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Role of antenna modes and field enhancement in 
second harmonic generation from dipole 
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*domenico.deceglia@us.army.mil

Abstract: We study optical second harmonic generation from metallic 
dipole antennas with narrow gaps. Enhancement of the fundamental-
frequency field in the gap region plays a marginal role on conversion 
efficiency. In the symmetric configuration, i.e., with the gap located at the 
center of the antenna axis, reducing gap size induces a significant red-shift 
of the maximum conversion efficiency peak. Either enhancement or 
inhibition of second-harmonic emission may be observed as gap size is 
decreased, depending on the antenna mode excited at the harmonic 
frequency. The second-harmonic signal is extremely sensitive to the 
asymmetry introduced by gap’s displacements with respect to the antenna 
center. In this situation, second-harmonic light can couple to all the 
available antenna modes. We perform a multipolar analysis that allows 
engineering the far-field SH emission and find that the interaction with 
quasi-odd-symmetry modes generates radiation patterns with a strong 
dipolar component. 

©2015 Optical Society of America 

OCIS codes: (160.4330) Nonlinear optical materials; (190.2620) Harmonic generation and 
mixing; (250.5403) Plasmonics. 
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1. Introduction 

The manipulation of light with optical nanoantennas [1] may unlock a plethora of new 
opportunities for microscopy and spectroscopy devices, enhanced photovoltaic cells, and for a 
large variety of optical and electro-optical applications that are typically limited by 
diffraction. Efficient transformation of propagating light waves into highly confined fields, 
and vice versa, is mediated by the excitation of plasmon resonances localized at the surface of 
metallic nanostructures. Nanoantennas may enhance nonlinear processes initiated in the 
surrounding media, in the bulk of the metal, and at the interfaces. The most relevant boosting 
mechanism for nonlinear interactions in metallic nanostructures is usually the field 
enhancement induced by surface plasmon resonances and by the lightning-rod effect [2]. 
Noble metals display large intrinsic third and higher-odd-order nonlinear susceptibilities. 
Enhanced multiphoton photoluminescence from noble metals has been experimentally 
observed in bowtie nanoantennas [3], in gap [4] and rod [5] antennas. Conversion efficiency 
of parametric nonlinear processes involving cubic and higher-order nonlinearities, such as 
third harmonic generation [6, 7], four-wave mixing [8], and high-harmonic generation [9] is 
substantially boosted by the field enhancement of isolated or arrayed nanoantennas when 
these structures are designed to resonate at the pump and/or at the harmonic frequencies. On 
the other hand, second-harmonic (SH) generation in centrosymmetric media such as noble 
metals is forbidden in the electric-dipole approximation and is governed solely by quadrupole 
and higher-order bulk response, and by dipole contributions due to symmetry breaking at the 
interfaces [10]. In the hydrodynamic theory of free electrons in metals, the quadratic 
nonlinear response arises from Lorentz and Coulomb electromagnetic forces, convective 
forces and quantum pressure [11, 12]. Several strategies have been proposed to promote the 
SH signal produced by these forces. These approaches are usually based on the excitation of 
surface waves, for example using nanoparticles [13] and nanoantennas [14–16], coupling to 
surface plasmon polaritons on planar metallic surfaces [11] or phase matching to complex 
modes of metallic gratings [17]. An alternative way to efficiently access the quadratic 
nonlinear response of metal without resorting to surface plasmons involves impedance 
matching techniques, as demonstrated by Larciprete et al. [18] in metal-dielectric, photonic 
band gap structures. SH generation from metal nanoparticles is extremely sensitive to the 
shape and symmetry of the particle [19]. The role of defects, symmetry and higher-multipole 
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effects in SH generation from nanoparticles have been discussed in several works [20–24]. 
The importance of engineering the geometry of plasmonic nanostructures has been recently 
highlighted for the enhancement of radiation from fluorescent molecules [25]. 

In this paper we investigate SH light scattered by dipole nanoantennas pumped with plane 
wave illumination. Dipole antennas, which consist of two metallic arms separated by a tiny 
gap, are attractive for their extraordinary ability to enhance the local field in the gap region. 
Their linear optical properties have been extensively investigated [26]. It has been 
experimentally proven that the SH signal from symmetric dipole antennas may be suppressed 
when the gap size is reduced [27], despite the strong enhancement of the fundamental-
frequency (FF) field in the gap region [28]. A pronounced sensitivity to small geometrical 
perturbations has been predicted by observing modulations in the quadrupolar far-field 
pattern of SH light scattered by symmetric dipole antennas [29]. This property may be 
suitable for shape characterization of nanoparticles. Enhancement of SH light has been 
observed in doubly resonant antennas formed by two small gaps properly displaced along the 
antenna axis [16]. The symmetric dipole antenna has been also studied as a platform to 
evaluate the relative weights of surface and bulk contributions to SH generation [15]. 
Different regimes have been identified, in which either surface or bulk responses may be 
dominant. It has been shown that no a priori assumption can be made concerning the origin 
of SH light and the strength of surface and bulk nonlinearities; hence inclusion of all the 
relevant nonlinear contributions is the safest approach. Here we clarify the role of antenna 
resonances and field enhancement in SH generation from both symmetric and asymmetric 
dipole antennas, when the full quadratic nonlinear response (both surface and bulk 
contributions) of metal is considered. We observe that the field enhancement in the gap 
region has minimal effect on the SH scattering efficiency and far field, which remain 
inherently quadrupolar in symmetric dipole antennas. However, we find that the presence of 
the gap in the antenna center, even for gap sizes of only a few nanometers, drastically blue-
shifts the peak of maximum SH scattering efficiency. Our results clarify why either SH 
enhancement or inhibition may be observed as gap size is reduced [27, 28]. Either effect is 
possible depending on the available antenna mode at the SH frequency. We then go on to 
show that a displacement of the gap with respect to the antenna center induces dipolar and 
octupolar responses at the SH frequency, therefore allowing the SH light to efficiently couple 
to quasi-odd charge-symmetry modes. We provide a multipolar representation of SH 
generation in order to explain the peculiar behavior of asymmetric dipole antennas. 

2. Field enhancement and second harmonic sources 

For simplicity we consider dipole antennas placed in free-space, made by silver strips with 
translational invariance along the z direction. The structures are excited by TM-polarized light 
so that the electric field is on the x-y plane. Linear and nonlinear properties of metallic strips 
are analogous to those found in their three-dimensional counterparts, i.e., rod antennas. 
However, the system under investigation, illustrated in Fig. 1, may be studied in two 
dimensions instead of three, with significant savings of computational resources when 
nonlinear sources are included. The strip width w = 10 nm and length Lant = 300 nm are kept 
constant, while the gap size s and the gap displacement d with respect to the center of the 
antenna are varied in order to evaluate the sensitivity of SH radiation to pump field 
enhancement and antenna symmetry. The elongated shape (Lant/w = 30) provides a large 
number of antenna modes in the frequency range of interest (visible and near infrared), 
therefore it is instrumental in determining the impact of these modes on SH scattering. All the 
corners of the antenna are rounded with a radius of curvature of 1.5 nm to avoid diverging 
fields. SH light is only a small fraction of linearly scattered light so that a perturbative 
approach may be adopted. First we solve the linear electromagnetic problem at the FF using a 
frequency-domain finite-element solver (COMSOL) and then we use the calculated fields to 
define the SH current sources and solve the problem at the SH frequency by using the same 
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approach reported in [30, 31]. SH radiation is due to nonlinear forces acting on both free and 
bound electrons in metal. Presently we neglect nonlinear contributions of bound electrons, 
since they are usually weaker with respect to convective and quantum pressure forces acting 
on free electrons [12]. 

x

y

kFF,0

EFF,0

(a) (b)

Lant

s
d

kFF,0

EFF,0

 

Fig. 1. Plane wave illumination of symmetric (a) and asymmetric (b) dipole nanoantennas. 
(E)FF,0 is the input FF electric field polarized along the antenna axis (y-axis). The input 
wavevector kFF,0 points in the x direction. The red shadow symbolizes the FF field 
enhancement in the middle of the gap. Green arrows indicate scattering of SH light. 

The current density source of SH light may be expressed as the superposition of two 
contributions, one coming from the volume of the antenna, volJ , the other, surfJ , located at 

the metal surface. Following the method outlined in [14, 30, 32], these currents can be 
explicitly related to the FF electric field and to the free electron hydrodynamic parameters as 
follows: 
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where 0n  = 4.96 × 1028 m−3 is the free electrons density in silver assuming the effective 

electron mass is *m  = em  = 9.11 × 10−31 Kg, e  is the elementary charge, 0γ  = 7.28 × 1013 s−1 

is the electron gas collision frequency in silver, FFε  is the bulk-silver, relative permittivity at 

the FF taken from Palik [33] and interpolated with one Drude and five Lorentz oscillators as 
in [34], and ω  the angular frequency of the FF field. Moreover, FFE is the FF electric field, 

n̂  and t̂  are unit vectors pointing in directions outward normal and tangential to the metallic 

surface, respectively. FF,E ⊥  and FF,/ /E  are the normal (evaluated inside the metal region) and 

tangential components of the FF electric field in the local boundary coordinate system defined 

by n̂  and t̂ , respectively. We note that the source component surf
ˆ ⋅n J  in Eq. (1) is dominant 

for this particular geometry, in the sense that it would be sufficient to describe qualitatively 
the SH scattering properties. However in our calculations we also retain the sources in Eqs. 
(2) and (3) in order to provide more accurate, quantitative predictions of SH efficiencies. 
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In Eqs. (1)-(3) we neglect the inherently nonlocal nature of light interaction with free 
electrons and adopt the local approximation, i.e., we assume that the free electrons’ Fermi 
velocity /Fv qω<< , where q  is the inverse of the characteristic length of variation of the 

electromagnetic field [35]. Typical phenomena associated with the free electrons nonlocality 
are slight perturbations on the linear response, in the form of a blue shift and quenching of 
plasmonic resonances [36, 37], and limitations of field enhancement in sub-nanometer gaps 
between metallic objects [38]. Nonlocality, as well as surface phenomena related to realistic 
roughness and spill-out of electrons at metal interfaces, may also affect the nonlinear response 
[39]. However simple models like the one adopted here usually provide good qualitative 
agreement with experiments, properly describing near- and far-field properties of SH light, 
but may be quantitatively improved by introducing phenomenological parameters [40]. The 
FF excitation is a homogeneous plane wave travelling in the x-direction and polarized along 
the dipole antenna axis (y-axis), as shown in Fig. 1. 

In Fig. 2 we report spectra of electric field enhancement in the symmetric dipole antenna 
of Fig. 1(a) as a function of gap size s. The enhancement is evaluated in the center of the gap 
region with respect to the amplitude of the input plane wave E0. Regardless of gap position, 
the input field magnification is fairly uniform in the gap region, while the enhancement level 
depends weakly on the displacement d. 

s

M1

M3
M5

k0

E0

 

Fig. 2. Field enhancement |(E)|/E0 spectra evaluated at the gap center of symmetric antennas 
(as illustrated in Fig. 1(a)) as a function of gap size s. Input field is polarized along the antenna 
axis, as shown in the inset. 

The peaks in the field enhancement spectra are resonances due to plane wave excitation of 
modes with odd-charge symmetry (defined with labels M1, M3, M5), sometimes referred to as 
bright modes. Here the definition of odd/even charge symmetry refers to the charge 
distribution across the Lant-long antenna; specifically, in odd/even modes charges of 
opposite/same sign are located at the two extremities of the antenna. The gap acts as a 
nanocapacitor with capacitance per unit length 0 /C w sε=  inversely proportional to the gap 

size s, [41, 42] hence the resonances’ red-shift with decreased gap sizes. We direct the 
interested reader to [41, 42] for details on the circuit-theory model of the antenna. The charge 
accumulation at the metallic edges facing the gap promotes a field enhancement that increases 
with smaller gaps. For example, with an input frequency of ~0.3 PHz, close to the first odd 
mode (M1), the electric field amplitude in a 1-nm-thick gap is magnified by a factor of ~60 
with respect to the source field. In this paper, we deliberately avoid gap sizes smaller than 1 
nm, for which quantum effects in the gap region may not be neglected [43]. Quantum 
tunneling currents induced in sub-nm gaps increase absorption losses at the FF and may add 
quadratic and cubic, nonlinear sources that are predicted to interfere with the metal 
nonlinearities [44, 45]. We will discuss this regime in a separate work. 
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Field enhancement is usually the most important requirement for efficient nonlinear 
interactions with nanophotonic structures. A generally accepted notion is that nanoantennas 
with smaller gaps provide larger nonlinear conversion efficiencies, as suggested in [28] for 
SH generation. However, it was recently demonstrated that SH generation may be inhibited 
when gap size is reduced [27]. The observed decrease of SH radiation is ascribed to the 
intrinsic, nonradiative (dark) and quadrupolar nature of SH light scattered by symmetric gap 
antennas. Since the structure is centrosymmetric, the SH electric field component parallel to 
the antenna’s axis is forced to form a zero in the gap center, thus mimicking a quadrupole-like 
source. Here we show that the introduction of a gap, at least in the classical picture of the 
problem, does not alter the level of SH scattering efficiency, but shifts the maximum peak 
from the second-order, even-charge-symmetry mode (M4) to the lowest-order, even mode 
(M2). We then clarify the role of antenna modes in both symmetric and non-symmetric dipole 
nanoantennas, supporting our conclusions with a multipolar analysis of the SH generated 
signal. 

3. Antenna modes 

Antenna modes may be studied with several techniques. Here we use two different 
approaches: (i) plane wave excitation in order to assess the antenna response as a receiver for 
the pump at the FF; (ii) point-dipole excitation to evaluate the radiation efficiency at the SH 
frequency. 

3.1 Modes of symmetric dipole antennas 

In the symmetric configuration the gap is located in the center of the antenna axis, i.e., d = 0. 
We first analyze linear extinction efficiencies for plane wave illumination in the frequency 
range 0.2-1 PHz (wavelengths in the range 300-1500 nm). We report normalized extinction 
cross section spectra for different values of the gap size s in Fig. 3(a). The normalized 

extinction cross section ( ) ( )sca ant 0ˆECS dl QdS L I
Ω

= ⋅ + S n


is calculated by integrating the 

scattered, time averaged Poynting vector scaS  on a circle surrounding the antenna, and the 

Joule heating rate ( ) 2

01/ 2 Im mQ ωε ε= E  in the metal volume. In the expressions above, n̂  

is the unit vector normal to the integration circle, E is the electric field phasor, 2
0 0 01/ 2I cEε=  

is the irradiance of the input plane wave, 0ε and c are the permittivity and speed of light in 

free space, respectively, ( )Im mε the imaginary part of the metal relative permittivity, and E0 

the amplitude of the input plane wave. The radius of the integration circle is much larger than 
the excitation wavelength in order to obtain a far-field measure of the scattering efficiency. 
For symmetry reasons, plane waves polarized along the antenna axis are able to excite only 
modes with large electric dipole moment and, as a consequence, odd charge-symmetry 
distribution along the antenna, i.e., modes M1, M3, M5 … These modes are sometimes referred 
to as bonding or bright modes. The distribution of the electric field component Ey, which is 
uniformly enhanced in the gap, is compatible with charge accumulation of opposite signs on 
the metallic edges facing the gap region [46]. Decreasing gap size from s = 30 nm to s = 1 nm 
results in a significant red-shift of the resonances and, as mentioned in the previous section, in 
a strong increase of field enhancement in the gap. Nevertheless the extinction efficiency 
remains almost unchanged (see Fig. 3) against variations of gap size s. From this analysis it is 
clear that the pump field, which is launched as a plane wave, will interact mostly with odd-
charge-symmetry modes with a strong electric field enhancement in the gap. On the other 
hand, SH radiation generates from currents induced on the antenna itself (both on the surface 
and in the volume of metal) and it can couple, in principle, to any available antenna mode. A 
complete map of the modes supported by the antenna is retrieved from the dipole excitation 
scheme illustrated in the inset of Fig. 3(b). We follow the procedure outlined in [47], in which 
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a point emitter (quantum dot) with electric dipole with moment p0 aligned with the antenna 
axis (y-axis) feeds the antenna from a subwavelength distance (10 nm) below the bottom edge 
of the antenna, as described in the inset of Fig. 3(b). 
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Fig. 3. (a) Normalized extinction cross section, ECS, as a function of input frequency and gap 
size. The inset shows the excitation scheme. (b) Spectra of radiative decay of a dipole emitting 
in proximity of a symmetric dipole antenna for different gap sizes. The dipole’s location (10 
nm away from the lower edge of the antenna) is shown in the inset. For illustration purposes, 
an offset of 2.5 dB is used to distinguish spectra corresponding to different gap sizes. (c) 
Distribution of the real part of the electric field component parallel to the antenna axis (Re[Ey]) 
for the first four modes supported by the dipole nanoantenna. The color scale is normalized to 
the field maximum for each mode. The modes are probed with the dipole excitation technique 
using a gap size s = 10 nm, at frequencies 0.34 PHz for mode M1, 0.46 PHz for M2, 0.6 PHz for 
M3 and 0.68 PHz for M4, as indicated by the green triangles and squares in (b). 

Proceeding in this fashion one is able to excite modes with arbitrary charge-symmetry. In 
this case we measure the normalized radiation decay rate, defined 

as 0 ant 0/ /r dl dlγ γ = ⋅ ⋅ S n S n
 

, where ant/0S  is the time-averaged Poynting vector due to 

dipole emission in the presence/absence of the antenna. The observed peaks in the spectra are 
due to interactions with both odd- (M1, M3, M5) and even-charge-symmetry (M2, M4) modes. 
Charges of same/opposite sign are induced on the two metallic edges facing the gap region in 
even/odd modes [46]. In Fig. 3(c) we report the real part of the Ey field distribution for the 
first four modes, M1-4. In odd-charge symmetry modes the field component Ey displays an odd 
number of local maxima/minima along the antenna axis and a strong peak inside the gap due 
to charge accumulation. Conversely, Ey shows an even number of maxima/minima along the 
antenna axis for even-charge-symmetry modes with a zero-crossing in the middle of the gap 
region: no field build-up is allowed. y-polarized plane waves can excite even modes of the 
nanoantenna when system symmetry is perturbed by the close proximity to larger scatterers, 
as demonstrated in metal gratings with ultrathin bridges [48]. In the framework of 
hybridization theory, odd modes are defined as low-energy bonding modes, while even modes 
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are high-energy antibonding modes. Interestingly, for gaps much smaller than antenna length 
the frequency of even modes is insensitive to gap size variations, as the interaction with the 
gap capacitive load is virtually suppressed. As observed with the plane wave excitation 
scheme, bonding modes undergo a substantial red-shift for smaller gap sizes due to charge 
accumulation on the gap capacitance. Another significant difference between modes of 
opposite parity concerns the far-field patterns. Odd modes have a net dipole moment. Thus, 
the far-field shows two main lobes orthogonal to the antenna axis, while the vanishing dipole 
moment of even modes results in a quadrupole-like far-field pattern. For this reason, bonding 
modes are sometimes called “bright”, whereas antibonding modes are referred to as “near-
field” or “dark” modes. However, the bright/dark nomenclature may also be misleading. For 
example, in the next section we will show that SH light is scattered with larger efficiency 
when coupled to dark modes of symmetric antennas, since the SH sources overlaps well with 
even-charge symmetry modes. The picture complicates for asymmetric antennas, where SH 
scattering is sensitive to the degree of asymmetry. Then, gap displacement forms modes with 
quasi-even and quasi-odd symmetry. We will show that both types of modes may be 
dominant (“bright”) depending on the position of the gap along the antenna axis. 

3.2 Modes of asymmetric dipole antennas 

A thorough investigation of asymmetric dipole antennas can be found in [49], where a circuit 
theory approach is adopted to describe the linear properties of the structure. Here we analyze 
the effects of a displaced gap on the antenna resonances, for both plane wave excitation and 
dipole excitation. We fix gap size to s = 10 nm, while the gap displacement d is varied 
between 0 and 120 nm. Similarly to symmetric antennas, antenna modes are probed with both 
the plane wave and the point dipole feeding schemes. Spectra of normalized extinction 
efficiency and radiation rates are mapped as functions of d in Fig. 4(a) and 4(b), respectively. 
Even though the lack of symmetry prevents the existence of purely even- and odd-charge-
symmetry modes, yet the gap-displaced antenna supports modes with quasi-even and quasi-
odd symmetry. For a given gap size, the resonances associated with these modes, labeled 

1 4M −
  in Fig. 4, peak at frequencies close to those found for modes 1 4M −  in the symmetric 

case. The frequency shift with respect to the symmetric case depends on gap displacement. In 
contrast to the symmetric case, the structural asymmetry allows a y-polarized plane wave to 
excite both quasi-odd and quasi-even modes (Fig. 4(a)). As expected, resonances associated 
with quasi-even modes and higher-order, quasi-odd modes are more pronounced in the 
radiation spectra of the point dipole source (Fig. 4(b)). The scattering or radiation efficiency 

remains unaltered for the dominant mode 1M , whose peak is only red-shifted by increasing 

the gap displacement d. The resonant peak of higher-order modes is modulated both in 
frequency and amplitude by variations of d. From this analysis we may surmise that the 

antenna interaction with the pump field will be governed by the quasi-odd 1M  mode, while 

SH radiation may couple to quasi-even and quasi-odd modes with radiation efficiency 
modulated by the gap displacement d. An important difference with respect to the symmetric 
case regards the field localization and charge accumulation around the gap region. Purely 
even/odd modes of symmetric antennas support only charges of same/opposite sign at the 
metallic edges facing the gap region, resulting in a zero/maximum Ey field at the center of the 

gap, as shown in Fig. 3(c). This is not the case for modes 1 4M −
  of the asymmetric antenna. In 

fact, quasi-even modes may support strong field localization in the gap with a generally 
asymmetric charge distribution around the gap region, as shown in Fig. 4(c) for the fields of 

the 2M  and 4M  modes when the gap displacement is d = 50nm. On the other hand, the gap 

capacitance may be virtually shorted in quasi-odd modes if the gap position corresponds to a 
zero of the Ey field distribution along the antenna axis. Under these circumstances a small 
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accumulation of charges with the same sign occurs at the metallic edges surrounding the gap, 
resulting in a weak coupling between the two arms of the antenna, a typical behavior of the 
so-called “antibonding” modes. 
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Fig. 4. (a) Normalized extinction cross section, ECS, as a function of input frequency and gap 
displacement d. The inset shows the plane wave excitation scheme. (b) Spectra of radiative 
decay of a dipole emitting in proximity of symmetric dipole antenna. The dipole’s location (10 
nm far from the lower edge of the antenna) is shown in the inset. The blue curves are guides 
for the eye to indicate the antenna modes excited by a plane wave (a) and a point dipole (b). (c) 
Distribution of the real part of the electric field component parallel to the antenna axis (Re[Ey]) 
for the first four modes supported by the asymmetric dipole nanoantenna. The modes are 
probed with the dipole excitation technique using a displacement d = 50 nm, at frequencies 0.3 

PHz for mode 1M , 0.5 PHz for 2M , 0.6 PHz for 3M  and 0.68 PHz for 4M , as indicated 

by the green triangles and squares in (b). 

4. SH generation in symmetric and asymmetric nanoantennas 

We first consider scattering from the symmetric antenna. In the above analysis we showed 
that optimal interaction with the nanoantenna in terms of scattering and field enhancement in 
the gap is achieved when the mode M1 is excited by a plane wave polarized along the antenna 
axis (y-direction), regardless of gap size s and displacement d. Therefore, we tune the FF in 
the range 0.2-0.5 PHz to exploit the broad resonance associated with this mode. Pump field 
enhancement decreases from ~60 (frequency ~0.3 PHz and s = 1 nm) to ~6 (frequency ~0.4 
PHz and s = 30 nm), as shown in Fig. 2. SH scattering efficiency is evaluated as a function of 
pump frequency and gap size by using the approach outlined in section 2. We define 

efficiency as ( )SH sca,SH ant 0
ˆdl L Iη = ⋅ S n


; sca,SHS  is the time-averaged, Poynting vector at the 

SH frequency and pump irradiance is 2
0 1GW/cmI =  . SH conversion efficiency SHη  is 

mapped on a logarithmic color scale in Fig. 5(a). We find several peaks in the SH scattering 
spectra. Each peak originates from SH-light coupling to an even-charge-symmetry mode of 
the nanoantenna (M2n, n = 1, 2, ….) These are the only “bright” modes for SH generation in 
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the symmetric configuration of the antenna. Mode M2 creates an efficiency peak at a SH 
frequency of ~0.46 PHz (FF ~0.23 PHz), mode M4 at ~0.64 PHz (FF ~0.32 PHz). 

In Fig. 5(b) we plot the distributions of the real part of the SH field ESH,y for these two 
peaks in order to show the symmetry compatibility of the generated signal with respect to 
modes M2 and M4. As already observed in the linear radiation rate spectra (Fig. 3(b)), the 
resonance frequency of even modes is barely sensitive to gap size, at least for gaps much 
smaller than the antenna length (s << Lant). This trend may also be identified in the SH 
generation spectra. However the SH scattering efficiency on the two main peaks undergoes a 
significant modulation as gap size decreases. In particular, mode M4 produces the largest SH 
signal for s > 5 nm, while mode M2 turns out to be more important as s decreases. 
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Fig. 5. (a) SH conversion efficiency SHη  for the symmetric (d = 0) dipole nanoantenna as a 

function of FF and SH frequency, and gap size s. The color map is reported on a logarithmic 
scale. (b) Ey field distributions for SH light when mode M2 is excited by a pump tuned at ~0.23 
PHz and mode M4 is excited by a pump tuned at ~0.32 PHz. (c) Spectrum of SH conversion 

efficiency SHη  for the nanoantenna without gap (s = 0, as shown in the inset). 

We remark that field enhancement inside the gap is increasingly large for decreasing gap 
sizes (see Fig. 2) but plays a minimal role in the SH generation process. This becomes clear 
by looking at the conversion efficiency reduction at the peak associated with mode M4. 
However, the efficiency peak due to mode M2 gains intensity when gap size is reduced, 
suggesting an improvement apparently related to the increased field enhancement in the gap 
region. Nevertheless, we find that the peak due to mode M2 is actually the dominant one when 
the nanoantenna has no gap at all (s = 0), confirming that field enhancement in the gap is not 
important for SH generation. Indeed, the SH efficiency spectrum of the gapless structure, 
shown in Fig. 5(c), seems the natural extension of the efficiency map in Fig. 5(a) as s 
approaches zero, in terms of both frequency position of the peaks and scattering efficiency 
levels. This means that the SH signal is sensitive to the geometry and symmetry of the 
structure rather than field enhancement in the gap. Our results indicate the existence of two 
distinct regimes: for gaps in the range 1-3 nm, the SH light emitted by the structure is almost 
indistinguishable from that radiated by a gapless nanoantenna of total length Lant (see Fig. 
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5(c)), for which the lowest, and dominant, even mode is M2; for gaps larger than 3 nm, the 
structure tends to emit SH radiation like two separated nanoantennas with lengths Lant/2. The 
dominant mode for each of these Lant/2-long antennas is the mode M4 of the Lant-long dipole 
antenna. In other words, the only significant, nonlinear effect induced by the gap appears for 
gap sizes larger than 5 nm and manifests itself as a decoupling of the two arms of the dipole 
antenna. In this regime, the two arms of the dipole antenna, each having length ≈Lant/2, radiate 
SH light as if they were isolated. Therefore, the maximum scattering efficiency is achieved at 
the frequency of mode M4 of the Lant-long dipole antenna, which is virtually identical to the 
frequency of mode M2 of each Lant/2-long arm. 

The reason why scattered SH light is unable to benefit from the large field enhancement 
inside the gap is probably better understood by investigating the induced nonlinear currents. 
The largest current source is the surface term surfJ , which depends on the pump electric fields 

at the antenna surface (see Eq. (1)). The electric field has a large discontinuity at the metal 
surface, due to the significant permittivity mismatch with respect to vacuum. surfJ  is thus 

proportional to the intensity of the pump field on the metal side of the interface 2
FF| |−E , 

which is much smaller than the field on the vacuum side (see Eqs. (1) and (2)). In Fig. 6 we 
report field enhancement on the metal surface of the antenna’s upper arm for the two main 
peaks of the SH efficiency map in Fig. 5(a): (i) gap size s = 1 nm and FF of 0.23 PHz, where 
mode M2 enhances SH light, and (ii) gap size s = 10 nm with FF of 0.32 PHz, where SH light 
is coupled to mode M4. The field on the lower arm is not reported since it has specular 
symmetry due to the geometry and excitation configurations. While field enhancement on the 
vacuum side of the interface, FF FF,0| | /E+E , increases in the gap region as the gap size is 

reduced from 10 nm to 1 nm, as shown in Fig. 6(a), it remains fairly low and almost 
unchanged on the metal side (see FF FF,0| | /E−E  in Fig. 6(b)). Moreover, the average field 

enhancement on the metal side is even larger in the case with gap s = 10 nm than in the case 
with s = 1 nm due to the smaller silver permittivity at 0.32 PHz. This explains the essential 
insensitivity of SH light to field enhancement in the gap. 
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Fig. 6. Pump field enhancement on the metal surface evaluated on the air side (a) and metal 
side (b). The black (blue) curve refers to an antenna with a gap size of s = 1 nm (s = 10 nm) 
pumped at a frequency of 0.23 PHz (0.32 PHz), where mode M2 (M4) enhances SH scattering. 
The shaded areas represent the approximate location of the metallic antenna. 

Next we consider the asymmetric antenna. The gap size is set at s = 10 nm and the 
displacement d varies from 0 to 100 nm. We use the same pumping conditions of the 
symmetric case, with the FF varying in the range 0.2-0.5 PHz, so that the pump is coupled to 

quasi-odd mode 1M  of the antenna. The spectra of SH scattering efficiency are mapped in 

Fig. 7(a). We can identify several peaks, each associated with a mode of the asymmetric 
antenna. The substantial difference from the symmetric case is that SH light is now allowed to 
interact with quasi-odd-symmetry modes. In Fig. 7(a) we have highlighted three branches 

(with dashed blue lines), belonging to modes 2M , 3M  and 4M . The signatures of these 

modes overlap well with those found with the linear analysis by using the dipole excitation 
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(see the similarity to the blue curves in Fig. 4(b)). Even if the asymmetry introduces only a 
shallow modulation of SH scattering efficiency, it is enough to make one particular antenna 
mode dominant over the others, producing efficiency peaks in different frequency ranges 
depending on the amount of asymmetry (d). For the specific antenna under investigation (with 

gap size s = 10 nm), mode 4M  is dominant for very small gap displacements (d < 20 nm), 

while mode 2M  prevails for very asymmetric structures (d > 80 nm). However, for 

intermediate gap displacements, the quasi-odd mode 3M produces the largest SH signal. In 

Fig. 7(b) we show the real part of the Ey field distributions and far field patterns for three 
points of the map in Fig. 7(a), in order to highlight these three regimes. 

While mode 2M  and 4M  lend SH light a purely quadrupolar response, on the branch 

pertaining to mode 3M  SH light is a superposition of quadrupole and dipole responses, with a 

prevailing dipolar component, as one can infer by looking at the radiation pattern. Similarly to 
symmetric antennas, we have verified that field enhancement in the gap plays a minimal role 
on the SH scattering efficiency of asymmetric dipole antennas. Therefore our results indicate 
that very small gaps (s < 3 nm) cannot be “seen” by SH light notwithstanding their 
displacement with respect to the antenna center. Under these circumstances the antenna 
scatters SH light as if the gap were shorted and the resulting radiation couples mainly to the 

mode M2 or 2M , producing efficiency spectra similar to that reported in Fig. 5(c) for the 

gapless structure. 
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Fig. 7. (a) SH conversion efficiency SHη  for asymmetric dipole nanoantenna as a function of 

fundamental/SH frequency and gap displacement d. The gap size is s = 10 nm. The color map 
is reported on a logarithmic scale. (b) Distributions of the real part of the ESH,y field for three 

scenarios: (i) when mode 2M  is excited by a pump tuned at ~0.26 PHz with d = 90 nm (left), 

(ii) mode 3M  is excited by a pump tuned at ~0.29 PHz with d = 45 nm, and (iii) mode 

4 4M M≡ is excited by a pump tuned at ~0.33 PHz with d = 0. The black curves are the SH, 

far-field radiation patterns associated to the three cases mentioned above. 
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In order to gain more insight into the multipolar nature of SH light scattered by 
asymmetric nanoantennas we perform a multipole expansion of the generated field. By 
adopting the procedure outlined in [50], the scattered magnetic field Hz can be expanded in 
cylindrical harmonics, 

 1 (2)

0

cos( ) sin( ) ( )m m
z m m m

m

H a i m a i m H krϕ ϕ
∞

+ − +

=

 = +   (4) 

where ma±  are the expansion coefficients, (2)
mH  are Hankel functions of the second kind and 

order m, k the vacuum wavenumber, r the radial distance from the origin (that we set at the 
center of the antenna axis), and ϕ  the angular position. 

The expansion coefficients may be found with two different approaches. One requires the 
evaluation of overlap integrals between the eigenfunctions ( cos( )mi mϕ  and 1 sin( )mi mϕ+ ) 

and the scattered SH far-field [50]. The other approach is based on substituting the 
nanoantenna with a superposition of Cartesian, point electric multipoles [51, 52] located at 
the origin, and equating the field produced by these multipoles with the cylindrical expansion 
in Eq. (2) [50, 53]. Up to the octupole term, the relations between the cylindrical expansion 
coefficients and the Cartesian multipole moments are as follows: 
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(5) 

where 3
0 0/ (4 )A k ωμ ε= , and / ( )i dSω

Ω
= p J r , / ( )i dSω

Ω
= Q J r r , and 

/ (2 ) ( )i dSω
Ω

= O J r rr  are the electric dipole, quadrupole and octupole moment tensors, 

respectively, ω  the angular frequency, and ( )J r  the distribution of the current density at the 

SH frequency. Here we neglect magnetic multipoles because of the largely elongated (in the y 
direction) form-factor of the structure. For the same reason the multipole components py, Qyy, 
and Oyyy determine the largest and most significant terms of Eq. (3). We observe that the 0th 
term of the cylindrical expansion depends on weak quadrupolar terms. The amplitudes of the 
first cylindrical harmonic 1a± are the result of interference between the dipole and octupole 

fields. The second and third cylindrical harmonics have purely quadrupolar and octupolar 
origin, respectively. After calculating the multipole moments, one can easily evaluate the 
contribution of each cylindrical harmonic to the SH scattering efficiency. The total SH 
scattering efficiency may then be written as SH SH,mm

η η= , where 

( )2 2
SH, 0 0 ant 0/ | | | | / (2 )m m ma a kL Iη μ ε + −= +  for m > 0 and 2

SH,0 0 0 0 ant 0/ | | /( )a kL Iη μ ε=  are 

the efficiencies associated with each order of the cylindrical expansion. Calculations based on 
overlap integrals and on Cartesian multipoles yields almost the same results. 

In Fig. 8 the efficiencies spectra SH,mη  are mapped for m = 1,2,3 as a function of the gap 

displacement d, as done in Fig. 7 for the total SH efficiency. The 0-th order efficiency SH,0η  is 

negligible for this structure. 
Unlike the symmetric antenna, in which SH light is purely quadrupolar, here the 

asymmetry introduces both a dipole and an octupole SH response. The strengths of these 

additional contributions are enhanced when the quasi-odd-symmetry mode 3M  is excited. 
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Fig. 8. SH scattering efficiency spectra SH,mη  mapped for m = 1,2,3 as a function of the gap 

displacement d. SH,mη  is the efficiency of the m-th order of cylindrical harmonic expansion. 

5. Conclusion 

We have studied SH scattering from symmetric and asymmetric metallic dipole nanoantennas 
with small gaps. We have assessed the roles of field enhancement and antenna modes when 
both the fundamental and harmonic frequency fields are resonant with the antenna. We find 
that field enhancement in the gap has minimal impact on the amount of radiated SH light. The 
only significant effect of gap reduction in symmetric configurations is a strong red-shift of the 
maximum conversion efficiency: for very small gap sizes (size s < 5 nm) SH emission is 
maximized at the low-frequency resonance associated with the first even mode, whereas for 
larger gaps (size s > 5 nm) the SH emission peaks on the high-frequency resonance associated 
with the second-order even mode. SH light shows a strong sensitivity to asymmetries 
introduced by gap displacements. The asymmetry enables coupling of SH light to quasi-odd 
antenna modes, which introduce additional channels to enhance the scattering efficiency. The 
multipolar analysis reveals that the asymmetry may be engineered to achieve strong dipolar 
and octupolar radiation components in the SH radiation pattern. Here we have considered 
only dipole antennas in free space in order to assess unambiguously the nonlinear scattering 
properties in a perfectly symmetric environment. However, the requirement of a substrate to 
support the antenna in an experimental setup would inevitably break the system’s symmetry. 
This notwithstanding, we have verified that the presence of a transparent substrate like quartz 
merely red-shifts the resonances and slightly perturbs SH efficiency, leaving intact our 
conclusions about field enhancement, antenna modes, and the effects of gap displacement in 
asymmetric antennas. 
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