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ABSTRACT

In this study, the potential future changes of mean and extreme precipitation in the middle and lower

Yangtze River basin (MLYRB), eastern China, are assessed using the models of phase 5 of the Coupled

Model Intercomparison Project (CMIP5). Historical model simulations are first compared with observations

in order to evaluate model performance. In general, the models simulate the precipitation mean and fre-

quency better than the precipitation intensity and extremes, but still have difficulty capturing precipitation

patterns over complex terrains. They tend to overestimate precipitation mean, frequency, and intensity while

underestimating the extremes. After correcting for model biases, the spatial variation of mean precipitation

projected by the multimodel ensemble mean (MME) is improved, so the MME after the bias correction is

used to project changes for the years 2021–50 and 2071–2100 relative to 1971–2000 under two emission

scenarios: RCP4.5 and RCP8.5. Results show that with global warming, precipitation will become less fre-

quent but more intense over the MLYRB. Relative changes in extremes generally exceed those in mean

precipitation. Moreover, increased precipitation extremes are also expected even in places where mean

precipitation is projected to decrease in 2021–50. The overall increase in extreme precipitation could po-

tentially lead to more frequent floods in this already flood-prone region.

1. Introduction

Themiddle and lower YangtzeRiver basin (MLYRB)

is located in eastern China. It is one of the most im-

portant agricultural and industrial regions in China,

contributing to large portions of the nation’s total gross

domestic product and grain production (Fig. 1). Flood-

ing along the river has always been a major problem in

this region, particularly during themonsoon season from

May to September (Jiang et al. 2008). Meanwhile, the

relatively dense population and large cities along the

river make the floods more deadly and costly (Jiang and

Shi 2003). The 1998 Yangtze River floods resulted in

3704 dead, 15 million homeless, and $26 billion (U.S.

dollars) in economic loss (Wang 2001). A significant

increase in precipitation has been observed in the

MLYRB in the late twentieth century. Many studies

indicate that the observed increase is mostly associated

with an increase of high-intensity precipitation events

resulting in more frequent floods (Zhai et al. 2005). Su

et al. (2006) have observed more frequent long-duration

extreme events over the MLYRB, increasing the risk of

larger floods. Wu et al. (2004) suggest that human-

induced global warming may be partly responsible for

more frequent and intense floods over the Yangtze

River basin during the past several decades. Many

studies indicate that global warming is likely to further
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change the precipitation patterns in the future (Hegerl

et al. 2010).Therefore, it is extremely important to

examine such potential changes in both mean and

extreme precipitation patterns in this important re-

gion to provide useful information for decision-

making in climate change mitigation and adaptation.

This study focuses on the MLYRB, encompassing an

area from 248 to 348N and from 1088 to 1228E (Fig. 1).

Several recent studies have evaluated the models in

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) for their ability to simulate precipitation and

used them to examine the potential precipitation

changes at global and regional scales (Kharin et al. 2013;

Sillmann et al. 2013a,b; Wuebbles et al. 2014). Kharin

et al. (2013) analyzed extreme precipitation events

with a 20-yr return interval in CMIP5 models and found

that the multimodel ensemble could simulate them well

over the extratropics, but large uncertainties exist in the

tropics and subtropical regions. CMIP5 models are also

applied to explore future precipitation changes in China.

Several studies suggest that the models underestimate

the summer precipitation over eastern China (Chen and

Sun 2013; Chen and Frauenfeld 2014; Huang et al. 2013).

Most studies project an increase in precipitation for the

region by the end of the twenty-first century, with a

greater increase in the north than in the south (Tian

et al. 2015; Xu and Xu 2012). However, most existing

studies focus on the mean precipitation (Chen and

Frauenfeld 2014; Tian et al. 2015; Xu and Xu 2012). To

detect the effects of warmer climate on the current and

future characteristics of precipitation, it is extremely

important to examine the changes in both themean state

and extreme events. Some studies examined the changes

in extreme precipitation, but were limited to the use of a

set of simple indices, such as those developed by the

Expert Team on Climate Change Detection and Indices

(ETCCDI; Chen and Sun 2015; Xu et al. 2015). In this

study, we examine the changes in extremes in more

depth by incorporating statistical methods derived from

the extreme value theory.

This study focuses on the MLYRB, a region with the

most severe floods and high socioeconomic costs. It aims

to project how future climate change will affect mean and

extreme precipitation during the monsoon season, de-

fined as from May to September for the study area.

Compared with previous studies, we have made the fol-

lowing methodological adjustments. First, most previous

studies examined the potential changes in precipitation

for all ofChina or for large subregions, combiningCMIP5

models of various spatial resolutions. Therefore, results

were usually presented in a coarse resolution that did not

provide sufficient spatial details for this particular region.

In this study, we selected six high-resolution CMIP5

models (with cell size ranging from 18 to 1.88) and only

used those as our basis for assessment. Second, instead of

using raw model output data, we evaluated model biases

by comparing results of historical runs with observed

values and applied statistical methods to correct model

biases before they were used to assess future changes.

Third, we used peak over threshold (POT), a relatively

new approach in statistical analysis of extreme events, to

establish present and future probabilities andmagnitudes

of extreme precipitation events, based on which a de-

tailed comparison could be made. Finally, many studies

indicate a close connection between the East Asian

summer monsoon (EASM) strength and the rainy season

precipitation in the MLYRB (Li and Zeng 2002). How-

ever, whether this relationship will remain unchanged

under globalwarming has rarely been investigated. In this

study, we examine how precipitation change is linked to

changes in the EASM strength in the future. Major ob-

jectives of this study include the following:

1) Evaluate a set of high-resolution CMIP5 models on

their ability to simulate mean and extreme monsoon

precipitation for the study area.

2) Project future changes in mean and extreme pre-

cipitation during the monsoon season for the years

2021–50 and 2071–2100 relative to 1971–2000 under

two emission scenarios: RCP4.5 and RCP8.5.

3) Examine the link between future changes in pre-

cipitation pattern and EASM.

The remainder of this paper contains three sections.

Section 2 provides a brief description on the datasets and

methodology used in this study. Section 3 presents re-

sults of potential changes in mean and extreme pre-

cipitation for two future time periods under two

different emission scenarios. Section 4 provides a dis-

cussion of the results andmajor conclusions of the study.

FIG. 1. Map of the MLYRB.
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2. Data and methodology

a. Data

The outputs of six high-resolution global climate

models in CMIP5 are selected in this study to project

future changes of precipitation in the MLYRB (Table 1).

These models include both retrospective twentieth cen-

tury climate simulations and twenty-first century climate

projections under the RCP4.5 and RCP8.5 scenarios.

The historical climate simulations cover 30 years from

1971 to 2000, and the future projections are developed

for both the near future (2021–50) and the long-term

future (2071–2100). Most models have a resolution be-

tween 18 and 1.88of latitude/longitude.
The gridded daily precipitation for China (referred

to as CN0.5) is used to evaluate the models (Zhao

2012). The data are distributed by the China Meteo-

rological Data Sharing Service System (http://data.

cma.cn/). The data have the spatial resolution of 0.58.
The CN0.5 is interpolated from observations at 2472

weather stations using thin-plate spline smoothing,

incorporating varying degrees of topographic de-

pendence, with the degree of data smoothing de-

termined by minimizing the generalized cross validation

(Hutchinson 1998a,b). All weather station data were

subject to strict quality-control procedures by the China

Meteorological Administration before the interpolation.

Comparison between the CN0.5 and the raw station data

shows high consistency and small bias between the two.

However, error increases in regions where rain stations

are sparse. The relatively dense station network in

eastern China ensures high data quality in our study

area (MLYRB).

A subset of the data is extracted for the study area for

1971–2000, the same period as model historical runs. To

facilitate comparison, all climate model data are re-

sampled to the 0.58 3 0.58 grid as the observed data

(CN05) using thin-plate smoothing spline. In addition,

the monthly mean wind speed at 850hPa data is ob-

tained from the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalyses dataset (http://www.esrl.

noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for

the period 1971–2000. It is used to calculate EASM index

and to examine the relationship between precipitation

and EASM strength.

b. Variables

1) PRECIPITATION INDICES

To assess potential changes in the characteristics of

precipitation with warming climate, it is important to

examine both the mean state and extreme events. For

the mean state, we define the following precipitation

indices for the monsoon season, defined as from May to

September:

d Wet days (frequency): number of days with

precipitation $1mmday21;
d Mean (mean): mean daily precipitation (mm);
d Intensity (intensity): mean precipitation of wet days,

an indication of precipitation intensity (mmday21).

In addition, we define extreme precipitation events in

terms of their return intervals. In this study, we examine

the present and future magnitudes of 5- and 20-yr

events, derived from using the generalized Pareto dis-

tribution (GPD) based on POT series. More details of

this method are presented in section 2.

2) EASM INDEX

Many indices exist to measure the EASM intensity. In

this study, we use the EASM index developed by Li and

Zeng (2002), which is defined directly from monthly

wind speeds. This index has been widely used in pre-

vious climate change studies (Li and Zeng 2002; Wang

et al. 2008). It is defined as follows:

TABLE 1. List of 6 CMIP5 models used in our study.

Model name Modeling center Resolution

Commonwealth Scientific and Industrial Research Organisa-

tion Mark 3.6.0 (CSIRO Mk3.6.0)

CSIRO, Australia 1.84978 3 1.8758

Hadley Centre Global Environment Model, version 2–Earth

System (HadGEM2-ES)

Met Office Hadley Centre, United

Kingdom

1.258 3 1.8758

Model for Interdisciplinary Research on Climate, version 5

(MIROC5)

Atmosphere and Ocean Research In-

stitute (University of Tokyo), National

Institute for Environmental Studies,

and JAMSTEC, Japan

1.48 3 1.48

Max Planck Institute Earth System Model, low resolution

(MPI-ESM-LR)

Max Planck Institute for Meteorology,

Germany

1.8658 3 1.8758

Meteorological Research Institute Coupled Atmosphere–

OceanGeneral CirculationModel, version 3 (MRI-CGCM3)

Meteorological Research Institute, Japan 1.21458 3 1.1258

Community Climate System Model, version 4 (CCSM4) NCAR, United States 0.94248 3 1.258
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where v1, vi are the January climatological and monthly

wind vectors at a point, respectively, and v is themean of

January and July climatological wind vectors at the same

point. The norm kAk is defined as

kAk5
�ð ð

S

jAj2 dS
�1/2

,

where S denotes the domain of integration (108–408N,

1108–1408E). For example, we calculate at a point (i, j),

kA
i,j
k’ ffiffiffi

a
p

[(jA2
i21,jj1 jA2

i,jj1 jA2
i11,jj) cosuj

1 jA2
i,j21j cosuj21

1 jA2
i,j11j cosuj11

]1/2 ,

where a is the mean radius of the earth and uj is the

latitude at the point (i, j). This index is constructed as

the dynamical normalized seasonality of the wind field.

It uses the magnitude of seasonal difference of the wind

field as an indication of monsoon strength.

c. Methodology

1) MODEL EVALUATION

The Taylor diagram is a useful visual tool to summa-

rize the degree of similarity between simulated and

observed values of a climate field (Taylor 2001). This

diagram displays the centered root-mean-square dif-

ference E, the correlation coefficient r, and the ratio of

standard deviations s of a pair of simulated and ob-

served values as a single point on a two-dimensional

plot, so that different models can be compared and

evaluated (Pincus et al. 2008). In this study, we use the

Taylor diagram to evaluate the models’ ability to simu-

late mean and extreme precipitation during the mon-

soon season over MLYRB. Summary statistics for each

model as well as model ensemble mean were computed

with respect to the observed values.

2) CORRECT BIAS

Despite their improved performance, the CMIP5

models still contain significant biases (Knutti and

Sedlá�cek 2013). Biases in GCM simulations not

only affect the mean precipitation amount, but the

shape of the distribution. For example, many models

tend to overestimate light precipitation frequency

but underestimate extreme precipitation magnitudes

(Stephens et al. 2010). Therefore, bias correction is

often necessary for developing more accurate future

climate projections. In this study, the quantile mapping

technique was used to correct biases in the model output.

Quantile mapping is a type of statistical transformation that

equates cumulative distribution functions (CDFs) of ob-

served data xo,h (Fo,h) and modeled data xm,h (Fm,h) in a

historical period. This leads to the following transfer func-

tion for a modeled value xm,p in a projected future period:

x̂
m,p

5F21
o,h[Fm,h

(x
m,p

)],

where x̂m,p is the bias-corrected modeled data for a pro-

jected future period;F21
o,h is the inverseCDF (i.e., quantile

function) of observed data xo,h; Fm,h is the CDF of the

modeled historical data xm,h; and xm,p is the uncorrected

modeled future projection data. More details can be

found in Gudmundsson et al. (2012) and Wu (2012).

3) PEAKS OVER THRESHOLD

The probability and magnitude of extreme events are

often studied through a branch of statistics known as

extreme value analysis (Coles 2001). The common ap-

proach usually involves fitting an appropriate theoreti-

cal distribution function (such as the extreme value

distribution) on block maxima (minima) series. In most

situations it is customary and convenient to use the an-

nual maxima (minima). This is sometimes considered a

wasteful approach to extreme value modeling if an en-

tire time series of daily data is available (Coles 2001). In

this study, an alternative approach is used, which relies

on extracting from a continuous record the peak values

that exceed a certain threshold for the entire series

(Pickands 1975). This method is generally referred to as

the POTmethod. In this study, the threshold is set at the

95th percentile of daily precipitation values during

monsoon season (Cooley and Sain 2010; Tomassini and

Jacob 2009). For POT data, the GPD is often used to

model the frequency and magnitudes of exceedances,

which is also adopted in this study. Based on Coles

(2001), daily precipitations X in exceedance above a

certain threshold u are well represented by a GPD with

scale and shape parameters denoted by s and j, re-

spectively (Pickands 1975). Then, given x . u, the

probability of X exceeding x is given as

P(X. x jX. u)5
h
11 j

�x2 u

s

�i21/j

.

If zu denotes the probability of exceeding the thresh-

old u, the magnitude of a precipitation event withN (yr)

return level zN is given by

z
N
5 u1

s

j
[(Nn

y
z
u
)j 2 1] ,

where ny is the number of data per year.
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4) DECLUSTERING

The major assumption in POT analysis is that the

values of exceedances are independent (Coles 2001).

However, daily precipitation exhibits temporal de-

pendence, which also occurs at high values. In this study,

we assume that two exceedance events are independent if

there is at least one day without rainfall between them.

Consecutive days exceeding the threshold are treated as a

single event with only the day withmaximum value of the

cluster kept in the series. The GPD is then fit to the de-

clustered POT series at each grid.

3. Results and discussion

a. Model performance in simulating precipitation
characteristics for 1971–2000

1) METRIC ANALYSIS OF MODEL PERFORMANCE

We first calculate the mean values for all precipitation

indices for both modeled historical data and the ob-

served data for 1971–2000 during the monsoon season

from May to September at each grid point within the

study area. Based on these values, we then calculated

the summary statistics of the centered root-mean-square

difference, the correlation coefficient, and the ratio of

standard deviations between each pair of simulated and

observed values for all models and the multimodel en-

semble mean (MME). The results are plotted on the

Taylor diagram (Fig. 2). Performance varies among the

different models for simulating different variables. In

general, model performance is higher for mean pre-

cipitation indices (amount and frequency) and lower for

extreme precipitation indices (P5 and P20). With ex-

treme precipitation, models performed better for less

extreme events (P5) than more extreme events (P20). In

addition, modeled precipitation values have greater

variance than observed for the mean precipitation

and frequency, as indicated by the s larger than 1. On the

other hand, s is smaller than 1 for extreme precipitation

and precipitation intensity, suggesting less variance in

modeled values than observed values for these variables.

The impact of model resolution on its ability to sim-

ulate precipitation has been widely discussed in previous

studies with inconclusive results. Some suggest higher-

resolution models produce better results, particularly

regarding extreme precipitation (Huang et al. 2013;

Wehner et al. 2010). Others find no evident impact of the

model horizontal resolution on its performance in sim-

ulating precipitation (Chen and Frauenfeld 2014; Song

and Zhou 2014). Our analysis uses six relatively high-

resolution GCMs. Among them, the model with the

highest resolution, CCSM4, has the best performance

for simulating the mean state precipitation, that is,

mean, frequency, and intensity. However, for the ex-

treme events (P5 and P20), CCSM4 performs poorly,

whereas the lowest-resolution model (CSIRO Mk3.6.0)

outperforms all others. These results show that higher

resolution does not necessarily lead to the improvement

in simulating precipitation, suggesting that resolution

may not be the only limiting factor in the simulation, and

that other factors such as model parameterization and

model physics schemes are also important in the simu-

lation monsoon system (Chen et al. 2010). In this study,

the MME generally outperforms any individual models

for most indices. Sillmann et al. (2013a) suggest that

averaging across a range of models reduces some sys-

tematic errors in individual models. On the other hand,

Knutti et al. (2010) indicate that such averaging could

lead to the loss of information.

2) PRECIPITATION SPATIAL PATTERNS

As it has the best overall performance, we use MME

to evaluate models’ ability to simulate the spatial pat-

tern for monsoon precipitation in the study area

(MLYRB). Figure 3 shows the spatial patterns of all

precipitation indices for the observed values, MME

values, and the difference between them (bias). In

summer, MLYRB is under the influence of the EASM,

which transports moisture from the South China Sea to

inland regions. Therefore, precipitation should be high

in the south and gradually decrease northward as it gets

farther away from the moisture source (Shi et al. 2012).

As we can see, MME can capture this characteristic. In

reality, the complex terrain (Fig. 1) disrupts this general

pattern, causing high precipitation over the mountain-

ous regions in the eastern and westernMLYRB because

of orographic lifting and less precipitation in the rain-

shadow region in central MLYRB. In general, the

CMIP5 models and MME fail to simulate the complex

precipitation pattern in mountainous regions because of

the coarse resolutions of the climate models, which

makes it difficult to resolve complex topography. A

more detailed discussion on how spatial resolution im-

pacts model performance is provided in the supple-

mental material (section S1).

In general, compared with observations, the CMIP5

MME tends to overestimate the mean monsoon pre-

cipitation over MLYRB, with an area-weighted bias of

10.2%. This is largely due to the overestimation of the

precipitation frequency (9.2%), with slight overestimation

of intensity (2.1%). Spatially, the overestimation of pre-

cipitation occurs mainly in the rain-shadow area of high-

elevation regions, such as in the plains of Hubei Province

andHunan Province and the south ofMLYRB. Chen and

Sun (2013) indicate that the overestimation is mainly due

NOVEMBER 2016 WU ET AL . 2789



to the large positive bias of the frequency of light pre-

cipitation (precipitation ,10mmday21). Stephens et al.

(2010) suggest precipitation is simulated too often and too

lightly in climate models. Our results show that, despite

the overestimation of mean precipitation, the MME un-

derestimates extreme precipitation events, with an area-

weighted bias at 29.3% for P5 and 26.6% for P20. Even

though the overall bias is mostly less than 10%, it is highly

variable spatially for bothmean and extreme precipitation

(Table 2).

Based on the above analysis, we can see the MME

does not capture well the spatial patterns of observed

precipitation, particularly for the extreme events. The

bias between the MME and observation is highly spa-

tially variable. So in order to establish more reliable

projections required for local climate impact assess-

ment, it is necessary to correct the bias of the raw

model output.

b. Projected future precipitation changes for the
monsoon season

Figure 4 shows the spatial changes in the MME

projections after the bias correction of mean and ex-

treme precipitation during the monsoon season, as

percentage change of simulated values in 2021–50 and

2071–2100 relative to the 1971–2000 reference period

under the RCP4.5 and RCP8.5 emission scenarios. A

detailed examination on the impact of bias correction

on model results is provided in the supplemental ma-

terial (section S2). In the near future, mean pre-

cipitation is likely to increase slightly for the whole

study area under both RCPs (2.0% for RCP4.5 and

0.6% for RCP8.5), but with great spatial variability.

Although the mean precipitation is increasing under

both emission scenarios, a decrease is also found at

some parts of this region. Precipitation frequency is

projected to decrease slightly (20.3%) for the study

area as a whole under RCP4.5, but decrease more sig-

nificantly over the entire study area under RCP8.5

at 22.7%. Precipitation intensity is projected to in-

crease by 6.2% under RCP4.5 and 7.4% under RCP8.5.

The projected increases in extreme precipitation are

substantially larger. The P5 magnitude is expected to

increase by 25.5% in RCP4.5 and 29.2% in RCP8.5,

whereas P20 will increase by 27.9% in RCP4.5 and

32.7% in RCP8.5. In addition, the increase in P5 and

P20 occurs over the entire study area, with the largest

increases in the northwest of the region. The MME

projects a similar spatial pattern under the two RCPs,

but with more increase under RCP8.5.

Compared with the near future, the precipitation

changes projected for the end of the twenty-first century

show similar directions but with greater magnitudes. In

addition, there are increasing differences in the pro-

jected changes between the two scenarios for the end of

the century, with RCP8.5 showingmuch greater changes

than RCP4.5. By the end of the century, the mean

precipitation is expected to increase by 3.7% under

RCP4.5 and 7.3% under RCP8.5. Precipitation fre-

quency is projected to decrease by 23.5% under

RCP4.5 and 26.3% under RCP8.5. Precipitation in-

tensity is likely to increase moderately (11.6%) under

RCP4.5, but much more significantly (19%) under

RCP8.5. Extreme precipitation events are projected to

increase at a much greater extent. The P5 is likely to

increase by 42.3% under RCP4.5 and 60.4% under

RCP8.5, whereas P20 is likely to increase by 47.5% un-

der RCP4.5 and by 66.7% under RCP8.5.

FIG. 2. Multivariable Taylor diagram of simulations of all indices from CMIP5 during

1971–2000 over the MLYRB.
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FIG. 3. Spatial distribution of all indices over MLYRB during 1971–2000 from (left) observation, (center) CMIP5 MME, and (right) the

differences between the two.

NOVEMBER 2016 WU ET AL . 2791



The projected changes are consistent with previous

studies such as Chen and Sun (2013). In general, relative

increases in the extreme precipitation far exceed those

in mean precipitation under both RCPs in the twenty-

first century over MLYRB. Such amplified changes in

extreme events are also reported by previous studies,

such as Sillmann et al. (2013b) for global precipitation

change and Feng et al. (2011) for precipitation change in

China. In addition, increases in extreme precipitation

could also occur in places over MLYRB where mean

precipitation is reduced; for example, in the near future

themean precipitation shows a decrease at some parts of

MLYRB, while extremes show an increase over the

entire MLYRB. Similar results are also found in other

places, such as over the subtropics (Emori and Brown

2005), implying that change in mean precipitation is a

poor predictor of changes in extreme events. Therefore,

it was very important to explore the change in both

mean and extreme events, as we did in this study. Our

results were largely consistent with previous studies,

although themagnitudes of changemight differ owing to

different methodology applied.

c. The role of the EASM

Owing to its geographical location, the MLYRB ex-

periences distinct monsoonal climate with a great

amount of monsoon precipitation in summer. Changes

in the EASM are directly related to the floods and

droughts in this region. Many previous studies found a

close relationship between the EASM intensity and

monsoon precipitation over eastern China, particularly

the MLYRB (Li and Zeng 2002; Wu et al. 2016). The

current results show that there is negative correlation

between monsoon precipitation and the strength of the

EASM over the MLYRB (Chan and Zhou 2005; Wang

and Yan 2009). This correlation turns positive in

northern China. The physical mechanism for this re-

lationship is relatively well understood. Eastern China is

dominated by the East Asian monsoon (EAM), caused

by the differential solar heating and thermal inertia of

land and ocean that establish a land–sea temperature

difference. In the summer, this temperature difference

triggers the EASM, a low-level flow of moisture from

the Pacific Ocean to eastern China. This causes early

summer heavy rainfall events along the quasi-stationary

mei-yu rain belt, which slowly moves from south to

north. The monsoonal rain belt starts in southern China

between April and May, moves to the middle part of

eastern China (Yangtze and Huai He River basins) in

May and July, and moves to northern China in July and

August, bringing with it consistent rainfall. Therefore,

the rainfall distribution of these regions is closely related

to EASM variations. In years when EASM is stronger

than usual, the rain belt is pushed farther north, resulting

in higher than normal precipitation in northern China

and drier conditions in southern China. When EASM

is weaker, the rain belt stagnates in southern loca-

tions. Northern China then experiences dry conditions,

whereas central and southeastern China have higher

levels of rainfall. We calculate the annual series of

EASM index using monthly mean wind speed at

850-hPa data from both the NCEP–NCAR reanalyses

dataset and CMIP5 modeled values for the period from

1971 to 2000, and the results are shown in Fig. 5 and

Table 3.

Our results show that the observed EASM intensity

exhibits a decreasing trend during the period 1971–2000

(Fig. 5), consistent with previous studies showing the

weakening of EASM (Wu et al. 2016). All models

except CCSM4 capture this declining trend with varied

TABLE 2. Comparison of the min, max, and mean of observed (obs) and the CMIP5 MME and their bias for all indices.

Dataset

Estimated precipitation

Min Max Mean Min bias Max bias Mean bias

Mean

Obs 3.2mm 7.4mm 4.9mm 236.5% 58.0% 10.2%

MME 3.6mm 7.5mm 5.4mm

Frequency

Obs 50.2 day 95.6 day 65.1 day 222.5% 31.8% 9.2%

MME 52.6 day 89.6 day 70.9 day

Intensity

Obs 8.1mmday21 14.3mmday21 11.1mmday21 218.5% 35.5% 2.1%

MME 9.1mmday21 12.5mmday21 11.4mmday21

P5

Obs 64.5mm 159.4mm 104.3mm 237.2% 28.0% 29.3%

MME 72.1mm 109.5mm 94.4mm

P20

Obs 76.3mm 238.2mm 127.4mm 245.4% 45.4% 26.6%

MME 87.3mm 148.0mm 118.8mm
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magnitudes, although most models tend to enhance the

variability comparedwith observation.We then perform

the correlation analysis between the EASM index and

monsoon precipitation for the MLYRB from observed

and MME values for 1971–2000. Results are presented

in Figs. 6a and 6b. They show that monsoon pre-

cipitation is negatively correlated with the EASM for

most of the MLYRB, but the correlation turns positive

toward the southern part of the region. The MME data

capture the negative correlation in the northwest, but

the correlation starts to turn positive from the mid-

section of the study region. Overall, the MME does not

simulate well the temporal variation of the EASM in-

tensity or the spatial distribution of the correlation be-

tween the EASM and monsoon precipitation.

Despite the poor model performance, we still explore

the future changes of the EASM, and whether the re-

lationship between the EASM and precipitation over

FIG. 4. Percentage change in all indices for the time periods 2021–50 and 2071–2100 relative to the reference period 1971–2000 for RCP4.5

and RCP8.5.
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MLYRB remains unchanged under global warming. We

project the changes in EASM intensity using MME

under the RCP4.5 and RCP8.5 emission scenario for

2021–50 and 2071–2100 relative to the 1971–2000 ref-

erence period. Results show that the EASM intensity is

likely to increase over the twenty-first century. For the

near future, it will increase by 2.1% for RCP4.5 and

19.7% for RCP8.5. For the end of the twenty-first cen-

tury, it will increase by 14.2% for RCP4.5 and 14.8% for

RCP8.5. Climate change has the potential to change the

EAM circulation pattern. Initial hypotheses suggest that

by warming land more than ocean, present climate

change could increase the land–ocean temperature dif-

ference, enhancing the summer monsoon and weak-

ening the winter monsoon. The monsoon intensity,

especially the EASM intensity, are projected to increase

in most of the individual CMIP5/CMIP3 models in the

twenty-first century under future warming scenarios

(Hsu et al. 2012; Hu et al. 2000), which lead to the

monsoon precipitation increase over East Asia as a

whole (Qing 2012; Chen and Sun 2013; Lee and Wang

2014). The IPCC AR5 report also indicated that, based

on CMIP5 model projections, there is medium confi-

dence that, with an intensified East Asian summer

monsoon, summer precipitation over East Asia will in-

crease. As our analysis shows, precipitation is also likely

to increase over the MLYRB before and after the bias

correction.

Monsoon season precipitation is negatively correlated

with EASM strength in the observed historical data. If

this relationship persists, we should project EASM and

precipitation change in different directions. However,

both EASM strength and mean precipitation are pro-

jected to increase in the twenty-first century under both

RCP scenarios. This seems to suggest that the significant

negative correlation between EASM intensity and

summer precipitation in the history may no longer exist

in the future under the global warming based on the

CMIP5 models over MLYRB. However, since the

CMIP5 MME does not simulate well the EASM in-

tensity in historical runs, there is great uncertainty as to

whether the CMIP5 models can accurately project the

EASM intensity change in the future. Moreover, there

was no consistent result in previous studies for the future

EASM intensity change under the global warming. For

example, whereas Lee andWang (2014) and IPCC AR5

report projected increase in EASM intensity in the fu-

ture, Jiang and Tian (2013) found no significant change.

Furthermore, they indicated that future EASM changes

are often model and index dependent, suggesting in-

adequacy in the models’ ability to accurately simulate

the EASM. Therefore, the absence of negative corre-

lation between the EASM and precipitation in the

twenty-first century projections could either be caused

by a change of the existing relationship under the global

warming or the inadequacy of CMIP5 models to capture

and project this relationship.

4. Conclusions

The study first assesses the performance of the CMIP5

models in simulating the mean and extreme pre-

cipitation using model output and observed daily values

from 1971 to 2000 over the MLYRB. In general the

MME outperforms individual models. In terms of spa-

tial patterns, the MME is able to capture the general

precipitation gradient over the MLYRB, but not the

more complex features associated with orographic pre-

cipitation in mountainous regions. The MME shows a

positive bias for mean precipitation largely due to over-

estimation in the rain-shadow regions on the leeward

side of mountains. In addition, the MME tends to

overestimate the frequency more than intensity over the

entire region. In contrast to mean precipitation, the

MME underestimated extreme events by 29.3% for P5

and26.6% for P20 for the whole region, but the bias was

spatially variable. Based on this assessment, we first

FIG. 5. Time series of the EASM index from 1971 to 2000 from

observation, CMIP5 models, and their MME.

TABLE 3. Themean, trends, and standard deviation (std dev) of the

EASM index from observation and CMIP5.

Mean Slope [% (10 yr)21] p value Std dev

Obs 0.78 22.88 0.49 0.15

CCSM4 0.78 3.43 0.45 0.16

HadGEM2-ES 1.84 21.34 0.59 0.21

MIROC5 1.41 21.33 0.55 0.15

MPI-ESM-LR 1.90 21.27 0.64 0.24

MRI-CGCM3 5.89 22.42 0.11 0.43

MME 2.36 21.55 0.49 0.15

2794 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



correct the model bias through quantile mapping before

the results are used to project future changes.

The bias correction technique can improve the spatial

distribution of precipitation projected by the MME,

which can potentially increase the accuracy of pre-

dictions of changes in precipitation. Thus, the MME

after bias correction is used to project future changes in

mean and extreme precipitation in the monsoon season

over the study area. These changes are projected under

two emission scenarios, RCP4.5 and RCP8.5, for the

near future (2021–50) and the long-term future (2071–

2100), relative to 1971–2000. In the twenty-first century,

the models indicate that the monsoon precipitation is

likely to get less frequent but more intense under global

warming over the MLYRB. Extreme precipitation is

projected to increase more than mean precipitation,

with even greater relative changes for more extreme

events (P20). The directions of change in mean and ex-

treme precipitation are largely consistent under both

emission scenarios, but greater magnitudes of change

are projected under the high-emission scenario (RCP8.5).

These changes could potentially lead tomore devastating

floods for this already flood-prone region.

Previous studies suggest a close connection between

the weakening of the EASM and the increasing mean

and extreme monsoon precipitation over the MLYRB

during the past decades based on the observation (Li

and Zeng 2002; Wu et al. 2016). In this study, we further

examine the EASM changes and its relation to pre-

cipitation change in CMIP5 models. We find that the

CMIP5 models do not simulate well the temporal vari-

ation of the EASM and the relationship between the

EASM and precipitation over MLYRB. Moreover, the

negative correlation between the EASM intensity and

summer precipitation over the study area is not ob-

served in model output for the twenty-first century

under the global warming scenarios. CMIP5 models

project increase for both the EASM and summer

precipitation.

This inconsistency could be caused by either or both

of the following two factors. First, climate models have

poor performance simulating spatial distribution of

monsoon precipitation and therefore could not capture

negative correlation between EASM intensity and pre-

cipitation within the study area. Such correlation was

not found in the historical runs of climate models.

Therefore, the absence of such a relationship in the fu-

ture could be caused by uncertainties in the performance

of climate models. Second, although precipitation in the

MLYRB is negatively correlated with EASM intensity,

it can be affected by other factors. With intensified

monsoon, although the rain belt could be pushed farther

northward, other factors, such as general moistening of

the atmosphere with higher temperature, could still lead

to an increase in precipitation, therefore masking this

negative correlation in the future. Further study is

needed to evaluate possible changes of the EASM and

its connection with the monsoon precipitation in the

future with global warming.

Despite some problems with the simulating pre-

cipitation over theMLYRB, the CMIP5 models seem to

provide relatively robust results of increasing mean and

extreme precipitation in the study area. These results

could provide critical information for society’s long-

term planning and adaptation strategies in this eco-

nomically important flood-prone region in China.
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