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Capacity Driven Pricing M echanism in Special Service Industries

Abstract

We propose a capacity driven pricing mechanism for several sendlesstines in which the customer
behavior, the price demand relationship, and the competition are significéstthctfrom other industries.
According our observation, we found that the price demand relationslifyese industries cannot be mod-
eled by fitted curves; the customers would neither plan in advance ndngagr¢he service strategically;
and the competition would be largely local. We analyze both risk neutral andvéssion pricing models
and conclude the proposed capacity driven model would be the optimélsolunder mild assumptions.
The resulting pricing mechanism has been implemented at our industrial partheositive results since
2005.

Keywords. Pricing model, Revenue management, Demand curve, Special servicgyndus



Capacity Driven Pricing M echanism in Special Service Industries

1 Introduction and Literature Review

Pricing is one of the most important Revenue Management (RM) decisipasiaby for service industries.
The most significant factors that influence pricing decisions are custoshewior, competition, and market
demandsans and Savi(2005. Microeconomics theory suggests that market demand is a function ef pric
It is a trivial fact that for most industries, whenever a company resltlee price of its products or services,
it expects a positive impact on sales. At the same time, a price increase usegdliively impacts the
sales. Therefore, the price demand relationship is critical to both acadedch@actitioners in the field of
revenue management and pricing. A common approach is to treat the markahd as the function of
price. Based on such functions, a variety of pricing models have beefoged on it.King and Topaloglu
(2009 provided a pricing model for the fleet management problempta et al(2006 andSoysal(2007)
are about pricing models for seasonal goods. Their model are primagidon Markov Decision Process.
Cope(2007) introduced the Bayesian model for dynamic pricing in E-commefgens and Savi(2005
integrated the pricing model with the capacity planning.

The price demand relationship on these models are usually established bythigimjstorical data
points. The fitting process is called norm approximation {seel and Vandenbergh(2004) and references
therein). The resulting curve is called the price demand curve or demamd @DC) which could be
either deterministic or stochastic. For examplecke and Peit{2009 andPanda et al(2006 modeled
the market demands by a random vector with transparent distributionamiafion. Instead of using a
deterministic DC, a DC with stochastic components is formed by adding randowpoarents. There are
other alternative approaches to model the price demand relationshipxdfoplke, there is a method called
“learning” method by Bertsimas and Perak{2006. Basically, thelearning method is an optimization
based heuristic. It works quite well for online shopping activities. Whestmevenue management and
pricing models are built on DC, it gives a perception to the practitioners thairibe demand relationship
can besolely represented by DC.

In addition to the price demand relationship, certain factors such as thegpdegisions by competi-
tors and the customer behavior can greatly affect revenue of a congsamell. There are numerous
papers that address pricing models under these factorserson and Schneid€¢2007), Gallego and Hu
(2009, Levin et al.(2007) are representative articles for highly specialized pricing models uratape-
tition. The basic assumption for these articles is that customers will plan stedtggicadvance for the
perspective price adjustmerithen and Homem-de-Mell2009 present a preference based customer be-
havior model for the airline revenue managementang and Coope(2005 provide customer behavior
analysis when parallel flights are available. Other representativepaperalluri and van Ryzin(2004),



van Ryzin and Vulcan(2006 as comprehensive solutions for network revenue management witmersto
choice.

Authors of this paper have the luxury of accessing the operational iatean industrial partner. Our
industrial partner is a leading real estate management company in the nabperdtes more than Q00
local self-storage stores. 90% of customers are residential includilegestudents and small businesses.
They rent space for a variety of goods, documents, furniture, sabsaopplies, and recreational vehicles.
Customers make their decision based on multiple factors, such as the proxippiggrance and quality
of the facilities, reliability of the provider in providing dependable and actdptservice, responsiveness
of the provider to the need, assurance that the service will be deliasredpected, and the treatment of
the customers by the service provider ($ezasuraman et 21988). According to the company’s past
20-year records, the customer behavior, the price demand relatiomshipeacompetition are very counter
intuitive and different from other industries. Furthermore, none ofetlmsservations have been reported
from existing literature. Therefore, the company’s pricing mechanisnldhie uniquely designed.

We first present the company’s historical data about the price demkatidmship. In Figurel, it shows
the sales data from stores in one major U.S. metropolitan area in 2007x-aie indicates the different
price levels and thg-axis records the sales generated at corresponding price levels.

Figurel about here.
Figure2 tracks the price and sales over two months from one store in the same region.
Figure2 about here.

Figurel and Figure2 will yield a poor fitted curve with an extremely low covariance on price and deima
In Figure3, we illustrate the 121-week data on both the occupancy levels (uppér)gaag the price

levels (lower graph). Clearly, both the occupancy levels and the prietslskiiow downward trends. This is

counter intuitive because the lower price usually leads to more sales astthegher occupancy levels.

Figure3about here.

After a detailed investigation on the property’s performance, we conc¢hatehis was the result of a con-
tinuous effort to generate sales from a sequence of price cuts. éntortring customers into the store, the
price level has been in a declining trend in the last 121 weeks. Howeeesates number suggests a clear
downward trend at the same time. We realized that this property was in a regere the foreclosure rate
was far higher than the national average and the real estate priceglhmraeted since the last two years.
According to this example, even when the company cut the price more aggigsthe number of sales and
the occupancy levels would still decline steadily. In this case, we concfirdg:the fitted DC may not be
suitable for all the industries; second, cutting pricing will not necessariihghhew market demands in the
self-storage industry.



In order to study the impact of price on demand from another perspgeteveonduct another pilot
pricing experiments. In a Midwest city, we carried out a price in selectedssteaving the price of other
stores unchanged for 17 successive weeks in 2006. The resulsdadtion, as illustrated in Figuré,
indicates that a price cut has positive impact in bringing customers in.

Figure4 about here.

Figure3 and4 are sending mixed signals on the effect of price cut and customer denfamas the pilot
experiment, lower price will instantly cause higher sales. From Figut®wever, a lower price failed to
yield more sales. The price demand relationship can also show strongmaes®in Figures and?2.

Our third observation is called the “jump” effect described in Figatkat resulted from a price cut in
week 1 at only one store and the price cut was maintained until week 9. oRité/p effect from the price
cut, in this instance, lasted less than 3 weeks.

Figure5 about here.

We must remark that the observations in Figured, 3, 4, and5 are not coincidences. Similar observations
can be obtained at almost all the stores across the nation since the mid 1990s.

Our explanation on these observations is caused by unique customegiobetmal local competitions.
Prior to introducing our capacity driven pricing mechanism, we first summaiiz characteristics of the
self-storage industry as the following items.

1. Most often, the customers seek prompt service once their needseenfewg example, the rental
season for properties close to colleges should be from May to Septenrérg the period, college
students will rent space for their dormitory belongings. Once their demiaaggukear, they will move
out immediately no matter how much price cut the property may offer.

2. Customer demands usually emerge randomly as the consequence ofunigkipected events, such
as divorce, death, relocation, and birth. Under such circumstanieesipg in advance is unlikely.
Therefore, we can rule out the possibilities of strategical customerrwafd looking customers. As
a result, the widely applied game theory based revenue management modeistrbayused even
under competition.

3. The competition only comes from local competitors because of the natthie eérvice. Customers
need to access their units physically within a certain proximity of their residence

4. Inthe era of internet, all service providers post their pricing informatidine to facilitate customers.
At the same time, the service price becomes transparent to competitors as well.



. The available service capacity (ASC) is the number of vacant units arnoltél service capacity (TSC)
is the number of units at the property. Every service provider's ASC asvkrby other competitors.
Within a short term, say a quarter, the service provider's TSC is largedg fix

. A price cut will not necessarily generate new market demand. Tdrerefhenever a store reduces the
price for its service, the positive impact observed is solely contributedibgimg active customers,
i.e. these seeking the service at that time. Since pricing information is tramspeompetitors will
match the price cut quickly to eliminate any advantage caused by the price cut.

. Pricing decision will only affect the decisions of active customers whashopping for services on
the market. Existing customers, once moved in, will not switch their serviogdms solely due to
the factor of service charge.

. Lastly but most importantly, the service charges are not cost bageti@services provided are es-
sentially the same (segzcomandi and Johns(2007)). Customers can neither determine the physi-
cal value of the services nor set their uniform price ranges. Therefastomers compare the prices
from all the local service providers before purchasing. A low priceraer will become the favorable
choice. We thereby can illustrate customers preference by Figure

Figure6 about here.

Suppose a local store hascompetitorsCy, . ..,Cy, with similar store appearance, reputation, and
service protocols. Their price levels apg, ..., pm respectively. The low price service provider is
always customers’ favorite.

Rather than confining our pricing mechanism within the self-storage industriglentified other service

industries which also possess characteristics ficam8. These service industries are the funeral service,

the vehicle body shop, the health care lab, and the repair service. lertaning section of the paper, we

call these service industries the special service industry (SSI). Fee thdustries, we propose a capacity

driven pricing mechanism. As such, the rest of the paper is organizidl@ass: in Section2, we intro-

duce our pricing model by integrating characteristics specific to SSI.dtiidPe3, we present the resulting

pricing mechanism from the model in SectidnWe present the result from business implementation of our

industrial partner and conclude the research in Seetion

2 Modd

In SSI, companies adjust their prices periodically and within each suchiapprices are fixed. Therefore,

we can model the pricing problem on fixed planning horizons. Supposen@any is one of multiple
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service providers in a certain region. The company'’s price levelds certain planning horizon. Due to the
uniqueness and the nature of the SSI, we will introduce a set of notatluok are different from those in
the literature.

e Under the company’s price leve| the total available service capacities operated by local competitors
is c(X).

e Let& denote the total market demand during the planning horizon in this region.eUtlier papers,
we do not assume the possession of distributional information.

e For certain planning horizon, the company’s available service capaditylisch is deterministic and
known.

e Under the market demard let p be the price that
c(p)+b=¢&.

Since service providers’ ASCs are largely fixed during certain plariminigon, p is solely and mono-
tonically determined by. Unlike other literature, we userather tharg, to incorporate the random-
ness and®(A < p < B) = 1. For general purposes, we [et-) represent the cumulative distribution
function of p and f(-) the probability density function. We nanpethe market supporting price
(MSP).

e The risk-less profit, or projected revenudoiswhen the company’s price isand ASC ish.

e When underpricing, i.ec(x) + b < &, the company shows conservativeness in pricing. The resulting
loss is named as the underpricing loss denoted py p) := b(x— p)~ where(x)~ = max{—x, 0}.

e When overpricing, i.e.c(x) > &, the company’s loss much more severe than the underpricing loss
because we may not generate any sale during the planning horizonpk¥east the overpricing loss
by O(x, p) := bxI(p < x) wherel(p < x) is 1 if p < x and 0 otherwise.

In the pricing model, the decision variable is the price les@liring certain planning horizon. Although
the ultimate objective is to maximize the operating revenue, the objective cowddmippmultiple formats.

e Therisk neutral pricing decision. This objective is to determine the optimal pricéhat the expected
revenue is maximized.

max E,[bxI(p > x)] i.e. maxbxP(p > x) or maxbx[1— F(x)] (2.2)
XERT XeR* XERT

wherell(+) is the indicator function op > x.



e Therisk aversion pricing decision. There are two losses, the underpricing and overpricing. When
we compare these two types of losses, we realize that the overpricing neagllesles during the
planning horizon while the underpricing only cause a fraction of revenhberefore, the risk aversion
pricing should essentially try to avoid the overpricing loss. ddie the significance level which is
usually set at @5.

max bx subject toP(x < p) > 1—a (2.2)

XER*

In our problema is the probability of overpricing.

Since the convexity in both modet.() and model 2.2) are important, we need to make the following
assumption on the distributional information pf

Assumption 1. The probability density of p, f(p), islog-concave.

Since many widely used distributions, such as normal, uniform, logistic, cldred, exponential,
Laplace, Gamma, and Weibull, are log-concave, our assumption is nactrestto hurt the generality
(seeBagnoli and Bergstrorn(i.989).

Theorem 1. The objective of model (2.1) islog-concaveif f(X) islog-concave density.

Proof. The proof can be divided into two parts. First, if we assume the density bfx), is log-concave,
Bagnoli and Bergstror(1989 showed thatl — F(x)) is log-concave. Second, singe> 0 is log-concave,
thenx(1—F(x)) is log-concave. We are done. O

Theorem 2. Model (2.1) has the global optimal solution if x] is the optimal solution, we have 1 —F(x;) —
X3 f(X3).

Proof. By theoreml, then logbx(1— F(x))) is concave. Then

max log(bx(1—F(x))) (2.3)

xeR+
has the same global solution as modell). x] is calculated from the first order optimal condition. [
The risk aversion modeR(2) can be transformed into a convex programming as well. By assumniption
min —bx Subject to: logr - log[F (x)] >0 (2.4)
Xe
and its optimal solutiont, = sup{x|F (x) = a}.

Both optimal solutions from the risk neutral model and the risk aversion nwaitleitay optimal during
the planning horizon when competitors’ prices remain unchanged. Neles#h our observation tells us
that any competitor will adjust their prices at any time. Therefore, the comniotdyested question on
pricing is how to respond to competitors’ pricing adjustments. To be spec#icaimpany needs to respond
under the following scenarios:



Scenario A When our ASC level is low, competitors with large amount of ASC changesrice
Scenario B When our ASC level is high, competitors with large amount of ASC changesric
Scenario C When our ASC level is low, competitors with small amount of ASC change prices
Scenario D When our ASC level is high, competitors with small amount of ASC changegrice

The competitors’ price change will be modeled by the perturbation on the disbribof p. Let Q be the
real probability measure rather than the underlying probability med&ufée real cumulative probability
function isG(x) and the real probability density function g§x). When competitors lift prices, we will
haveF (x) > G(x),Vx € [A,B]. Likewise, when competitors cut prices, the(x) < G(x),vx € [A,B]. The
expected MSP will change frofiap (p) to Ep(p). In addition, we need the following assumptions.

Assumption 2. G(x) is always log-concave when F (x) islog-concave, and F (A) = G(A),F(B) = G(B).
Assumption 3. For x < min{Ep(p),Eq(p)}, f(X) <g(x).

Assumption2 can be proven as a theorembmgnoli and Bergstron(1989 when the perturbation is
modeled by the affine transformations. The purpose of assumptisrio guarantee the perturbation is
significant enough to differentiate both distributions. We use Figure show the perturbations on the
distribution of p. The perturbed cumulative distribution functiGix) is not required to be the shift &f(x),
i.e. F'(x+90) # F(x),d € R. We only require the assumptioBsnd3.

Figure7 about here.

Theorem 3. Suppose y; and y; are the optimal solutions of the risk neutral model (2.1) under the dis-
tributions P and Q respectively. When F(x) < G(x), theny; > ;. Likewise, y; <Y; in order to make if
F(x) > G(x).

Proof. Without loss of generality, we assurféx) < G(x),Vx € [A, B], i.e. the competitors cut prices. By
theorem2, we have - F(y;) —y; f(y;) = 0. By assumptior? and3, 1—-G(y;) —y;9(Y;) <1—-F(y;) —
y; f(y;) = 0. Hencey; > y; by log-concavity ofF (x) andG(x). Similarly, we can show thaf; <y; when
competitors lift prices, i.eF (x) > G(x),Vx € [A, B]. O

Theorem 4. Supposey; and y; are the optimal solutions of the risk aversion model (2.2) with a under the
distributions P and Q respectively. When F (x) < G(x), theny; > 5. Likewise, y; <5 if F(x) > G(X).

Proof. Sincey; = sup{y|F(y) = a},y; = sup{y|G(y) = a}. Therefore, wherF (x) > G(x),Vx € [A, B,
y; > Y5. Otherwisey; <VY; O



By theorems3 and 4, when competitors cut price and therepg distribution shifts to the left, our best
response should cut our price to sustain our position in the competition. Simivlidy competitors increase
prices and the distribution gb shifts to the right, we can increase our price to avoid the under-pricing
loss. That is, the suggestions from both risk neutral model and rislsiamemodel are consistent with
each other. There is only one exception. When 99% units are occupegyrdperty manager would
carry out a significant high price on the remaining ASC. This action cantasjoistified by theoren3
and4. Whenb is low, the price adjustment will only lead to very limited revenue increase if Wewo
competitors’ adjustments. Under this circumstance, lifting price of remaining tdGignificantly higher
level could gain a large margin with literally no risk. Whbris high, however, we should always respond
to competitors’ pricing adjustments immediately. Such a conclusion from thedemd4 is consistent
with our observation in practice. For a newly opened property, the cominategy is to offer low price
to quickly fulfill the vacant units. On the other hand, a 99% occupied ptppdll be reluctant to match
competitors’ offers.

We must remark both2(1) and @.2) are not solved in practice. There are many reasons. First, the
SSlis operating in a constantly changing environment and the market dexaamidbt be accurately model
by statistical tools. Second, mod&.{) and model 2.2)'s optimal solution can be substantially changed
even under a small perturbation (seen-Tal and Nemirovsi(2000). In SSI, perturbations on parameters
of both models are very likely. Lastly, the optimization model may provide uglyselutions which are
against some established conventions. In next section, we will developirrgpmechanism based on both
theoretical analysis and simulation study.

3 Numerical Study and Business Implementation

In this section, we build a real scale simulation study to justify our pricing mesimadeveloped. Suppose
our store locates in a stable neighborhood with 7 competitoes 7). To simplify the notation, our store is
called “ESS” and seven competitors are nai@ed. .,C7 in a sequence in an ascending order by their price
levels. The summary for “ESS” and competitors is listed in tdble

Table1 about here.

The optimal price is first calculated from the risk neutral model. Afterwtel result is rounded to one of
the following
$99 $105$115$1225,$1275,$135$145$151

which are designed to differentiate our price from these seven competimrexample, when the optimal
o . 0+120 _— .
solution is between 110 and 120, then our price Would%e;r— = 115 to simplify the notation and



avoid ugly real numbers. Despite providing consistent results with the eisktad model, the risk aversion
model is overly conservative. Therefore, we focus on the risk neutvdel in this simulation study.

1. Large competitor’s price adjustment: A large competitorCy4, adjusts its pricing levels. First,
C4 cuts its price from $125 to $100. Seco@gl increases its price from $125 to $150. We put the
result with Poisson market demand in fig@and the result with uniform market demand in figQre
respectively.

Figure8 about here.

Figure9 about here.

The x-axis is our ASC and thg-axis is the optimal price. The solid curve represents the optimal
price without competitors price changes. The even dotted curve is the optiltalwhenC, reduces
prices and the uneven dotted curve is the optimal price vihdncreases prices. For all the curves
under both distributions, the downward trend is quite significant which mimtsve should offer
low prices when our ASC level is high. The results suggest we shouldyalneact to the large
competitor’'s price adjustments. When large competitors increase pricesoutel keep our price
unchanged or increased. When large competitors cut price, our mdgtrideetion is to match the
price cuts to attract customers.

2. Small competitor’s price adjustment: This example is to show our most likely pricing decision
when a small competitor adjusts price. In this case, there is a small compeiitehich has only 6
units available (i.e ASC = 6). We simulate when they cut all these 6 units to $100 from $150 and
they increase price to $180 from $150. The market demand is simulatedibiPbisson and uniform
distributions. The optimal prices by changing ASC are in figlbeand figurell. The simulation
results suggest that the small competitor’s price cut has far less impact gmicing decision. Our
best reaction is to ignore such changes and focus on the action of targettors.

Figure10about here.

Figurellabout here.

3. New competitor’semerging: We create a new competitd@g with ASC = 400. A new competitor
usually emerges on a fast growing market. This competitor could starttoygeedther at $110 with
400 ASC or at $180 with 400 ASC. The results are in figl@end figurel3.

Figure12 about here.
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Figurel3about here.

The results suggest that a new competitor means a substantial changecigidine YWhen new com-
petitor opening at high price, we should keep our price unchangedhsamrresponding curves in
figure 12 and figurel3). However, whenever a new competitor opens at low price, we shouldhmatc
the low price to attract customers regardless our ASC level.

We summarize our mechanism into the following itemsubes to handle the competition.
1. When a small competitor adjusts price, we tend to keep our current price.
2. When a large competitor adjusts price, we tend to match the adjustment.

3. When a new competitor emerges at high price, we tend to keep our ptameched. However, when
a new competitor emerges at low price, we should match the low price to attvacuséomers.

4. Our ASC is another critical factor on our pricing decision. Wheneue®SC is high, a lower price
will help to fill the vacant units. When our ASC is low, we should be condeman issue price

reduction or sales promotions.

Since 2005, this pricing mechanism has been implemented at our industti@mpa&ince then, signif-
icant improvements on both quarterly occupancy growth (tapénd the quarterly revenue growth against
major competitors (tabl8) have been observed. Weighted average occupancy has grawi81% in the
first quarter in 2005 to 87% in the third quarter in 2007. During this time sane-stoenue growth has
been kept at about 5% after the inflation adjustment.

Table2 about here.

Table3 about here.

4 Conclusion

In this paper, we discuss the uniqueness of SSI in terms of customeridretmicing mechanism and
competition. We found that when services provided by different sepriogiders are essentially the same,
customers in SSI will put price in front of any other factors. The demamasrge at random and unpre-
dictable. The price reduction will not generate new demands and wherothgany issues a price cut,
the observed positive sales records are solely contributed by attracting eustomers. Once customers
purchase the service, they will stay with the provider until their needs pésapThe positive effect by price
reduction can be canceled within a short period because the competitonsanih the price cut.

10



Based on these observations, we first conclude that the pricing mod8l ishSuld not be built on a
fitted price demand curve (DC). Afterward, we presented two pricing fptee risk neutral model and
the risk aversion model. Both models suggest match competitors’ price adjustm@ither factor is our
ASC. When ASC level is high, both models suggest low prices and wheni®\B@, the property becomes
conservative in price reduction. We also find applying both pricing modsdstty in practice unrealistic.
Instead, we develop a pricing mechanism to substitute both models by thdomaabssis and simulation
studies. Comparing with these models, the resulting pricing mechanism is higiigtiomal. We have
implemented the model recommendations in our industrial partner since 200pri€ing mechanism has
outperformed our major competitors and has been recognized as assincSEs.
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Figure 1: Price vs. Sales in one major U.S. metropolitan area.
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Figure 2: Price vs. Sales from one store in the same metropolitan area of Eigu
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15



-
e lf \\
1 / \
10 ! \
. / \
. / \
o — M —
7 T————
TV

Figure 5: The jump effect of a price cut

16



P1, Pm,
C1 Cm
\_/ \_/ \ A

Figure 6: Individual customers’ buying preference witk@; <...,< pm

17



Cumulative distribution
after competitors
cut their prices.

Cumulative distribution
before the competitors
increase prices

Cumulative distribution
after the competitors
increase prices

Cumulative distribution
before competitors
cut their prices.

p p

Figure 7: Perturbation caused by competitors’ price cuts or price ireseas
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Figure 11: The optimal price when a small competitor adjusts price (Uniforrkehdemand)
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Figure 12: The optimal price when a new competitor emerging (Poisson nuhatetnd)
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ESS| ¢ C Cs Cy Cs Ce &7

Price level p | $100| $110| $120| $125| $130| $140| $150

Overall capacity] 350 | 260 | 400 | 440 | 300 | 250 | 190 | 150

Occupancy NA | 75% | 80% | 90% | 86% | 84% | 80% | 96%

ASC c 65 80 44 42 40 38 6

Table 1: Numerical study setting
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Year 2005 | 2005 | 2005 | 2005 | 2006 | 2006 | 2006 | 2006 | 2007 | 2007 | 2007
Quarter Ql | Q2 | Q3 | Q4 | Q1 | Q2 Q3 | Q4 | Q1 | Q2 Q3
Sq Ft Occ% 81% | 83% | 86% | 84% | 83% | 85% | 87% | 85% | 84% | 86% | 87%
YTY AOcc% NA | NA | NA | NA | 2.0% | 2.3% | 1.4% | 1.6% | 0.8% | 0.5% | 0.2%
YTY Arevenue| NA NA NA NA | 7.6% | 6.7% | 4.9% | 4.7% | 4.7% | 3.3% | 2.7%
Table 2: ESS property performance since 2005
Year 2006 | 2006 | 2006 | 2006 | 2007 | 2007 | 2007
Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3
Public Storagérevenue 51% | 5.7% | 6.1% | 3.4% | 2.9% | 1.7% | 2.1%
Sovran Self StoragArevenue | 6.8% | 5.8% | 5.8% | 4.0% | 3.5% | 4.0% | 3.5%
U-Store-IltArevenue 42% | 1.7% | 3.8% | 0.8% | 2.2% | -0.8% | 2.3%
Average Peer Group Arevenue | 54% | 44% | 52% | 2.7% | 29% | 1.6% | 2.6%

Table 3: Major competitor’s same-store revenue growth since 2006
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