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INTRODUCTION

Ordovician biodiversity studies have overwhelmingly 
focused on two remarkable features of the fossil record, the nearly 
fourfold increase in marine biodiversity that occurred during the 
Ordovician and the catastrophic mass extinction that marked the 
end of the period. Considerably less attention has been paid to 

the smaller peaks and valleys that make up the overall curve, 
although Sepkoski (1995) pointed out an interesting upper Cara-
doc (Katian Stage) diversity drop among marine invertebrates 
(Fig. 1) and noted that more research was needed to discover if 
this decline was a real phenomenon or an artifact of fewer studies 
and fewer workers devoted to this interval.

Over the past decade a series of studies has examined faunal 
turnover and biodiversity changes during the late Sandbian and 
early Katian. In North America, Patzkowsky and Holland (1993, 
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The Katian Age (early Late Ordovician) was a time of signifi cant decline in 
marine biodiversity, but whether this decline was a real phenomenon or an artifact 
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1996) documented a regional brachiopod extinction in the lower 
Chatfi eldian strata of the Appalachian Basin (Fig. 2), and Emer-
son et al. (2001) described a similar decline in brachiopod fau-
nal diversity in rocks of similar age from the Upper Mississippi 
Valley. In Baltoscandia, Kaljo et al. (1995, 1996) and Ainsaar 
et al. (1999) recognized a precipitous decline in organic-walled 
microfossils across the Keila-Oandu regional stage boundary and 
referred to this diversity crash as the Oandu Crisis (Fig. 3). All of 
these regional events occur in a similar stratigraphic position rel-
ative to a suite of K-bentonite beds (Bergström et al., 2004; Huff 
et al., 1992), the prominent Guttenberg carbon isotope excursion 
(GICE; Fig. 4 herein; Young et al., 2005), a widely correlated 
stratigraphic sequence boundary (M3-M4 sequence boundary of 
Patzkowsky and Holland, 1996), and a graptolite zonal boundary 
(Goldman, 2004). Indeed, the similar timing of these local events 
and their proximity to a δ13C excursion suggests that they may be 
part of a global bio-event.

All of the previously mentioned studies examined the diver-
sity patterns of benthic fossil organisms from carbonate platform 
successions. In this study we examine Upper Ordovician diversity 
data from a group of planktonic fossil organisms generally found 
in offshore, deeper water deposits—graptolites. Graptolites are 
an ideal group for Ordovician biodiversity studies because they 
are widely distributed around the globe, are well represented in 
numerous relatively continuous black shale sections, and have 
been intensively sampled for biostratigraphy (Cooper et al., 2004). 
In addition to gathering data from a group of fossils that had a dif-
ferent lifestyle (planktonic) and are found in a different biofacies, 
this study examines graptolite faunal turnover across regions, in 
most of the key Upper Ordovician successions around the world. 

Cooper et al. (2004) compared graptolite diversity changes 
through the entire Ordovician in three regions (Australasia, Bal-
tica, and Avalonia) that represented different paleolatitudes. The 
present study focuses on a much shorter stratigraphic interval, 
the upper Sandbian to Katian Stages (lower Upper Ordovician), 
but more comprehensively surveys graptolite diversity across the 
globe (eight regional successions) in that interval. The localities 
examined in this study are (1) the Appalachian Basin (Laurentia); 
(2) Ouachita Mountains, southeastern Oklahoma (Laurentia); 
(3) Southern Uplands, Scotland (Laurentia); (4) Newfoundland 
(Laurentia); (5) Trail Creek region, Idaho (Laurentia); (6) Vic-
toria, Australia (northeast Gondwana); (7) Scania, Sweden (Bal-
tica); and (8) South Wales (Avalonia) (Fig. 4). Breaking down the 
global pattern of lower Upper Ordovician graptolite biodiversity 
into regional patterns that can be compared and contrasted may 
help answer the question of whether the upper Caradoc biodiver-
sity decline represents a global bio-event or a composite of differ-
ent regional patterns that have regional explanations.

Finally, this study examines the possible links between grap-
tolite faunal turnover and paleoenvironmental changes during the 
late Sandbian to early Katian. Several (and not mutually exclu-
sive) explanations for the individual regional declines in lower 
Katian benthic diversity have been proposed. These include eus-
tatic sea-level change (Patzkowsky and Holland, 1996), exten-
sive volcanic ash deposition (Sloan, 1997), ocean temperature 
changes (Jaanusson, 1973; Patzkowsky et al., 1997), and changes 
in paleoceanographic circulation (Zalasiewicz et al., 1995). The 
pattern of graptolite faunal change provides additional data that 
can be used to evaluate these competing hypotheses, and also 
fuels some speculation on the relationship of biodiversity to pre-
Hirnantian Late Ordovician global climate.

METHODOLOGY

Measuring biodiversity through geologic time and across 
different geographic regions presents a number of diffi culties 
that need to be taken into consideration. Some of the problems 
stem from sampling biases and a lack of taxonomic consistency 
in data sets compiled by different workers, whereas others result 
from the process of converting stratigraphic range data derived 
from biostratigraphic studies into diversity measures. For many 
of the successions in this study we have personally examined 
the graptolite collections, thus reducing the problem of taxo-
nomic inconsistency. In other cases, however, species lists were 
compiled from the literature with taxonomic updates and revi-
sions where possible. Sampling differences among regions can 
be the most diffi cult bias to overcome. No attempt was made to 
standardize the sampling. However, as we demonstrate below, 
because the most densely sampled region in this study (in terms 
of both sections and collections), the northern Appalachian Basin 
of the eastern United States, also showed the greatest diversity 
decline across the upper Sandbian to lower Katian (Chatfi eldian), 
we conclude that diversity decline in less intensively sampled 
sections is not the result of under-sampling.
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Figure 1. Lower Paleozoic marine diversity patterns. Note the promi-
nent diversity decline prior to the Late Ordovician mass extinction. 
X-axis division abbreviations are (in order) M—Middle; U—Upper; 
T—Tremadoc; A—Arenig; L—Llanvirn; L—Llandeilo; C—Caradoc; 
A—Ashgill; L—Llandovery; W—Wenlock; L—Ludlow. Adapted 
from Sepkoski (1995).
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Figure 2. Pattern of lower Upper 
Ordovician brachiopod extinctions in 
eastern North America. Adapted from 
Patzkowsky and Holland (1996). M—
Millbrig K-bentonite; D—Deicke K-
bentonite.

Figure 3. Lower Upper Ordovician di-
versity changes in organic-walled micro-
fossils from the Rapla core in Estonia. 
Note the close correlation of diversity 
changes to the brachiopod extinction 
in eastern North America (Fig. 2). Ap-
proximate position of Guttenberg car-
bon isotope excursion (GICE) on δ13C 
curves indicated by horizontal dashed 
lines. Adapted from Kaljo et al. (1995).
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Converting taxon range data into diversity measures presents 
another type of problem. Cooper (2004) noted that when estimat-
ing the mean standing diversity (MSD) of species over a specifi ed 
interval of time, there are several different ways in which taxa 
can be counted and biases introduced. The simplest method, total 

diversity, is to just tally the total number of taxa within a time 
interval. Alternatively, one can divide the total diversity by the 
interval duration to produce species per time unit measures. Foote 
(2000) noted that counting taxa that do not cross the study interval 
boundaries but are restricted to the interval itself (“singletons”) 

Figure 4. Locality map for regional graptolite diversity studies and lower Upper Ordovician carbon isotopic (δ13C) excursions. Black arrows 
indicate Late Ordovician oceanic circulation patterns and are adapted from Barnes (2004). Graptolite localities are (1) Appalachian Basin (Lau-
rentia); (2) Ouachita Mountains, southeastern Oklahoma (Laurentia); (3) Southern Uplands, Scotland (Laurentia); (4) Newfoundland (Lauren-
tia); (5) Trail Creek region, Idaho (Laurentia); (6) Victoria, Australia (northeast Gondwana); (7) Scania, Sweden (Baltica); and (8) South Wales 
(Avalonia). Base map produced from the paleogeographic map software ESH-GIS 1.0, The Paleomap Project (www.scotese.com). Carbon 
isotopic (δ13C) excursion data adapted from Bergström et al. (2004). K-b. indicates K-bentonites.

Dickeyville
K-b.

Elkport K-b.

Millbrig K-b.

Deicke K-b.

0

1

2

3

4

5

6

7

8

9

m

-3 -2 -1 0 1 2

?Dickeyville
K-b.

Elkport K-b.

Millbrig K-b.
Deicke 
K-b.

m

15

10

5

0
-3 -2 -1 0 1 2

δ C carb13

δ C carb13

-
ettal

P
elliv mF
.

A
M

R
OF H

A
R

O
C

E
D

OI
T

N
s thc

ep
S

rb
M  yrr e

F
.

b
M grebn

ett
u

G
.r

b
M noI

.r

A
M

R
OF 

H
A

R
O

C
E

D
OI

T
N

-
e ttal

P
elliv m

F
.

st hc
ep

S
r b

M  yrr e
F

.
b

M gr
ebn ettu

G
.r

b
M noI

.r

eno Z
su tadn u
 

iunet
s

eno Z 

m

2

0

-2

-4

-6

-8

0 1 2

Kinne-
kulle
K-b.

424.6

406.7

402.5

400.6

395.8
m

0 1 2

Kinnekulle
K-b.

δ C carb
13δ C carb

13

.
m

F ybl
a

D
.

m
F negak

S
dlo

M
 å

.
m

F

alajla
H

e gat
S

egat
S alie

K

Nabala
Stage

Rakv.
Oandu
Stage

1

8

5

2 3
4

6

7

Equator

30
o

30
o

N

S ST

1 Locality

Ocean current

Sebree TroughST

McGregor Quarry
Clayton Co., IOWA

Fjäcka, South-
Central Sweden

Ristiküla 174,
Southern Estonia

Dickeyville North,
Grant Co., Wisconsin

G
IC
E

PANTHALASSIC OCEAN

PALEO-TETHYS
OCEAN

IAPETUS
OCEAN

 on October 8, 2015specialpapers.gsapubs.orgDownloaded from 

http://specialpapers.gsapubs.org/


 Early Late Ordovician graptolite diversity patterns 153

produces a number of undesirable effects and should be avoided. 
Unfortunately, adopting this recommendation would mean elimi-
nating a substantial portion of the available data. Sepkoski (1975) 
proposed a diversity measure (called normalized diversity by 
Cooper, 2004) that assigns a full score to a species whose range 
crosses both the lower and upper boundaries of the study interval, 
a half score to species whose ranges cross only the upper or lower 
boundary of the study interval, and a half score to “singletons.” 
Cooper (2004) used model data sets to compare three diversity 
measures—total diversity, species per time unit, and normalized 
diversity—with actual MSD. Generally, Cooper (2004) found 
that total diversity measures tend to overestimate MSD, species 
per time unit measures tend to underestimate MSD, and normal-
ized diversity scores best estimate MSD. Hence, we follow Coo-
per (2004) in using normalized diversity to calculate graptolite 
species diversity in lower Upper Ordovician strata.

Last, we must be sure that we are actually comparing diver-
sity scores in coeval intervals at each locality. Thus, the study 
intervals must be correlated precisely enough around the globe 
to be sure that the diversity measures are calculated from coeval 
stratigraphic intervals. The diversity decline in benthic faunas in 
North America and Baltoscandia occurs just above the Millbrig 
and Kinnekulle K-bentonite beds, respectively (Bergström et al., 
2004), and nearly coincident with the prominent GICE carbon 
isotope (δ13C) excursion (Young et al., 2005). This stratigraphic 
level also closely approximates the Climacograptus bicornis–
Diplacanthograptus caudatus graptolite zonal boundary (Berg-
ström et al., 2004) or the boundary between the Sandbian and 
Katian Stages (Fig. 5). Thus, whenever possible, graptolite diver-
sity is calculated in four subequal intervals that symmetrically 
span the C. bicornis–D. caudatus graptolite zonal boundary (two 
below and two above). These intervals precisely correlate with 
the Gisbornian (N. gracilis and O. calcaratus Zones) and lower 
Eastonian (D. lanceolatus and D. spiniferus Zones) Stages in the 
Australasian succession (Fig. 5). The key horizon in each section 
is the base of the Diplacanthograptus caudatus graptolite Bio-
zone, a level that can be confi dently correlated around the world 
(Goldman, 2004).

GRAPTOLITE DIVERSITY PATTERNS

Appalachian Basin

Upper Ordovician black shale crops out along the extent 
of the Appalachian Mountains from Newfoundland to Alabama 
in series of northeast- to southwest-trending foreland basins 
that developed along the eastern margin of Laurentia during 
the Taconic orogeny (Finney et al., 1996; Hatcher et al., 1990). 
We have divided the Appalachian Basin into two regions on 
the basis of geography and faunal differences. These are the 
Appalachian Basin outcrops in the United States and Quebec 
(Fig. 6A), and those in Newfoundland that are treated sepa-
rately (Fig. 6D). Graptolite diversity data for the United States 
and Quebec comes from the classic Utica Shale and Mount 

Merino Shale outcrops in the Mohawk and Hudson River Val-
leys of New York State and the Saint Lawrence Lowlands of 
Quebec (Berry, 1962; Hall, 1847, 1865; Goldman et al., 1994; 
Riva, 1969, 1972, 1974; Ruedemann, 1908, 1912, 1947), and 
from the Athens Shale of the southern Appalachian Mountains 
(Decker, 1952; Finney et al., 1996; Grubb and Finney, 1995). 
Graptolite diversity is constant in the Nemagraptus gracilis and 
Climacograptus bicornis Zones (normalized diversity scores of 
20) and then declines precipitously in the overlying Diplacan-
thograptus caudatus Zone (normalized diversity score of 7). In 
addition to the steep decline in taxonomic diversity, morpho-
logic diversity declines as well. Reclined (dicellograptid) and 
partially reclined (dicranograptid) taxa, as well as species with 
cladia and scopulae, all disappear or are greatly reduced in num-
ber at the base of the D. caudatus Zone. Diversity declines fur-
ther in the Orthograptus ruedemanni Zone before rebounding 
in the Diplacanthograptus spiniferus Zone (Fig. 6A). Graptolite 
diversity never attains lower Upper Ordovician levels higher 
in the Appalachian Basin succession; as the Taconic orogeny 
waned, black shales bearing graptolites were replaced by coarse 
clastic deposits derived from the eroding Taconic highlands 
(Ruedemann, 1925; Fisher, 1977).

Because no single section spans the Climacograptus 
bicornis–Diplacanthograptus caudatus zonal boundary in the 
Applachian Basin, the possibility exists that the dramatic drop in 
graptolite diversity is in part an artifact of an unconformity at that 
level. However, a complete section that is conformable through 
this interval does exist in the Ouachita Mountains of southeast-
ern Oklahoma.
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Figure 6. Early Late Ordovician diversity histories from eight key graptolite successions (see Fig. 4). Histograms 
illustrate normalized diversity scores (see text for explanation of normalized diversity), and the superimposed line 
graph shows the percentage of carryover taxa from one zone to another. The dashed vertical line in each histogram 
represents the boundary between the Sandbian and Katian Stages. Data such as regional species lists, scores for 
total diversity, normalized diversity, and holdover taxa are available from the authors upon request.

0

5

10

15

20

25

30

N. gracilis C. bicornis D. caudatus O. ruedemanni D. spiniferus

0

20

40

60

80

100

0

5

10

15

20

25

30

N.gracilis C.bico rnis D.clingani P . linearis
0

20

40

60

80

100

0

5

10

15

20

25

30

Gisbornian 1 Gisbornian 2 Eastonian 1 Eastonian 2

0

20

40

60

80

100

0

5

10

15

20

25

30

H. teretiusculus N.gracilis D. fo liaceous D.clingani
0

20

40

60

80

100

Normalized diversity score % Carryover

0

5

10

15

20

25

30

N.gracilis C.peltifer + D.clingani

0

20

40

60

80

100

C.wilsoni

0

5

10

15

20

25

30

C.bico rnis D.caudatus
0

20

40

60

80

100

 eroc
S ytisrevi

D dezila
m ro

N
 eroc

S ytisrevi
D dezila

mro
N

 eroc
S yt isrevi

D dezi la
mro

N

 er oc
S ytisrevi

D dezila
mro

N

 r
e v

o y
rr

a
C 

%
 r

e v
o y

rr
a

C 
%

 r
ev

oy
rr

a
C 

%

 r
ev

o y
rr

a
C 

%

(A) Appalachian Basin
(B) Ouachita
     Mountains 

(C) Scotland 

(G) Scandinavia 

(F) Australia 

(D) Newfoundland 

(E) Idaho 

0

5

10

15

20

25

30

C. bico rnis D. spiniferus C. tubuliferus
0

20

40

60

80

100

 on October 8, 2015specialpapers.gsapubs.orgDownloaded from 

http://specialpapers.gsapubs.org/


 Early Late Ordovician graptolite diversity patterns 155

Ouachita Mountains of Oklahoma

In southeastern Oklahoma, Upper Ordovician strata are 
exposed along Black Knob Ridge, a low, narrow ridge at the 
extreme western end of the Ouachita Mountains (Hendricks 
et al., 1937; Finney, 1988). These strata are composed primarily 
of graptolite-rich shales associated with deep-water limestones 
and cherts (Ethington et al., 1989) and were deposited in the 
deep marine environment of the Ouachita Geosyncline off the 
southern margin of Laurentia (Finney, 1988). The units exposed 
along Black Knob Ridge are, in ascending order, the Womble 
Shale, Bigfork Chert, and Polk Creek Shale. Graptolites from the 
Womble Shale and Bigfork Chert at Black Knob Ridge have been 
comprehensively described by Finney (1986) and more recently 
by Goldman et al. (2007). Only graptolites from the C. bicornis 
and overlying D. caudatus zones were counted at this section. At 
Black Knob Ridge the Womble Shale contains a diverse assem-
blage of C. bicornis Zone graptolites (normalized diversity score 
of 20) that is nearly identical in its faunal composition to that of 
the Appalachian Basin. The boundary between the C. bicornis 
and overlying D. caudatus Zones occurs 4 m above the base 
of the Bigfork Chert, which conformably overlies the Womble 
Shale. With a pattern similar to that of the Appalachian Basin, 
normalized diversity in the D. caudatus Zone at Black Knob 
Ridge drops by nearly 50% to 10.5 (Fig. 6B).

Southern Uplands, Scotland

Another important low paleolatitude graptolite locality 
in the environs of Laurentia is Hartfell Score in the Southern 
Uplands of Scotland. It was in this region that Lapworth’s 
(1876, 1878) pioneering work demonstrated the stratigraphic 
utility of graptolites by using them to help work out the geo-
logic structure of the uplands. In the Southern Uplands, Upper 
Ordovician to Silurian mudstones and graywackes are exposed 
in a series of structurally repeated, thrust-bounded slices that 
dip steeply to the northwest (Leggett et al., 1979; Rushton et al., 
1996). At Hartfell Score near Moffatt, ~20 m of graptolite-rich 
black mudstones conformably span the Climacograptus wilsoni 
(= C. bicornis)–Diplacanthograptus caudatus zonal boundary 
(Williams, 1982; Zalasiewicz et al., 1995). The graptolite bio-
stratigraphy was recently updated by Zalasiewicz et al. (1995), 
and we have used their detailed range chart for our diversity 
analysis (Fig. 6C).

The normalized diversity score for the C. wilsoni Zone at 
Hartfell Score is 22.5, and the score for the overlying D. cau-
datus Zone is 21.5. In stark contrast to the Appalachian Basin, 
graptolite diversity in southern Scotland remains nearly constant 
across the C. bicornis–D. caudatus zonal boundary. Also note-
worthy is the fact that dicellograptinids and dicranograptinids 
remain an important part of the D. caudatus Zone fauna in 
southern Scotland, whereas they disappear almost entirely from 
the Appalachian Basin in the strata above the C. bicornis Zone. 
Although we only counted species from the single section at 

Hartfell Score, the data indicate a much more diverse D. cauda-
tus Zone than in the Appalachian Basin or Ouachita Mountains 
of Oklahoma.

Newfoundland

Late Ordovician graptolites from the Lawrence Harbour For-
mation (Exploits Zone) in central Newfoundland were described 
and fi gured by Erdtmann (1976) and Williams (1995). We have 
used the species list and range chart provided by Williams (1995), 
because it covers a greater number of collection localities and 
uses updated graptolite taxonomy. The Lawrence Harbour For-
mation outcrops are structurally complex, and no single exposure 
contains a complete succession of zones; hence Williams’ (1995) 
range chart does not illustrate the stratigraphic ranges of taxa, 
only the zones in which they occur. Normalized diversity scores 
for graptolites from the Lawrence Harbour Formation are N. gra-
cilis Zone, 9; C. bicornis Zone, 12; D. clingani Zone, 11; P. lin-
eariz Zone, 8 (Fig. 6D). As in Scotland, graptolites in central 
Newfoundland exhibit no notable decrease in species diversity 
across the C. bicornis–D. caudatus zonal boundary.

Trail Creek, Idaho

The Trail Creek Summit section within the Phi Kappa For-
mation of central Idaho, northwestern United States, exposes 
an ~200-m-thick succession of black siliceous shale and argil-
lite that has yielded biostratigraphically important graptolites 
for nearly a century. Surveys of the local biostratigraphy in this 
area, conducted by Churkin (1963), Carter (1972), and Carter 
and Churkin (1977), established a set of zones that have been 
employed as a standard reference for the North American Cordil-
lera. More recent studies by Mitchell et al. (2003), Maletz et al. 
(2005), and Motz et al. (2006) have updated the graptolite taxon-
omy and substantially revised the biostratigraphic zonation. The 
new data indicate that the Trail Creek succession is similar to 
the Australasian and South China (Chen et al., 2005) successions 
(low paleolatitude, tropical regions) and is also more incomplete 
than previously thought.

At Trail Creek the normalized diversity score for the 
C. bicornis Zone is 14 (Fig. 6E). Mitchell et al. (2003) noted that a 
succeeding D. caudatus Zone fauna could not be unambiguously 
identifi ed at Trail Creek. The strata that overlie the C. bicornis 
Zone were called passage beds by Carter and Churkin (1977), 
who were unable to precisely defi ne their biostratigraphic age. 
Although D. caudatus does occur within the “passage beds,” its 
fi rst appearance is above that of D. spiniferus (which was mis-
identifi ed as C. bicornis by Carter and Churkin), the index for 
the overlying D. spiniferus Zone. Additionally, J.F.V. Riva (2005, 
personal commun.) claims to have found evidence of a promi-
nent unconformity just below the fi rst appearance of D. spin-
iferus at the summit section. The normalized diversity score for 
the zone succeeding the C. bicornis Zone is 6, indicating a large 
drop in diversity, but because we cannot differentiate between a 
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D. caudatus and a D. spiniferus Zone at Trail Creek the data must 
be viewed with caution.

Victoria, Australia

The Australasian region of Gondwana lay in low latitudes 
during the Ordovician (Scotese and McKerrow, 1990), and its 
graptolite succession is one of the most complete and fi nely 
divided in the world. It is considered to be the standard for the 
Pacifi c Faunal Province (VandenBerg and Cooper, 1992). Grap-
tolite biostratigraphy and biodiversity in the Victorian succession 
were comprehensively reviewed by VandenBerg and Cooper 
(1992) and Cooper et al. (2004), and we relied on their range 
charts for our data. These data, which are similar to Williams’ 
(1995) Newfoundland data, do not illustrate the exact strati-
graphic range of each species from measured sections but only 
the biozones in which they occur. Graptolite diversity increases 
from the Gisbornian 1 (Nemagraptus gracilis Zone, normalized 
diversity of 12) to a nearly constant level in the three succeeding 
zones—Gisbornian 2 (nearly equivalent to the C. bicornis Zone), 
normalized diversity of 15; Eastonian 1 (nearly equivalent to the 
D. caudatus Zone), normalized diversity of 14.5; and Eastonian 2 
(D. spiniferus Zone), normalized diversity of 15 (Fig. 6F).

A detailed survey of low paleolatitude graptolite localities 
reveals that the precipitous declines observed in the Appalachian 
Basin and the Ouachita Mountains of Oklahoma are clearly not 
pervasive phenomena but are restricted to certain parts of Lau-
rentia. One important low paleolatitude locality that we have not 
analyzed is the Marathon region of West Texas (Berry, 1960). 
Riva (1969), Bergström (1978), and Goldman et al. (1995) all 
noted that a prominent unconformity corresponds to much of the 
Katian Stage (upper Caradoc) in the Marathon succession.

Scania, Sweden

Scania (southern Sweden) belonged to the paleocontinent 
Baltica, which was at mid-latitudes during the early Late Ordovi-
cian (Scotese and McKerrow, 1990; Mac Niocall et al., 1997). 
The Ordovician rocks of Baltoscandia are subdivided into subpar-
allel, generally SE-NW–trending confacies belts that maintained 
fairly constant geographic positions through time (Jaanusson, 
1976, 1995). The Middle and Upper Ordovician strata in Scania 
(studied from both core and outcrop) are predominantly black 
to gray shales and mudstones representing outer shelf or fore-
land basin deposition (Bergström et al., 2000). Our diversity data 
come from the Koängen and Fågelsång cores described by Nils-
son (1977) and Hede (1951), respectively, and Pålsson (2001). 
The senior author of this paper has personally examined the grap-
tolites from both cores and has revised and updated the taxonomy 
and taxon ranges.

Graptolite diversity in Scania increases from the Nemagraptus 
gracilis Zone to the Diplograptus foliaceous Zone (= C. bicornis 
Zone) and drops dramatically into the Dicranograptus clingani 
Zone (approximately equivalent to the D. caudatus Zone), with 

normalized diversity scores of 11.5, 21, and 10, respectively 
(Fig. 6G). Thus, the graptolite diversity pattern in Scania is 
similar to that found in the Appalachian Basin and the Ouachita 
Mountains.

South Wales (Avalonia)

Another classic location in the history of graptolite studies is 
Wales, which, along with England, was part of Avalonia, a mid- 
to high-latitude paleocontinent during the early Late Ordovician 
(Mac Niocall et al., 1997). Elles and Wood (1901–1918) pro-
vided the fi rst comprehensive descriptions of Welsh graptolites, 
and Elles (1939) later elucidated the stratigraphic ranges of many 
Llandeilo and Caradoc graptolite species. These early classic 
works were updated by Hughes (1989).

The graptolite-bearing strata in Wales are generally older 
than the intervals examined in this paper, but Zalasiewicz et al. 
(1995) described a new section in Whitland, South Wales, that 
has its base in the Dicranograptus clingani Zone. Although we 
cannot compare diversity changes across the base of the Katian 
Stage because the underlying Diplograptus foliaceous Zone is 
absent from this section, we believe that the pattern of grapto-
lite faunal change that is exhibited in these rocks provides some 
insight into understanding the global pattern of Katian (late Cara-
doc) diversity changes.

At Whitland, nearly 60 m of laminated dark-gray grap-
tolitic mudstones and silty mudstones of the Mydrim (or Dicra-
nograptus) Shales is exposed (Zalasiewicz et al., 1995). In its 
upper part, the Mydrim Shales exhibit less pronounced lamina-
tion and become interbedded with thin muddy limestone bands 
before fi nally grading upward into the Sholeshook Limestone. 
Based on brachiopods and trilobites, the Sholeshook Lime-
stone at Whitland is Ashgillian in age (Zalasiewicz et al., 1995). 
Between 12.5 and 39 m above the base of the section, the Mydrim 
Shales contain a low diversity Dicranograptus clingani Zone 
fauna. This fauna contains elements (Diplacanthograptus spin-
iferus, Neurograptus margaritatus, Dicranograptus nicholsoni, 
Dicellograptus fl exuosus, and Orthograptus quadrimucrona-
tus) that indicate a correlation with the D. caudatus to D. spin-
iferus zones in North America and Eastonian 1–Eastonian 2 in 
Australia. Above 39 m, faunal diversity decreases even further, 
and the fauna is completely dominated by several species of 
Normalograptus (Fig. 7). Zalasiewicz et al. (1995) note that 
the Mydrim to Sholeshook transition represents a shallowing 
upward sequence and that even in the lowermost beds most off-
shore or deep water taxa (deep water biotope of Cooper et al., 
1991) and the cosmopolitan mesopelagic biotope of Goldman 
et al. (1995) are absent from the Whitland section. They also 
suggest that the marked diversity decline in post–D. clingani–
age rocks might be related to either decreasing water depth 
or water temperatures, postulating that the transition from 
laminated graptolitic mudstones to bioturbated, nearly barren 
mudstones, and then to shallow shelf carbonates may record a 
preglacial climatic deterioration.
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Summary of Regional Upper Sandbian to Katian 
Graptolite Diversity Patterns

The preceding regional review of graptolite diversity change 
through the upper Sandbian and Katian Stages reveals a varied 
pattern. In the low paleolatitudinal localities of the eastern and 
southern United States, graptolite diversity declines precipitously 
across the Climacograptus bicornis–Diplacanthograptus cauda-
tus zonal boundary. However, other former tropical localities 
such as Scotland, Newfoundland, and Australia, exhibit nearly 
static diversity across this same interval. The mid-paleolatitude 
succession in Scania records a sharp diversity drop, and the 
mid- to high-paleolatitude Whitland section in South Wales 
contains a low diversity lower Katian assemblage followed by 
nearly complete domination by a single genus, Normalograptus. 
These results, however, are consistent with data from other fos-
sil groups—regional brachiopod extinctions in the Appalachian 
Basin and Upper Mississippi Valley (Patzkowsky and Holland, 
1996; and Emerson et al., 2001, respectively) and organic-walled 
microfossil declines in Baltoscandia (Kaljo et al., 1995, 1996; 

Ainsaar et al., 1999). Thus, each region has its own local diversity 
history, and although the sum of these regional histories likely 
produces the global decline recognized by Sepkoski (1995), no 
global pattern that might warrant a comprehensive explanation 
is immediately evident. Nevertheless, we do see an interesting 
relationship between the regional diversity histories and paleo-
latitude, as well as a possible connection between these patterns 
and the changing Late Ordovician climate.

PALEOENVIRONMENTAL CONTROLS ON 
GRAPTOLITE DIVERSITY

Graptoloids are one of the fossil groups that were decimated 
by the end-Ordovician mass extinction. In several regions, particu-
larly those at higher latitudes, graptolite diversity began declining 
in the Katian, well before the Hirnantian climate deterioration and 
glaciation. Zalasiewicz et al. (1995) proposed that because Wales 
lay at a higher latitude than Scotland during the Late Ordovi-
cian it may have been subject to more rapid climatic deterioration 
during a cooling event. Additionally, the density-stratifi ed setting 
that seems to have favored graptolite proliferation and fossiliza-
tion (Berry et al., 1987) may have been disrupted by an infl ux of 
cooler, oxygen-rich polar waters (Zalasiewicz et al., 1995).

Cooper et al. (2004) also noted that graptolite diversity in 
Avalonia (and perhaps Baltica) began to decline well before it 
declined in Australasia, and they speculated on similar causal 
mechanisms (that higher latitude localities may have under-
gone surface water temperature changes or breakdowns in ocean 
density structure from an earlier onset of global cooling than at 
lower latitude localities). They also noted, based on the paleo-
plate reconstructions of Cocks and Torsvik (2004), that Avalonia 
and Baltica had already drifted into near-tropical latitudes by the 
end of the Katian, making latitude an unlikely determinant of 
diversity change. It appears to us, however, that on the basis of 
the paleocontinental reconstructions of Scotese and McKerrow 
(1990), Mac Niocall et al. (1997), and even Cocks and Torsvik 
(2004), a distinct latitudinal gradient did exist among the regions 
discussed here during the early Late Ordovician.

We re-propose the hypothesis that a pre-Hirnantian episode 
of global cooling took place and that this climate change nega-
tively affected graptolite diversity at middle and high latitudes 
but was not a major factor at low latitudes. However, the steep 
decline in diversity exhibited by several Laurentian successions 
requires a separate causal mechanism.

Several workers (e.g., Berry et al., 1987; Cooper, 1998) 
proposed that graptolites thrived during times of sluggish 
oceanic circulation and that their preferred habitat was in a 
nutrient-rich layer above an oxygen minimum zone (OMZ) 
that produced the anoxic conditions necessary for graptolite 
preservation—generally deep shelf to slope settings. During 
the end-Ordovician regression and glaciation, the formation of 
cold, oxygen-rich polar waters and their sinking and spreading 
toward the equator would have intensifi ed, increasing the ventila-
tion of the ocean and disrupting the density-stratifi ed water that 
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graptolites favored (Berry et al., 1987). Normalograptus, the only 
graptolite genus to survive the Ordovician mass extinction and 
diversify in the Silurian was an epipelagic species and occupied 
one of the shallowest, most oxygen-rich zones of the upwelling 
region. Finney and Berry (2001) and Chen et al. (2005) noted 
that the normalograptids therefore were the species least likely to 
be affected by deep ocean ventilation and disruption of a density 
stratifi ed water column.

As noted above, the lower Katian (D. clingani Zone) in South 
Wales has a low-diversity graptolite fauna. Near the top of the 
D. clingani Zone the graptolite fauna becomes almost entirely 
dominated by the genus Normalograptus. Thus, both the sedimen-
tological changes that occur up section at Whitland—transition 
from laminated, graptolitic mudstones to bioturbated, barren 
mudstones and fi nally shelf carbonates—and the faunal changes 
are consistent with the end-Ordovician extinction model, even 
though they occurred during the Katian.

Is there any independent evidence that an episode of global 
cooling occurred prior to the Hirnantian? Patzkowsky et al. (1997) 
suggested that positive excursions in carbon isotope compositions 
in both carbonate and organic carbon from lower Katian strata 
in the eastern and midcontinental United States—the prominent 
GICE carbon isotope (δ13C) excursion (Fig. 4)—indicate increased 
productivity and rates of organic carbon burial that may have 
drawn down atmospheric pCO

2
 and precipitated global cooling. 

Pope and Steffen (2003) noted that Upper Ordovician carbonates 
from the southern and western margins of Laurentia contained 
abundant chert and phosphate, which they interpreted as evidence 
of widespread upwelling and vigorous thermohaline circulation 
related to early Gondwanan glaciation. They also point out that 
this period of upwelling corresponded with cool surface waters 
in the Appalachian Basin (Railsback et al., 1990), a northward 
expansion of cool-water trilobite faunas in North America (Shaw, 
1991), and a transition to cooler water benthic faunas across east-
ern North America (Patzkowsky and Holland, 1993). Finally, 
several workers claimed that Katian (middle to upper Caradoc) 
siliciclastic deposits in northwestern Gondwana display clear 
evidence of glacial transport and deposition (e.g., Barnes, 1986; 
Theron, 1994; Hamoumi, 1999). It is also worth noting, however, 
that Brenchley et al. (1994) and Marshall et al. (1997) consider 
there to be little substantive isotopic evidence for a long-lived gla-
cial episode that substantially preceded the Hirnantian.

If climatic cooling occurred during the early Katian it clearly 
did not affect graptolite faunal diversity in all the low latitude 
tropical regions. Southern and eastern Laurentian graptolite fau-
nas were severely depleted, but faunas from northeast Laurentia 
(Scotland and Newfoundland) and northeast Gondwana (Austra-
lia) do not exhibit a pronounced diversity decline. Interestingly, 
the percentage of taxa that carry over from the upper Sandbian 
into the lower Katian is similarly low in all areas, suggesting 
that where a diversity drop is observed, it is the result of reduced 
origination rate and not elevated extinction rate.

Zalasiewicz et al. (1995) and Finney (1986, 1988) noted that 
prominent regressions, as evidenced by distinct facies changes, 

occurred in South Wales and southwestern Laurentia during the 
early to mid-Katian. Perhaps the different regional diversity pat-
terns could be attributed to unique water-depth histories of indi-
vidual basins. Although we agree that sea level was an important 
factor that affected the graptolite biotope, as a single causal 
mechanism, sea level alone could not be responsible for Katian 
graptolite diversity decline in Laurentia because the Appalachian 
Basin underwent a relative sea-level rise at that time (Holland and 
Patzkowsky, 1996). Indeed, the nadir of graptolite diversity in the 
northern Appalachian Basin occurred within the Orthograptus 
ruedemanni Zone, an interval considered by Joy et al. (2000) to 
represent a transgressive system.

Patzkowsky and Holland (1996) and Pope and Steffen 
(2003) provided evidence for the incursion of cool oceanic 
waters onto the Laurentian continent. Kolata et al. (2001) sug-
gested that cool, subpolar Iapetus seawater may have fl ooded 
the Laurentian craton through a narrow depressed corridor, the 
Sebree Trough. This trough is fi lled with a succession of dark 
brown to gray shales that contain a very low diversity grap-
tolite fauna of Katian age (Kolata et al., 2001; Mitchell and 
Bergström, 1991). These shales are similar in age and faunal 
composition to the classic Utica Shale of the northern Appala-
chian Basin (Mitchell and Bergström, 1991). We think that if 
cool, well-oxygenated subpolar waters fl ooded the Laurentian 
craton, it may have adversely affected graptolite diversity. Thus, 
physical and chemical seawater changes, albeit driven by differ-
ent mechanisms, may have produced similar diversity patterns at 
different paleolatitudes.

Finally, Finney and Berry (1997) proposed that graptolites 
thrived in a denitrifi cation layer above an OMZ that developed 
where vigorous upwelling occurred along continental margins. 
They attribute changes in graptolite diversity to fl uctuations in 
upwelling conditions and that the OMZ loss of upwelling condi-
tions resulted in destruction of the preferred graptolite habitat and 
declines in both abundance and diversity. The upwelling model 
was proposed to explain the relationship between vertical changes 
in facies patterns and graptolite diversity and abundance in the 
Vinini Formation of north-central Nevada (Finney and Berry, 
1997). This model is seemingly at odds with the interpretation of 
widespread Late Ordovician upwelling in North America (Pope 
and Steffen, 2003) and coincident graptolite diversity decline. 
We agree that upwelling produces the nutrient-rich conditions 
necessary for high productivity, but it is not clear that plankton 
abundance and species diversity respond similarly to circulation 
changes. The phosphate-rich, dark shale of the Late Ordovician 
Maquoketa Group crops out extensively in the Upper Mississippi 
Valley of the United States (Templeton and Willman, 1963). 
Witzke (1987) noted that in its southeastern outcrop area the 
lower Maquoketa was deposited in an epicontinental seaway with 
well developed density and oxygen stratifi cation. Interestingly, 
the lower Maquoketa Formation is rich in graptolites but exhibits 
very low species diversity (Goldman and Bergström, 1997). We 
think that more research on the relationship between plankton 
abundance, species diversity, and upwelling is still needed.
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CONCLUSIONS

The early Late Ordovician (Katian) was a time of signifi cant 
decline in benthic marine biodiversity. In this study we compiled 
Upper Ordovician diversity data for graptolites, a group of fossil 
organisms that had a different lifestyle (planktonic) and are gen-
erally found in a different biofacies. We investigated the pattern 
of graptolite faunal changes across the Climacograptus bicornis–
Diplacanthograptus caudatus graptolite zonal boundary in North 
America and on several other continents. In the Appalachian 
Basin a sharp decline in species diversity occurred. Scores for 
normalized diversity dropped from 20 in the C. bicornis Zone to 
7 in the D. caudatus Zone. Only 11% of the species present in the 
C. bicornis Zone carry over into the D. caudatus Zone. A simi-
lar pattern occurs in the Ouachita Mountains of Oklahoma. High 
and middle paleolatitude regions such as Wales and Baltoscandia 
exhibit low diversity in the lower Katian and then further decline 
in graptolite diversity at higher stratigraphic levels. In other low 
paleolatitude regions such as Australasia and Scotland, however, 
diversity is fairly constant across this interval (although the per-
centage of carryover taxa is low).

Climatic cooling during the Katian may have directly affected 
graptolite faunas at mid- to high latitudes but not at low latitudes. 
Parts of Laurentia were affected only because a depressed cor-
ridor, the Sebree Trough, allowed deep, cool Iapetus Ocean water 
to spread across the craton. Thus, different combinations of local 
tectonics, climate change, and water-depth history may have pro-
duced similar diversity patterns at different paleolatitudes.
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