile the approaches. Based on these re- 
sults, we make recommendations on the trade-offs be- 
tween short run and long run rolling stock management. 

2. Literature 

The use of the words “strategic” and “tactical” require 
some definition. In some cases (e.g., [1]), strategic mod- 
els focus on design of the transportation system, where 
tactical models focus on its operations. This is not the 
intended definition in this paper. Rather, we define a 
strategic model as one that assumes cyclicality, and a 
constraint on the ending time period ties it back to the 
starting time period. In this paper, “tactical” models start 
with a given starting condition, and may or may not have 
a constraint on the final period. In short, tactical models 
do not assume or require cyclicality. Because the two 
models have the same structure, and deal with the same 
issues in asset management, but differ only in assumption, 
their juxtaposition is warranted. 

There are numerous examples of strategic and tactical 
models as defined above juxtaposed in the transportation 
literature. Similar to the strategic planning horizon de- 
scribed in [2] we define strategic patterns as those as- 
suming a cyclic, repeating pattern that can be sustained 
in the long run, supporting a regular cycle and more stra- 
tegic plan. An alternative to strategic planning is a more 
tactical orientation, which we call the tactical paradigm. 
Similar to the “daily” horizon of [2], we define tactical 
planning tools as have some initial (time = t0) rolling 
stock inventory levels. In a similar way, [3], discusses 
various planning horizons in passenger rail: strategic, 
tactical, operational and short term. The tactical models 
of [3] are equivalent to the strategic models discussed 
here, and the operational models and short term planning 
models look at daily deviations as do these tactical mod- 
els. 

As depicted in Figure 1(a), strategic models include 
an arc from the end of the planning horizon, back to the 
start, imposing a repeatable cycle. In strategic models, 
ending period ending stock variables must equal the be- 
ginning period’s starting value, thus creating continuity 
and consistency in the strategic model. Just as a circle 
must tie back to itself, so does a cyclic model’s starting 
and ending inventory. 

In the tactical model paradigm, the models are tied to a 
starting inventory condition (given all prior patterns of 
supply and demand and management allocation decisions, 
including unanticipated supply and demand shocks). 
Given a starting rolling stock inventory and anticipated 
cyclic supply and demand, what is the best course of ac- 
tion for managing these critical assets? Simply, tactical 
models react to current conditions which are a result of 
past known and exogenous events; Strategic models plan 
for them by viewing yesterday’s events are next week’s 
future events. Tactical models are necessary for dealing 
with a starting condition that are the result of prior events; 
strategic models are useful for establishing what the op- 
timal conditions would be in the long run. The question 
addressed here is how to align these two modeling para- 
digms. 

As depicted in Figure 1(b), tactical model might be 
specified with or without a constraint on the final state at 
the end of the horizon. On one hand, if there is a single 
deviation from the strategic target levels (say due to an 
unexpected supply or demand shock), the goal might be 
to manage from the current disequilibrium towards the 
“strategic target” level of inventory (In = ; dubbed 
“recovery” mode). Alternatively, the tactical setting 
might be more open-ended, with no constraint on ending 
inventory (dubbed tactical “reactionary” mode). The 
question remains, in the stochastic environment, how fast 
should adjustment take place if at all; how much weight 
should be given to strategic considerations? Secondarily, 
how close to strategic targets is “close enough”, and what 
is the cost of deviating from this target? What is the cost 
of adjustment to the strategic optimum? 

s
nI

It is common in the literature to take either a strategic 
or tactical perspective on the problem without consider- 
ing the alternative. For examples, [4-6] look at the chal- 
lenge of managing railcars in the face of uncertain de- 
mand in the tactical setting, but do not consider a longer- 
run, strategic allocation of rolling stock or their optimal 
stocking levels. On the other hand, [7] considers fleet 
sizing under strategic assumptions, but do not discuss 
deviations from the strategic plans brought on by sto- 
chastic elements in a tactical, real time setting. 

Similarly, [8] creates weekly repeating cycles of (stra- 
tegic) locomotive to train assignments (and accompany- 
ing “ground arcs”, or inventory decisions). On the other 
hand, [9] describes in-plant tactical locomotive manage- 
 

In = I0  

 I0 = i Recovery: In = 
Reactionary: In = ?

s

6I

 
(a)                         (b) 

Figure 1. Conceptualization of strategic and tactical model-
ing paradigms. (a) Strategic modeling paradigm; (b) Tacti-
cal modeling paradigm. 
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ment over a two-hour window with no consideration for 
longer-term considerations. 

Similar to rolling stock, manpower capacity also must 
be managed by location. Reference [10] plans drayage 
operations and [11] plans drivers in a tactical setting, 
with a starting location for drivers and tractors specified, 
but because of short planning and order visibility hori- 
zons, make no consideration for repeatability or consis- 
tency of scheduling. Reference [12] discusses a tactical 
rail crew planning model given an initial starting location, 
and claims the model can be used for strategic manpower 
planning over a longer horizon, but does not show how to 
account for different starting conditions and stochastic 
train schedules. 

A similar schism in focus can be found in the capacity 
pricing and yield management literature in freight trans- 
portation. For examples, [13] shows the importance of 
rolling stock balance in rail intermodal in a strategic set- 
ting, but does not talk about adjustment mechanisms in a 
tactical setting. Similarly, [14] builds a strategic logistics 
queueing network model that creates prices to place roll- 
ing stock capacity where and when it has the highest 
value. Reference [15], on the other hand, present a simi- 
lar problem viewed from a tactical setting with a given 
starting inventory. There is no discussion in these articles 
on how to transition from a tactical yield management 
situation to the long run strategic pricing strategy, or how 
to translate strategic recommendations to a tactical im- 
plementation environment. 

Reference [3] discusses decision horizon tradeoffs in 
passenger rail, which is considerably less volatile than 
freight rail systems, so short term planning models face 
similar constraints as air passenger service. However, [3] 
describes the different modeling paradigms, this research 
does not detail their differences nor try to reconcile them. 
It might be added that this research investigates the 
handoffs between the tactical and operational environ- 
ments in the more uncertain freight transportation envi- 
ronment, where the differences of the two paradigms is 
more pronounced and the decisions on how to reconcile 
more difficult to address. 

We should differentiate this research from the litera- 
ture on “refleeting” or disruption management and re- 
covery in the airline literature. This literature focuses on 
building robust cyclic schedules with respect to disrup- 
tions [16] and getting back on schedule in a least-cost 
way given a disruption [17]. In the airline case, there is a 
fixed schedule that must be followed per customer ex- 
pectations and industry norms. This situation implies a 
required fleet capacity and mandatory and expedient re- 
covery to the strategic condition; in the freight transport- 
tation case, service provision depends on a stochastic 
order pattern without customer reservations with no obli- 
gation to follow specific schedule or level of capacity  

provision. The reason this distinction is important is that 
where airlines view the schedule as a constraint and re- 
covery is mandatory, freight providers are not con- 
strained to return to the strategic plan, but must choose 
both whether to recover, and how fast to return to the 
longer run strategic target levels. 

In general, there is a dearth of literature which tries to 
bridge the gap in the planning process between strategic 
rolling stock planning and tacticalor real time execution 
in freight transportation. A notable counter example is an 
early attempt to meld tactical and strategic models in [18], 
which mitigates end effects in tactical vehicle allocation 
by proposing a “transient” (tactical) portion and a “sta-
tionary” (strategic) portion of the problem. With a dis-
count factor, the repeating (looping) portion of the sta-
tionary portion represents the net present value of future 
flows. Reference [15] points out the managerial need for 
establishing target container inventory levels in intermo-
dal, and identifies the problem surrounding the recon-
ciliation of these two modeling paradigms, but does not 
resolve or make recommendations on how to resolve 
them. The contribution of this research is derived from 
its focus on the cost of deviation from the strategic plan, 
the cost of recovery, and derivation of appropriate recov-
ery strategies. This research is the first to identify and 
quantify a contradiction between optimal strategies in 
strategic and tactical paradigms. 

3. Mathematical Modeling 

Below we provide a modeling construct which allows us 
to capture both strategic and tactical paradigms for com- 
parative analysis. For simplicity of exposition and mod- 
eling, we will focus on the allocation of a single rolling 
stock inventory in a single location, but the results apply 
directly to the full multi commodity time space network. 
The model could be expanded to incorporate all locations 
in a transportation network, but for the purpose of this 
research, a single location model adequately demon- 
strates the point. Further, as noted in Gorman [15], the 
single node view matches the managerial focus of trans- 
portation companies managing tactical rolling stock in- 
ventories. 

The decision variable, denoted At, is the allocation of 
capacity of various types (tractors, drivers, locomotives, 
railcars, containers) to demands, Dt, of different types 
(trains, orders) in any period, t. The source of the allo- 
cated capacity in any period is based on the inventory of 
the resource carried from the previous period, It, and that 
are made available from the supply process in that period, 
St. In the tactical setting, supply and demand are consid- 
ered exogenous. Demand is exogenous based on cus- 
tomer order patterns. Supply is exogenous because it is 
the result of terminated usage from past allocation deci- 
sions in the tactical setting and because it is the result of  
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allocation decisions made in other geographic locations 
in both the tactical and strategic modeling paradigms. 

stock perspective, additional inventory of any kind has a 
diminishing but positive probability of use, so incre- 
mental units of capacity have diminishing expected reve- 
nue [15]. 

The allocation of each asset depends on its cost and 
revenue profiles in various uses. The explicit cost of ex- 
cess inventory is higher inventory carrying costs. The 
opportunity cost of excess rolling stock is the acceptance 
of lower profitability business (higher cost or lower 
revenue) in order to utilize the asset. 

As discussed in [15] such opportunity costs are likely 
to be increasing as the level of surplus or shortage grows. 
Both the incremental costs and diminishing revenues 
contribute to a decreasing valuation of any asset at a lo- 
cation as the quantity of that asset grows. We define the 
“profit advantage function”, asy * (x – At/Dt)

z, of one 
class of rolling stock inventory over another to capture 
this diminishing profitability relationship. (This is simply 
the profit function in the case with only one asset class.) 
At/Dt is the percentage of total demand on day t allocated 
to asset A on day t (0 ≤ At ≤ Dt). A generalized dimin- 
ishing profitability function with parameters x, y, and z is 
specified in order to test for sensitivity of our results for 
different functional forms of the profit equation: y speci- 
fies the highest valuation of the most appropriate alloca- 
tion, x determines the percentage of total allocation at 
which the expected contribution becomes negative, and z 
indicates the concavity (z > 1), convexity (z < 1) or line- 
arity (z = 1) of the functional form. Such a relationship is  

The cost of high inventory must be balanced against 
the opportunity cost of low inventory levels. In the single 
asset case, the primary opportunity cost of a rolling stock 
inventory shortage is lost revenue. In the multiple asset 
case, a shortage of a preferred asset requires the use of a 
less preferred alternative—either a lower revenue or 
higher cost asset. Different asset classes which are im- 
perfect substitutes, with “preferred” and “less preferred” 
assignment which constitute varying cost profiles and 
capabilities which govern the feasibility of their assign- 
ment. For examples, locomotives of 4 and 6 axles have 
different fuel efficiencies, tractive effort potential, or 
consist interoperability, making them have different effi- 
ciency levels for different train types [8]. Different rail- 
cars might have different equipment rent if they are for- 
eign owned or not [15]. Drivers may be different dis- 
tances from an order, requiring varying dray costs. Con- 
tainers of different ownership have different cost struc- 
tures and rail routing options [15]. In each case, there is 
some incremental cost of using the imperfect substitute 
for a given demand. From a revenue perspective, differ- 
ent sizes of containers or equipment on railcars might 
have diminishing values to customers, or from a safety 

easily estimated from historical data on assignments and 
profitability. Examples of each functional form are dem- 
onstrated in Figure 2. 

4. Optimization Model 

The optimization model that serves as the basis of our 
study is described in Equations (1)-(4). The profit advan- 

 
Profit Advantage Function for Parameters s, y, z 
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Figure 2. Profit advantage function for parameters s, y, z. 
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tage function is the first component of the objective func- 
tion (Equation (1)). A secondary disadvantage of carry-
ing inventory, It, of some asset class is its holding cost, 
HC, which is subtracted from the expected profitability 
of each assignment level, the second component of Equa- 
tion (1). 

The constraints governing assignments are given in 
Equations (2)-(4). Allocations of an asset must be less 
than demand (2), inventory in any period equals the in- 
ventory of the prior period, plus new supply, less alloca- 
tion in this period (3), and inventory must be non-nega-
tive. 

Maximize  

 
7

z*
t t t

t 1

p y x D A HCI


  

t

1

1

.

        (1) 

Subject to: 

t t0 A D t t                   (2) 

t 1 t 1 t 1 t– II S A              (3) 

t 0 tI                        (4) 

Without loss of generality, we focus on the weekly 
supply and demand paper with seven daily time periods, t. 
Constraints 5s and 5d differentiate the strategic and tac-
tical modeling paradigms. In the strategic paradigm, 
starting inventory is related ending inventory to assure 
cyclic repeatability: 

1 7 1I I S A                (5s). 

We define the resulting profit to the strategic problem 
given in Equations (1)-(5s) as ps, optimal allocations vec- 
tor as , and resulting inventory vector as . s

tA s
tI

In the tactical model, constraint 5s is replaced with 5d: 

1 0 1I I 0 S Ad               (5d), 

where I0 is some initial, exogenous inventory value in the 
tactical setting given past supply and demand shocks. 

Within the tactical paradigm, management might not 
constrain ending inventory, I7, following a reactionary, 
short term tactical (t) strategy, choosing to react to sup- 
ply and demand perturbations with a short term focus, 
disregarding the strategic optimum. We denote objective 
function values, inventory levels and allocations as pt, It 
and At. Alternatively, management might pursue what we 
will call a “recovery” (r) strategy that allows them to 
regain strategic inventory levels by constraining ending 
inventory to equal that of the strategic model as in Equa- 
tion (6). 

7 7I Ir s                 (6) 

We denote objective function values, inventory levels 
and allocations as pr, Ir and Ar. For any given D and S 
arrays, each of these three models lead to different values 

of the decision variables, inventory and total objective 
function values. 

5. Numerical Example 

We illustrate the optimization models with a numerical 
example. In this illustration, key input parameters are: 
HC = 0.1, x = y = z = 1. We select a random demand (D) 
and supply (S) arrays as depicted in Table 1, and solving 
the strategic, reactionary and tactical optimization mod- 
els given in Equations (1)-(6), results in optimal profit- 
ability (p), fleet allocations (A) and inventory levels (I) 
under each paradigm displayed in the columns as labeled. 
In the strategic model, I0 is based on I7 at the end of the 
week, thus is endogenously determined. In this example, 
the optimal end-of-week inventory is 7 units to achieve a 
strategic sustainable profit of $72.74 per week. If a man- 
ager was myopic or did not put emphasis on the some- 
what uncertain future supply and demand patters, he 
would ignore end-of-week inventory on the subsequent 
week’s profits (the constraint that I0 = I7 is removed). As 
a result, $74.67 could be earned in a week. However, the 
ending inventory of 0 units (I7 = I0 = 0) in reactionary 
mode drives the subsequent week’s profit down to 
$69.29 if the goal is to “recover”—return to the strategic 
optimum inventory (I7 = 7)—by the end of the second 
week (as shown in the last column of Table 1, in which 
starting inventory is zero and ending inventory is seven). 
Average profits fall from a strategic expectation of 
$72.74, to an average of $71.98 = ($74.67 + 69.29)/2. 
Thus, unsustainable short-term profit is gained at the 
expense of future recovery costs. It seems reasonable, 
then, to strive to achieve strategic target inventories. 

However, deviations from the strategic optimum could 
be for exogenous reasons no fault of the manager, such 
as an unanticipated supply or demand shock. Let us as- 
sume a single a priori exogenous supply shock leads to 
some deviation from strategic optimum inventory at the 
end of Day 0. In this case, the manager optimizes given 
some starting inventory level. The manager has a choice 
to try to recover to the strategic target inventory or not. 

We solved the tactical model to optimality for reason- 
able levels of starting inventory ranging from zero to 59 
results in a quadratic shaped profit curve as indicated in 
Figure 3. While the strategic optimum (and the recovery 
tactical target ending inventory) starting inventory is 
seven, profitability in a given week is maximized at a 
starting inventory of 25 units, resulting in $4.82 (6.6%) 
in higher profits from the presence of that inventory with 
no recovery to strategic targets, and $2.89 (2.6%) in- 
creased profits if recovery to strategic is completed by 
day seven. Although such profit is not sustainable in the 
long run if the strategic supply and demand processes are 
representative of normal patterns, these results call into  
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Table 1. Number example of state optimal inventory, and dynamic reactionary and dynamic recovery profit levels. 
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End 
Day 0 

    7    7    -    25  

1 54 10 17 37 - 31% 17 37 - 31% 10 44 - 19% 27 27 8 50%

2 51 16 16 35 - 31% 16 35 - 31% 16 35 - 31% 23 28 1 45%

3 20 18 8 12 10 40% 8 12 10 40% 8 12 10 40% 8 12 11 40%

4 87 20 30 57 - 35% 30 57 - 35% 30 57 - 35% 31 56 - 35%

5 15 21 7 8 14 46% 7 8 14 49% 7 8 14 46% 7 8 14 49%

6 76 20 31 45 3 41% 34 42 - 44% 31 45 3 41% 34 42 - 44%

7 30 15 11 19 7 36% 15 15 - 50% 11 19 7 36% 15 15 - 50%

                   

Input Fleet Profit 
Parameters 

 
Fleet  

Proftibality (p) 
$ 76.12  

Fleet  
Proftibality (p)

$ 77.04  
Fleet  

Proftibality (p) 
$ 72.67  

Fleet  
Proftibality 

(p) 

$80.8
1 

x 1   
Less Fleet  

inventory cost 
$ 3.37  

Less Fleet 
inventory cost

$ 2.37  
Less Fleet  

inventory cost 
$ 3.37  

Less Fleet 
inventory 

cost 
$ 3.29

x 1   
Net Fleet  
Benefit 

$ 72.74  
Net Fleet  
Benefit 

$ 74.67  
Net Fleet  
Benefit 

$ 69.29  
Net Fleet 
Benefit 

$77.5
2 

z 1               

HC 0.1                  

 
question whether deviations from strategic targets are in 
fact bad, and if strenuous efforts should be made to re- 
turn to strategic targets. Similar unanticipated supply and 
demand shocks over the planning horizon could render 
striving for strategic targets both infeasible and unprofit- 
able. In a highly stochastic environment, the short- 
sighted manager who discounts the future states might 
actually achieve superior results. 

6. Monte Carlo Simulation 

Of course, this example could be a special case. To in- 
vestigate how wide spread this result is, we conducted 
numerical experiments based on a Monte Carlo simula- 
tion. The algorithm below compares the strategic opti-  

mum profit with the profit level consistent with the opti- 
mal tactical inventory level. To compare the cost of de- 
viation from target levels, we solve both models repeat- 
edly in n Monte Carlo replications of weekly S and D 
patterns. We then constrain I0 for all reasonable levels of 
inventory (Imax) to evaluate the change in cost from the 
optimal strategic level ps from dynamic model objective 
function values pr and pt. Importantly, we compare the 
deviation from optimal ps profit levels for each starting 
level of I. 

The approach takes three general steps: 
1) For any random generation of S and D arrays, solve 

the strategic model to establish long run targets (s); 
2) Perform sensitivity analysis with respect to devia-  
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Figure 3. Profit versus starting inventory. 
 
tions from optimum starting inventory. For all reasonable 
starting inventory levels, I0, solve tactical model twice, 
once in recovery mode (r), once in tactical reactive mode 
(t), comparing tactical model objective function values 
with that of strategic model. 

3) The difference between the optimal based on strate- 
gic target and optimal based on current tactical inventory 
is the objective function loss or gain from deviating from 
the strategic optimum. 

The algorithm below describes the steps in more de- 
tail. 
For j = 1 to n 

Generate random replications for S and D processes 
Solve strategic model for ps, Is, As 
For i = 0 to Imax 

I0 = i 
Solve the tactical model for pr, Ir, Ar 
DeviationCostr = ps– pr 
Solve the tactical model for pt, It, At 
DeviationCostt = ps- pt 

Next i 
Next j 

6.1. Experimental Design 

We set up a balanced experiment with 12 scenarios: 2 
variance levels (High, Low), 3 supply/demand ratio lev- 
els (High, Medium and Low supply), and 3 functional 
forms (linear, concave and convex). In the structured 
experiments, we held three parameters constant: x = 1, y 
= 33 * HC. For the high supply and demand variance, a  

uniform distribution was used to generate supply and 
demand vectors, D ~ U(1,100); for the low supply and 
demand variance, a Poisson distribution was used, D ~ 
Poisson(50). For high supply, the expected value of S = 
0.5 D, for medium supply, S = 0.4 D, and for low supply, 
S = 0.33 D. Strategic model results reflect a single model 
run; tactical model results reflect the tactical model run 
with the best starting inventory (minimum deviation cost 
from strategic optimum). We conducted 40 randomly 
generated replications for each scenario. For the func- 
tional form of the profit advantage function, we set z = 2 
(convex), 1 (linear) and 0.5 (concave). Descriptive statis- 
tics are presented in Table 2. 

We can see from Table 2, no matter what the func- 
tional form, variance or supply demand ratio, the average 
objective based on ideal tactical starting inventory is al- 
ways higher than the strategic optimum. That is, there is 
some level of inventory other than the strategic optimum 
which makes the objective increase, over the decision 
horizon. This effect is generally more pronounced in the 
high variance scenarios. Simply, the strategic, strategic 
optimum is not optimal in a tactical setting. 

Further, by comparing the tactical-reactionary objec- 
tive function value to the tactical-recovery objective, we 
see that recovery has a cost; by working to return to some 
steady-state ideal inventory by the end of the week, profit 
potential is lost. It is worth mentioning that the profit 
performance of the reactionary modeling paradigm may 
not be sustainable because the end of the week inventory 
levels may not support future business patterns well, but 
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Table 2. Comparison of objective function values in stratified random experiments. 

Linear   Objective Function Values   

  Strategic Tactical-Reactionary Tactical ecovery -R

  Mean Std Dev Mean Std Dev Mean Std Dev 

SHVLIN H High Supply, High Var, Linear $   29,701 $ 11,478 $   32,591 $ 8282 $   31,359 $ 10,188 

MSHVLIN Medium Supply, High Var, Linear $ 37,084 $ 7555 $ 39,131 $ 7557 $ 38,200 $ 7770 

LSHVLIN Low Supply, High Var, Linear $ 42,821 $ 8560 $ 46,200 $ 8211 $ 44,792 $ 8536 

HSLVLIN High Supply, Low Var, Linear $ 38,449 $ 3125 $ 38,721 $ 3194 $ 38,328 $ 3338 

MSLVLIN Medium Supply, Low Var, Linear $ 47,333 $ 2311 $ 48,595 $ 2582 $ 48,365 $ 2533 

LSLVLIN Low Supply, Low Var, Linear $ 52,093 $ 2688 $ 55,429 $ 3012 $ 55,007 $ 3037 

Average Average $ 41,247 $ 9962 $ 43,445 $ 9595 $ 42,675 $ 10,130 

Concave    Objective Function Values  

  Strategic Tactical-Reactionary Tactical-Recovery 

  Mean Std Dev Mean Std Dev Mean Std Dev 

HSHVCAVE High Supply, High Var, Concave $   44,996 $ 16,983 $   49,366 $ 14,501 $   47,814 $ 15,396 

MSHVCAVE Medium Supply, High Var, Concave $ 53,432 $ 10,964 $ 59,134 $ 10,648 $ 56,805 $ 10,903 

LSHVCAVE Low Supply, High Var, Concave $ 58,131 $ 14,223 $ 64,313 $ 12,215 $ 62,401 $ 13,334 

HSLVCAVE High Supply, Low Var, Concave $ 66,596 $ 3,451 $ 71,860 $ 4,156 $ 71,202 $ 4,039 

MSLVCAVE Medium Supply, Low Var, Concave $ 62,281 $ 3,048 $ 65,348 $ 3,383 $ 64,780 $ 3,286 

LSLVCAVE Low Supply, Low Var, Concave $ 58,267 $ 4,223 $ 59,898 $ 4,418 $ 59,542 $ 4,477 

Grand Total Average $ 57,284 $ 12,361 $ 61,653 $ 11,523 $ 60,424 $ 12,124 

    Objective Function Values  

Convex  Strategic Tactical-Reactionary Tactical-Recovery 

  Mean Std Dev Mean Std Dev Mean Std Dev 

HSHVCAVE High Supply, High Var, Convex $ 1 34,510.6 $ 10,279.24 $ 1 56,246.7 $ 7789.73 $ 1 6 5,464.7 $ 8856.95 

MSHVCAVE Medium Supply, High Var, Convex $ 25,155.82 $ 5988.79 $ 26,010.81 $ 6377.54 $ 25,848.05 $ 6309.42 

LSHVCAVE Low Supply, High Var, Convex $ 26,019.86 $ 7343.24 $ 26,973.27 $ 7779.07 $ 26,594.44 $ 7634.80 

HSLVCAVE High Supply, Low Var, Convex $ 22,919.27 $ 1593.77 $ 22,983.77 $ 1573.92 $ 22,940.86 $ 1594.72 

MSLVCAVE Medium Supply, Low Var, Convex $ 25,722.16 $ 1766.67 $ 25,763.86 $ 1777.73 $ 25,750.90 $ 1776.19 

LSLVCAVE Low Supply, Low Var, Convex $ 28,307.34 $ 1698.89 $ 28,434.25 $ 1736.51 $ 28,395.70 $ 1729.95 

Grand Total Average $ 23,958.98 $ 6682.89 $ 24,436.24 $ 5915.60 $ 24,246.38 $ 6259.72 

 
this risk must be balanced with the reward of enhanced 

e three models can be 
co

 

gone when striving to recover to the strategically identi- 

ized Experimental 
Design 

dom-
ized periment that varied x, y, z and HC: x ~ 

high probability short term profit. 
A more direct comparison of th
nducted by looking at the foregone profit under each 

random demand generation. In each replication, we cal- 
culated the absolute increase in profits between the mod- 
eling paradigms objective function values. Over 90% of 
the time, the differences were non-zero, demonstrating 
the modeling paradigm and resulting operating policy 
does make a difference to profits under most supply and 
demand conditions. Table 3 presents the differences in 
mean profit levels under each modeling paradigm and 
scenario. We see that there is a starting inventory level in 
the tactical setting that leads to an average of 5.5% 
higher profits that the inventory suggested by the strate- 
gic model. Further, an average of 1.8% profits are fore- 

fied optimum rather than simply focusing on the near 
term. In total, 7.3% profits are lost by focusing on a stra- 
tegically identified optimum that is inappropriate in a 
tactical, execution setting. 

6.2. Completely Random

To ensure robustness, we also ran a completely ran
 design ex

U(0.5,1), y ~ U(100, 500), z = U(1, 3), HC ~ U (5,30) 
with both the medium and high supply, and with low and 
high variance. We generated 250 replications in this 
completely randomized design. Although the standard 
deviation of the profit differentials was higher due to the 
more varied input data, the results from the stratified 
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Table 3. Difference in mean profit

Linear 

 levels between modeling paradigms. 

     

  Tactical Recov-Strategic Tactical React-Recovery 

  Abs. Diff Pct. Diff Abs. Diff Pct. Diff 

SHVLIN H High Supply, High Var, L ar ine $ 2891 8.9% $ 1232 3.9% 

MSHVLIN Medium Supply, High Var inear , L $ 2048 5.2% $ 931 2.4% 

LSHVLIN Low Supply, High Var, Linear $ 3379 7.3% $ 1408 3.1% 

HSLVLIN High Supply, Low Var, Linear $ 272 0.7% $ 393 1.0% 

MSLVLIN Medium Supply, Low Var, Linear $ 1262 2.6% $ 230 0.5% 

LSLVLIN Low Supply, Low Var, Linear $ 3336 6.0% $ 423 0.8% 

Average Average $ 2198 5.1% $ 769 2.0% 

Concave      

  Tactical Recov-Strategic Tactical React-Recovery 

  Abs. Diff Pct. iff  D Abs. Diff Pct. iff  D

HSHVCAVE High Supply, High Var, Concave $ 4370 8.9% $ 1553 3.2% 

MSHVCAVE Medium Supply, High Var, Concave $ 5702 9.6% $ 2329 4.1% 

LSHVCAVE Low Supply, High Var, Concave $ 6181 9.6% $ 1912 3.1% 

HSLVCAVE High Supply, Low Var, Concave $ 5264 7.3% $ 657 0.9% 

MSLVCAVE Medium Supply, Low Var, Concave $ 3068 4.7% $ 569 0.9% 

LSLVCAVE Low Supply, Low Var, Concave $ 1631 2.7% $ 357 0.6% 

Grand Total Average $ 4369 7.1% $ 1229 2.1% 

Convex  Tactical Recov-Strategic Tactical React-Recovery 

  Abs. Diff Pct. Diff Abs. Diff Pct. Diff 

VE High Supply, High Var, Convex $ 1736 10.7%HSHVCA  $ 782 5.1% 

MSHVCAVE Medium Supply, High Var, Convex $ 855 3.3% $ 163 0.6% 

LSHVCAVE Low Supply, High Var, Convex $ 953 3.5% $ 379 1.4% 

HSLVCAVE High Supply, Low Var, Convex $ 64 0.3% $ 43 0.2% 

MSLVCAVE Medium Supply, Low Var, Convex $ 42 0.2% $ 13 0.1% 

LSLVCAVE Low Supply, Low Var, Convex $ 127 0.4% $ 39 0.1% 

Grand Total Average $ 630 3.1% $ 236 1.2% 

 
experiment w ported; in every case there was an 

ventory level in a tactical setting that was preferred to 

 model is inconsistent 
ustainable in the long 

stainable  rise to th ion, “W  the 
optimal recovery path?” We conducted a sensitive analy- 

he optimal strate- 
gi

ere sup
in
the strategic, stead state optimum, and any effort of in- 
ventory recovery to the strategic levels incurred a cost to 
the objective function. The mean profit improvement of 
fortuitous tactical inventory deviations from strategic 
levels is $491.67 (2.0%) with a standard deviation of 
1239.3. Inventory level recovery costs on average 
$544.14 (2.2%) with a standard deviation of 1426.23. 

6.3. Optimal Recovery Time 

To the extent that the reactionary
with the strategic cycle, it is not s
run; it is benefited by the lack of a constraint on the end- 
ing inventory each week tying it to the start-of-week in- 
ventory. The fact that there is a cost of recovery to stra- 
tegic, but fortuitous deviations from long run optima is  

sis with respect to one dimension of this problem; given 
an initial surplus of inventory, how quickly should the 

not su gives e quest hat is

inventory be reduced to the strategic optimum under dif- 
ferent costs of inventory? We reformulated the single- 
week model as a 6-week model with repeating demand 
pattern, thus we could remove the end of week constraint 
in the recovery model, allowing the number of days to 
return to strategic targets to be endogenous, rather than 
imposed by constraint by week’s end. 

Given an initial inventory of 100 units (in this example 
a shock which causes an excess inventory of 57 units 
over the strategic target of 43), we evaluated how many 
days pass before inventory returns to t

c targets. The answer depends on the cost of the inven- 
tory excess, and the opportunity cost of recovery. Figure  
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4 shows the path to recovery under the various scenarios. 
In the low cost of inventory case (Invcost ≤ 5), the opti- 
mal recovery interval was 15 days; for higher inventory 
costs, the optimal recovery interval was 8 days. In every 
case, despite having the same total days to recovery, over 
the recovery interval, the deviation from the long run 
target inventory was smaller as inventory costs were 
higher. 

6.4. Multiple Supply Shocks 

To this point, we have considered a single deviation from 
strategic optimum, and the managerial options for ad- 

on case is for repeated, 
entory levels that result 

ver a six week period. We com- 
pa

7. Managerial Implications 

this research are pal- 

y given starting inventory of 100 

justing to it. The far more comm
daily deviations from planned inv
from regular deviations from planned supply of and de- 
mand for resources. 

We designed and experiment with Poisson arrivals of 
demand around a daily mean demand. Similar to the op- 
timal recovery path experiment, we generated instances 
of supply and demand o

red the repeating, strategic optimum inventories to the 
tactical level, reactive inventories in the face of random 
demand, as shown in Figure 5. 

Because daily arrivals were random, optimal tactical 
deviations from planned inventory were pervasive and 
regular. More importantly, any cost incurred to regain the 
 

strategic target is likely in vain; subsequent supply and 
demand shocks essentially decimate any anticipated be- 
nefits of being on target. In this case, the strategic opti- 
mum targets provides even less value as a managerial 
target. Because a manager never knows what tomorrow 
will bring, efforts to manage to a target based on expec- 
tations prove costly and unrewarding. In short, in the face 
of regular and pervasive supply and demand shocks, 
strategic targets have little or no role in tactical decision 
making. 

Strategic vs tactical recovery inventor

The managerial implications from 
pable. Strategic models like those described in the litera- 
ture review such as [8,13,14] propose strategic models as 
the basis for managing various fleets. However.front line 
decision makers who tend to be “short sighted”—maxi- 
mizing current profits while eschewing future opportuni- 
ties—may be more rational than the strategic modeling 
results would imply. Because of the real explicit and op- 
portunity costs of managing to an inventory target, and 
the uncertainty of future conditions, a manager might 
rationally sacrifice uncertain future benefits for near term 
gain. In the case of multiple supply and demand shocks, 
not only is there a cost of recovery, but a successful re-
covery is not likely to improve future profit expectation. 
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Figure 4. Strategic vs tactical recovery inventory given starting inventory of 100. 
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Figure 5. Dynamic vs steady stead inv-multiple demand shocks. 
 
Simply, a manager should not be held accountable for 
managing fleet inventory relative to some long-term ideal 
or target. 

7. A Strategy for Combining Tactical and 
Strategic Models 

Given our finding that strategic mo
relevant in a tactical setting, and tactical model results 
may not be sustainable on a continued basis, what is the 
appropriate course of action? Simply, the strategic and 
tactical optimum inventories represent bounds on the 
optimal inventory. We suggest the optimal target inven- 
tory level rests in the interval between tactical and strate- 
gic optima; the actual optimum depends on the cost of 
inventory and the cost of adjustment. We suggest that 
rather than a target inventory level, a target inventory 
range is a better goal; the range is determined by the in- 
terval between the tactical optimum for each day (given 
current conditions), and the strategic optimum (given 
common long run conditions). 

Alternatively, replicating the modeling horizon with 
tactical values in the first interval and strategic values in 
subsequent intervals allows the model to endogenously 
arrive at an optimal recover

rategic or tactical modeling

nd. 

proaches have both been widely used in the literature, the 
difference in the model recommendations and managerial 
implications have not been explored. 

We find that in some cases, deviations from strategic 
optima may in fact be advantageous. That is, the strategic

ptimal in an execu- 
en when “managing 

eant and derived optimally, but 
can be misdirected effort, actually creating additional 
costs and foregone profits. 

Simply, we are faced with a paradox that strategic and 
tactical model recommendations do not necessarily match. 
While having and idea of strategically “where you want 
to be” is important to long run profitability and opera- 
tional feasibility, managing too strictly to these targets 
can be shown to be suboptimal. Thus, a coordinated blend 
of the two approaches is required. We recommend an 
appropriate mix of the two model regimes: Each model- 
ing paradigm sets a boundary on optimal operational 
parameters. Strategic models set long policy, tactical 
models to set optimal behavior given current conditions 
and the long run strategic targets. Any achieved value in 
this range is acceptable; which t  to pursue more ag- 

elative costs of adjustment 
ing from a strategic target. 

del targets are not tion setting. Thus, c
to a target” that is well m

y period. Any use of either 
 paradigm in isolation will 

gressively depends on the r
and opportunity costs of strayst

likely lead to errant managerial action. It should be noted 
that any managerial action geared towards managing to 
that target is tempered by future uncertainty of supply 
and dema

8. Conclusions 

In this research, we evaluate the differences in strategic 
and tactical modeling paradigms with highly cyclical 
supply and demand patterns. While these modeling ap- 

This research focused on a single perturbation that 
drives a deviation from strategic targets; future research 
might examine more fully the managerial implications of 
persistent supply and demand shocks on the role strategic 
modeling in a highly stochastic setting. 

REFERENCES 
[1] J. Roy and T. Crainic, “Improving Intercity Freight Rout-

ing with a Tactical Planning Model,” Interfaces, Vol. 22, 

 
optimal target stock levels are not o

are should be tak

arget

Copyright © 2013 SciRes.                                                                                 JTTs 



M. F. GORMAN 173

No. 3, 1992, pp. 31-44. doi:10.1287/inte.22.3.31 

[2] J. Cordeau, P. Toth and D. Vigo, “A Survey of Optimiza- 
tion Models for Train Routing and Scheduling,” Trans- 
portation Science, Vol. 32, No. 4, 1998, pp. 380-404. 
doi:10.1287/trsc.32.4.380 

[3] D. Huisman, L. Kroon, R. Lentink and M. Vromans, “Op- 
erations Research in Passenger Railway Transportation,” 
Statistica Neerlandica, Vol. 59, No. 4, 2005, pp. 467-497. 
doi:10.1111/j.1467-9574.2005.00303.x 

[4] M. F. Gorman, D. Sellers and D. Acharya, “CSX Railway 
Cashes in on Optimization of Empty Equipment Distribu- 
tion,” Interfaces, Vol. 40, No. 1, 2010, pp. 5-16.  
doi:10.1287/inte.1090.0465 

. Crook and D. Sellers, “North American
dustry Real-Time Optimized Equipment 

[5] M. F. Gorman, K
Freight Rail In

 

Distribution Systems: State of the Practice,” Transporta- 
tion Research Part C, Vol. 19, 2011, pp. 103-114. 
doi:10.1016/j.trc.2010.03.012 

[6] W. B. Powell and T. A. Carvalho, “Real-Time Optimiza- 
tion of Containers and Flatcars for Intermodal Opera-
tions,” Transportation Science, Vol. 32, 1998, pp. 110- 
126. 

[7] H. Sherali, E. Bish and Z. Xiaomei, “Polyhedral Analysis 
and Algorithms for a Demand-Driven Refleeting Model 
for Aircraft Assignment,” Transportation Science, Vol. 
39, No. 3, 2005, pp. 349-366. 
doi:10.1287/trsc.1040.0090 

[8] R. K. Ahuja, J. Liu, J. B. Orlin, D. Sharma and L. A. 
Shughart, “Solving Real-Life Locomotive-Scheduling 
Problems,” Transportation Science, Vol. 39, No. 4, 2005, 
pp. 503-517. doi:10.1287/trsc.1050.0115 

[9] M. Lübbecke and U. Zimmermann, “Engine Routing and 
Scheduling at Industrial In-Plant Railroads,” Transporta- 
tion Science, Vol. 37, No. 2, 2003, pp. 183-197. 
doi:10.1287/trsc.37.2.183.15251 

[10] Y. Ileri, M. Bazaraa, T. Gifford, G. Nemhauser, J. Sokol, 

and E. Wikum, “An Optimization Approach for Planning 
Daily Drayage Operations,” Central European Journal of 
Operations Research, Vol. 14, No. 2, 2006, pp. 141-156. 

65-6doi:10.1007/s10100-006-01  

007.01.019

[11] A. Erera, B. Karacık and M. Savelsbergh, “A Dynamic 
Driver Management Scheme for Less-than-Truckload Carr- 
iers,” Computers& Operations Research, Vol. 35, No. 11, 
2008, pp. 3397-3411. doi:10.1016/j.cor.2  

pment, 
25-344. 

[12] B. Vaidyanathan, K. Jha and R. Ahuja, “Multicommodity 
Network Flow Approach to the Railroad Crew-Schedul- 
ing Problem,” IBM Journal of Research & Develo
Vol. 51, No. 3-4, 2007, pp. 3
doi:10.1147/rd.513.0325 

[13] M. F. Gorman, “Intermodal Pricing Model Creates a Net- 
work Pricing Perspective at BNSF,” Interfaces, Vol. 31, 
No. 4, 2001, pp. 37-49. 

[14] D. Adelman, “Price-Directed Control of a Closed Logis- 
tics Queueing Network,” Operations Research, Vol. 55, 
No. 6, 2007, pp. 1022-1038. doi:10.1287/opre.1070.0408 

[15] M. F. Gorman, “Hub Group Implements a Suite of OR 
Tools to Improve Operations,” Interfaces, Vol. 40, No. 5, 
2010, pp. 368-384. doi:10.1287/inte.1100.0507 

[16] A. Schaefer, E. Johnson, A. Kleywegt and G. Nemhauser, 
“Airline Crew Scheduling Under Uncertainty,” Trans- 
portation Science, Vol. 39, No. 3, 2005, pp. 340-348. 
doi:10.1287/trsc.1040.0091 

[17] A. Jarrah, J. Goodstein and R. Narasimhan, “An Efficient 
Airline Re-Fleeting Model for the Incremental Modifica- 
tion of Planned Fleet Assignments,” Transportation Sci- 
ence, Vol. 34, No. 4, 2000, pp. 349-363. 
doi:10.1287/trsc.34.4.349.12324 

[18] R. E. Hughes and W. B. Powell, “Mitigating End Effects 
in the Dynamic Vehicle Allocation Model,” Man
Science, Vol. 34, No. 7, 1988, pp. 859-879. 

agement 

doi:10.1287/mnsc.34.7.859 

 

Copyright © 2013 SciRes.                                                                                 JTTs 


	University of Dayton
	eCommons
	4-2013

	Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand
	Michael F. Gorman
	eCommons Citation


	tmp.1468332812.pdf.DUf4I

