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Abstract. A beam-steering system consisting of three cemented achro-
matic doublets is presented. Intended for use in IR countermeasure ap-
plications, our system is designed to operate over the 2- to 5-mm spec-
trum with minimum angular dispersion. We show that dispersion can be
minimized by using doublet lenses fashioned from AMTIR-1 and germa-
nium. Our system is designed to be compact and lightweight, with no
internal foci, while allowing steering to 622.5 deg. We also maintain a
minimum 2-in. clear aperture for all steering angles, and a nominal di-
vergence of 1 mrad. Plane wave and Gaussian beam analyses of our
system are presented. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1789137]

Subject terms: infrared countermeasures; decentered lenses; beam steering;
achromatic doublets; dispersion correction.
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1 Introduction

Optical beam steering has applications in many diverse
technologies, including ladar, optical communications, op-
tical interconnects, and spatial light modulator addressing.1

Recently, several beam-steering methods have been inves-
tigated, as is summarized in the following. Of particular
interest to this research have been methods involving de-
centered lens elements and arrays.2–7 Specifically, the re-
search presented herein focuses on an achromatic decen-
tered lens approach for IR countermeasures~IRCM!
applications.

Current optical sensor and IRCM systems are often se-
verely limited in performance and cost by large mechanical
beam-steering devices; e.g., dual-axis gimbaled mirror sys-
tems. Although this technology is now quite mature, there
are clear limitations resulting from the physical size,
weight, and power requirements of such beam-steering
mechanisms, and the fact that most systems do not lend
themselves to highly accurate, rapid random pointing.2 In-
cluded among the many other methods of optical beam
steering that have been investigated are the use of acousto-
optic and/or electro-optic cells, and the use of rotating ach-
romatic prisms.8,9 More recent developments include the
use of dynamic gratings and decentered microlens arrays,
both of which involve an optical phased array approach to
beam steering. This paper expands on the decentered lens

approach. Specifically, a cascade of three aspheric achro-
matic lenses, two of which are decentered with respect to
the other, is investigated in a proof-of-concept design. We
see that this technique presents a highly promising solution
to the beam-steering problem for airborne optical sensor
and IRCM applications.

As expected, optical phased-array technology has the
potential to overcome many of the problems presented by
traditional beam-steering methods. Microlens arrays, for
example, have the advantage of being lightweight.1 Also,
the amount of decenter required to obtain a large steering
angle is typically fairly small due to their small focal
lengths, often of the order of a millimeter or less.3,5 How-
ever, the periodic structure of the arrays makes the output
beam analogous to that of a blazed grating, resulting in the
undesired diffraction of light into spurious directions and
multiple beam orders.3,5 This also creates blind spots into
which the system is unable to steer energy. In addition,
wide-angle beam steering with microlens arrays often re-
quires lenses with smallf -numbers, which are generally
difficult to design. Furthermore, although some solutions
have been proposed to decrease dispersion in a system of
microlens arrays,7 the current technology is generally quite
dispersive.

To address these limitations, a system of macroscopic
lenses is considered here. Although macroscopic lenses are
not generally as small as an array of microlenses, we show
that they do provide for a fairly compact beam-steering
system overall. They also enable an achromatic design re-
sulting in very low dispersion over a broad spectral band.

*Former address: University of Dayton, Electro-Optics Program, 300 Col-
lege Park, Dayton, OH.
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Furthermore, the use of macroscopic lenses enables us to
avoid all blind spots while also enabling the use of lenses
with manageablef -numbers.

We designed our beam-steering system with the follow-
ing considerations in mind. Of greatest importance was to
limit the steering angle dispersion, over the 2 to 5-mm mid-
wave IR~MWIR! spectrum of interest, to less than 1 mrad.
This was achieved through the development of appropriate
achromatic doublet lenses, as discussed in Sec. 3. In addi-
tion, a 2-D wide-angle field of regard (;22.5 deg) was
desired, while a clear aperture of approximately 2 in. was
maintained to enable the system to act as both a transmitter
and a large-area receiver. Furthermore, an outgoing beam
divergence of 1 mrad was chosen to enable an appreciable
broad optical footprint at an estimated target range of 6 to
10 km. To avoid any power-handling issues, we also de-
signed the system to be free of internal foci. Last, we desire
the final design to be as compact and lightweight as pos-
sible to facilitate a rapid random pointing capability. As a
result, the thickness and diameter of each lens was carefully
considered and minimized throughout the optimization pro-
cess. Section 5 discusses some practical steps taken to both
minimize the weight of our system and also simplify the
fabrication of the lenses.

2 Geometric Analysis

The concept of beam steering using decentered lenses is
conveniently understood by first considering two identical
decentered simple lenses, as shown in Fig. 1, the first of
which is illuminated by an infinite uniform plane wave. The
incoming collimated wavefront is focused to a point in the
back focal plane of the first lens, while the second lens is
situated so that its front focal plane coincides with the back
focal plane of the first lens. The decentered second lens
then recollimates the exiting light, but the beam is directed
to a nonzero steering angle. The angleu into which the
output wave is steered can be determined if the focal length

f and the translation distance from the optical axisD are
known. As can be seen, the following simple trigonometric
relationship exists betweenf , D, andu:

u5tan21S D

f D . ~1!

Notice in Eq.~1! that asD increases,u increases. However,
for practical implementation,D is limited by the size of the
lens, the maximum value being one half the lens diameter,
or d/2. Therefore, the maximum steering angle is given by

umax5tan21S d

2 f D5tan21S 1

2 f /#D , ~2!

wheref /# is the lensf -number. Clearly, thef /# must be as
small as possible to maximize the steering angle. For ex-
ample, to achieve our maximum desired steering angle of
22.5 deg, anf /# of 1.2 would be required. This can intro-
duce many design problems because lenses with small
f -numbers typically exhibit large amounts of spherical and
other aberrations.10

The use of paired lenses results in additional difficulties
that must be overcome. As seen in Fig. 1, as the beam of
light is steered off axis, some light is lost from the system
due to vignetting, an effect that is most appreciable at large
steering angles. To address this issue a field lens is inserted
between the entrance and exit lenses at their common focal
planes, as shown in Fig. 2. This creates a unity fill factor at
the output of the cascaded lenses for all steering angles,
thereby optimizing the throughput of the system.11

A complication involving the three-lens system of Fig. 2
is the presence of the internal focus at the field lens. An
internal focus is undesirable due to the amount of power
that would be concentrated at the focus. This concern was
considered such a priority that an internal focus of any

Fig. 1 Simple beam-steering system consisting of two identical thin
lenses separated by two focal lengths. Displacing the second lens
steers the beam of light, yet introduces loss due to vignetting.

Fig. 2 Field lens can be used to eliminate vignetting, thereby maxi-
mizing throughput.

Gibson et al.: Wide-angle decentered lens beam steering . . .
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kind, even in air, was determined to be unacceptable in our
beam-steering system. As a result, a new system configu-
ration was considered in which the positive field lens was
replaced with a negative field lens.

The basic geometry of our modified three-lens beam-
steering system is seen in Fig. 3. This design consists of
two identical positive lenses placed one focal length apart.
The negative field lens, placed halfway between the two
positive lenses, must then have a focal length equal to one
fourth that of the positive lenses. This can be verified using
the thin lens equation; that is,

1

f 2
5

22

f 1
1

22

f 1
5

24

f 1
⇒ f 25

2 f 1

4
, ~3!

wheref 1 is the focal length of the positive lenses andf 2 is
the focal length of the negative lens.10 This system can then
be used to steer a beam of light by displacing the field and
exit lenses in opposing directions, as seen in Fig. 4. How-
ever, the steering angle relationship for this system is
slightly different from that expressed in Eq.~1!. The gen-
eral relationship is readily shown to be

u5tan21S 2D11D2

f 2
D . ~4!

Now, we wish to utilize the central portion of the exit lens
whenever possible in an attempt to minimize aberrations.
The relationship between trianglesABC andA8BC8 in Fig.
4 can be used to determine the relative displacement of the
field and exit lenses so that this occurs for all steering
angles. Because these triangles are similar, the relationship

D1

f 1/2
5

d/2

f 1
5

D2

f 1
~5!

exists, indicating thatD252D1 . We also see that the maxi-
mum displacement of the exit lens is one half its diameter,
i.e., D25d/2, so that the maximum steering angle is

umax5tan21S D2

f 1/2D5tan21S d/2

f 1/2D
5tan21S d

f 1
D5tan21S 1

f /#D , ~6!

under the assumption that the beam passes through the cen-
ter of the exit lens. Therefore, to achieve a maximum steer-
ing angle of 22.5 deg, thef /# of the entrance and exit
lenses must be equal to 2.41. This means that the field lens
must then in turn have anf /# of approximately 0.60, a fact
which may lead to excessive aberrations. However, to meet
our exit beam divergence requirements we will see that we
must often transmit a beam whose diameter is much
smaller than the full clear aperture of 2 in. This will thus
increase the effectivef /#s of the lenses in our system, at
least for transmission, thereby greatly aiding in the design
process.

Recall that our divergence requirement dictates that the
full spread angle of the exiting beam remain within 1 mrad.
Recall also that the diffraction-limited divergence angle for
uniform plane wave transmission is defined as

uDL5
2.44l

D
, ~7!

where l is the wavelength, andD is diameter of the
aperture.12 For a 2-in. clear aperture and a wavelength of
3.5 mm, the diffraction-limited divergence is 0.17 mrad.
Our divergence specification is then nearly six times the
diffraction limit, yielding a spot diameter of approximately
6 m at an operating distance of 6 km. This specification
becomes very important in judging the performance of our
system, as we see that both the beam size and the presence
of aberrations strongly affect the divergence of the system.

Fig. 4 System shown at the maximum allowable steering angle. A
general steering angle relationship is dependent on the diameter of
the lens d and the displacements of the field and exit lenses D1 and
D2 , respectively.

Fig. 3 Three-lens system consists of two identical positive lenses
separated by a negative field lens. Assuming thin lenses, the focal
length of the negative lens is one fourth that of the positive lenses.

Gibson et al.: Wide-angle decentered lens beam steering . . .
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However, it is also important to ensure that the divergence
is not made too small. If the output beam footprint is not
large enough, we run the risk of missing our target. There-
fore, we attempt to design our system so that most of the
output light falls just within a full divergence angle of 1
mrad.

3 Design Procedure

The initial step in developing our system was to choose
materials from which we would design our lenses. We ac-
complished this task by first designing a single achromatic
doublet to minimize dispersion over the 2- to 5-mm range.
Our goal was to design a cemented Fraunhoffer doublet
lens in which a positive first component is followed by a
negative second component. This is due to the fact that
aberrations of a negative lens can often offset those of a
positive lens.10,13 The materials we considered, along with
their Abbe numbers, are given in Table 1. Note that water
soluble IR transmissive materials were not considered due
to the atmospheric conditions under which our system is
expected to operate. Furthermore, birefringent materials
were not considered, as they would cause undesirable beam
broadening in one direction.

Recall that the Abbe number, a common measure of dis-
persive power, is specified according to the relationship

V5
nc21

nshort2nlong
, ~8!

where nshort and nlong are the indices of refraction at the
shortest and longest wavelengths of interest, whilenc is the
index of refraction at the center of the spectral band over
which our system will be expected to operate.12 In our case,
nshort, nlong, and nc were evaluated at the MWIR wave-
lengths of 2, 5, and 3.5mm, respectively. Now, it can be
shown that the radii of curvature of a thin Fraunhoffer dou-
blet, whose geometry is given in Fig. 5, satisfy the follow-
ing relationships:

1

R1
2

1

R2
5

V2

f ~V22V1!~n1c21!
and

1

R28
2

1

R2
5

V1

f ~V12V2!~n2c21!
, ~9!

where f is the focal length of the overall doublet:R1 is
positive:R2 andR28 are negative;V1 andV2 are the Abbe
numbers of the first and second components, respectively;
andn1c andn2c are the indices of refraction at 3.5mm for
the first and second components. Similarly, by multiplying
Eqs.~9! by (nc21), we find that the focal lengths of each
component of the doublet satisfy the following
relationships:12

1

f 1
5

V2

f ~V22V1!
and

1

f 2
5

V1

f ~V12V2!
. ~10!

The optimum material combinations for the first and
second components of the lens were determined by first
identifying those material combinations that resulted in a
doublet lens whose first element would be positive, fol-
lowed by a negative second element. The most effective
combination of materials was then defined as that yielding
the smallest spot size at its focal point. To begin, we ini-
tially chose a lens diameter of 2 in. and an effective focal
length of 100 mm, yielding a maximum potential steering
angle of 26.9 deg according to Eq.~6!. We then used the
Abbe numbers given in Table 1 along with Eq.~10! to find
combinations wheref 1.0 and f 2,0. Assuming an initial
value for R1 of the order of 100 mm, Eqs.~9! were then
used to find initial values forR2 and R28 , with the con-
straint thatR2,0. We then used the automatic design op-
tion of the CODE V® software package to optimize the lens
for minimum dispersion~CODE V® Version 9.1, Optical
Research Associates, Pasadena, California!. The minimum
root mean square~rms! focal spot size for each allowable
combination, found using the spot diagram option of
CODE V®, is provided in Table 2. We found that the small-
est spot size resulted from a combination of AMTIR-1 and
germanium. While germanium is a common element,
AMTIR-1 is a material produced by Amorphous Materials,
Inc., having the chemical composition Ge33As12Se55
~Amorphous Materials, Inc., Garland, Texas!. Its name is an

Table 1 Materials considered and their Abbe numbers.

Material Abbe Number

Al2O3 6.135

AMTIR-1 76.923

BaF2 33.333

CaF2 16.667

CdTe 47.619

Ge 30.303

IRGN6 7.634

LiF 6.897

MgO 9.524

ZnS 66.667

ZnSe 83.333
Fig. 5 General Fraunhoffer doublet lens with various parameters
defined.

Gibson et al.: Wide-angle decentered lens beam steering . . .
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acronym standing for amorphous material transmitting IR
radiation. For reference, the dispersion curves for these ma-
terials are provided in Fig. 6.

The dimensions of our optimized achromat are shown in
Table 3. The headings in Table 3 correspond to those in
CODE V®, where they radius is the radius of curvature,
and they semiaperture is the height from the optic axis. As
desired, the final optimized lens consists of a positive ele-
ment followed by a negative element. This design was then

used in CODE V® as the initial entrance and exit elements
of our beam steering system. CODE V® was also used to
design and optimize the field lens as a part of the overall
system. Note that we initially assume identical entrance and
exit lenses to achieve a unity fill factor in the simplest and
most compact design possible.

Because our system is to be used as both a transmitter
and receiver, it is important to understand certain charac-
teristics of the transmitted and received beams. The system
was generally designed to transmit up to a 1-in.-diam beam
and to receive up to a 2-in. beam. While the transmitted
beam will most likely have a Gaussian cross section, any
received information will likely have a planar wavefront
due to interaction with the target and the great distance it
will have traveled before reaching our steering system.
When receiving a 2-in. beam, the outermost portions of the
lenses, which tend to introduce the most aberrations, will
clearly be in use. Note, however, that our design is that of a
nonimaging device. When used as a receiver, our system
simply serves to steer the field of view from which a mini-
mum 2-in. beam cross section can be intercepted. As such,
when used as a receiver, only the ability to collect power
and direct it to a photodetector is of importance, while ab-
errations are only of secondary concern. During transmis-
sion, however, we will utilize the more central portions of
the lenses. In this case, aberrations are of greater concern,
but only ~as already discussed! to the extent that they affect
the beam divergence angle. Nevertheless, to ensure that the
system was optimized as both a transmitter and receiver,

Table 2 Resulting spot sizes for acceptable material combinations.

First Component Second Component

Al2O3 LiF IRGN6 MgO CaF2 Ge BaF2 CdTe ZnS AMTIR-1 ZnSe

ZnSe 0.53228 0.53888 0.53236 0.57654 0.53740 0.15752 0.53748 0.5271 0.52688 0.12991

AMTIR-1 0.55499 0.56219 0.55549 0.55066 0.56166 0.11316 0.56178 0.12028 0.46742

ZnS 0.58385 0.59310 0.67460 0.66901 0.59209 0.13348 0.59357 0.2772

CdTe 0.59701 0.60825 0.60603 0.60190 0.61581 0.16979 0.61730

BaF2 1.90480 2.08110 1.66220 0.69804 2.07590 0.67036

Ge 0.65760 0.67754 0.67330 0.67304 0.69162

CaF2 0.53183 2.48220 0.51573 0.37484

MgO 0.9648 1.6933 1.6812

IRGN6 0.96325 2.213

LiF 2.41830

Al2O3

rms Spot Size (mm)

Fig. 6 Dispersion curves for the two materials used in our system:
AMTIR-1 and Germanium.

Table 3 Optimized achromatic doublet dimensions.

Surface
y Radius

(mm)
Thickness

(mm) Glass
y Semiaperture

(mm)

Object Infinity Infinity

Stop 84.43654 25.0000 AMTIR-1 25.4000

2 2485.9788 5.0000 Ge 25.4000

3 452.1207 80.2546 25.4000

4 Infinity 0.0000 25.4000

Gibson et al.: Wide-angle decentered lens beam steering . . .
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we designed the system in CODE V® as if it were trans-
mitting a broadband 2-in. planar beam—the worst case sce-
nario with respect to aberrations and dispersion. Conse-
quently, this design step served to improve the more
practical situation of transmitting a small Gaussian beam
while also optimizing the reception of a 2-in. planar beam.
In all cases, CODE V® was used to optimize the system by
controlling the divergence while maximizing its steering
angle. The results for transmitting both a 1-in. plane wave
and a reduced-size Gaussian beam are presented in the fol-
lowing section. Some additional practical concerns are pre-
sented in Sec. 5.

4 Results

Our beam-steering system was optimized at many steering
angles using the zoom lens option in CODE V®. This en-
abled us to specify several different positions for the field
and exit lenses while maintaining a collimated output dur-
ing optimization. The system was then continually modified
using suggestions from the automatic design option to
minimize aberrations and control the divergence of the out-
put. After extensive automatic global and local CODE V®

optimizations we settled on the system, shown to scale, in
Fig. 7. The exact dimensions of this system are provided in
Table 4. From Table 4 we see that the field lens and exit
lenses were increased to a diameter of 70 mm to ensure that
a 2-in. beam could be received at all steering angles with-

out vignetting. However, it was only necessary to slightly
increase the diameter of the entrance lens, as it always re-
mains on-axis. We found that we were able to steer to the
specified angle of 22.5 deg while staying within our diver-
gence specifications. In addition, the length of the system
was found to be 178.37 mm, while its height, at maximum
displacement, is 135.36 mm.

The displacement of the field and exit lenses, as a func-
tion of steering angle, is shown in Fig. 8. The linear trend
lines in this figure demonstrate that the relationship be-
tween the displacements of the exit and field lenses is
nearly 2 to 1, as evidenced by the slopes of 1.47 and 0.70.
This supports the geometric theory presented earlier, where
propagation through the central portions of the exit lens
was assumed.

Spot diagrams for this system at 2 and 5mm at a range
of 6 km are provided in Fig. 9 under the assumption of a
1-in. plane wave transmission. The on-axis spot diagrams
in Fig. 9~a! show evidence of slight chromatic aberrations,
while the off-axis plots in Fig. 9~b!, shown at a steering
angle of 22.5 deg, demonstrate the existence of some re-
sidual coma. Next, encircled energy plots, also under the
assumption of 1-in. plane wave transmission, are shown in
Fig. 10 for the 2 and 5mm wavelengths. The on-axis en-
ergy remaining within a 1 mrad divergence angle at a range
of 6 km is about 98% at 2mm, and 90% at 5mm. At a
steering angle of 22.5 deg, this percentage remains at 98%
for a wavelength of 2mm, and decreases to an acceptable
63% at 5mm.

The next step was to evaluate our system under the as-
sumption of Gaussian beam transmission. It can be shown
that well beyond the Rayleigh range the full angular spread
of a Gaussian beam in air is14

2u1/e5
2l

pwo
. ~11!

Using this equation, a waist of 2 mm would be required to
maintain a divergence of 1 mrad at 3.5mm. Therefore, a

Fig. 7 Scaled diagram of optimized system at the maximum steer-
ing angle of 22.5 deg.

Table 4 Dimensions of the optimized system.

Surface
y Radius

(mm)
Thickness

(mm) Glass
y Semiaperture

(mm)

Object Infinity Infinity

Stop Infinity 0.0000 12.70

2 218362.3156 7.6762 AMTIR-1 26.00

3 271.0844 6.3890 Ge 26.00

4 2112.2832 72.5428 26.00

5 2137.1835 3.0000 AMTIR-1 35.00

6 54.4808 7.8125 Ge 35.00

7 77.2541 66.2858 35.00

8 537.7414 13.0000 Ge 35.00

9 9953.718 1.6656 AMTIR-1 35.00

10 26206.8429 30.0000 35.00

Image Infinity 0.0000 120.00

Fig. 8 Nearly 2:1 relationship exists between the magnitude of the
displacements of the exit and field lenses for an optimized system
output.

Gibson et al.: Wide-angle decentered lens beam steering . . .
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Gaussian beam with a waist of 2 mm was initially propa-
gated through our three-lens system. The value of the beam
waist was then varied until a far-field divergence of 1 mrad
was achieved. We found that this occurred for a beam waist
of 4.1 mm.

The resulting on-axis Gaussian beam profiles for 2 and 5
mm are provided in Fig. 11~a! at a distance of 6 km. We see
that very little distortion occurs on-axis. Similarly, the
beam profiles at the maximum steering angle of 22.5 deg
are seen in Fig. 11~b!. Here we see that there is some
spreading of the beam in one direction, again suggesting
the presence of some residual coma.

The encircled energy plots for Gaussian wave transmis-
sion at a range of 6 km are shown in Fig. 12. We see that
over 90% of the original energy remains within a diver-
gence angle of 1 mrad on-axis. This is exceptional perfor-
mance and will be quite sufficient for our purposes. Simi-
larly, the encircled energy plots at the maximum steering
angle of 22.5 deg indicate that at least 63% of the original
energy remains within 1 mrad of divergence.

To investigate the success at eliminating chromatic ab-
errations, the angular dispersion at a nominal steering angle
of 22.5 deg was determined by using CODE V® to find the
exact steering angle at 2, 2.75, 3.5, 4.25, and 5mm. The
results are shown in Fig. 13. We see that the first-order
angular dispersion~i.e., the slope of the steering angle

curve! has been reduced to zero at 2.75, 3.5, and 4.4mm.
However, the maximum secondary angular dispersion oc-
curs between 2.6 and 5mm and is approximately 0.0372
deg, or 0.649 mrad. This is well within our 1-mrad speci-
fication.

Fig. 10 For a planar input, the encircled energy within 1 mrad at a
range of 6 km decreases from 90% on-axis to 63% at 22.5 deg for a
source wavelength of 5 mm. At 2 mm, the encircled energy within 1
mrad remains above 95% for both cases.

Fig. 9 Spot diagrams at a range of 6 km (a) on-axis and (b) at 22.5
deg. Chromatic aberrations are seen both on- and off-axis; coma is
seen at 22.5 deg.

Fig. 11 Gaussian beam profiles at a range of 6 km for 2 and 5 mm
(a) on-axis and (b) at 22.5 deg.
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5 Practical Concerns

There are practical concerns involving the entrance lens of
our system. For example, as shown in Table 4 the magni-
tude of the radius of curvature of the first surface is ex-
tremely large. As such, this surface contributes little optical
power to the overall system. In addition, from a fabrication
standpoint, it would be advantageous to make the radius of
curvature at this surface infinite. Other fabrication concerns
pertain to the exit lens in the system. As can be seen in
Table 4, this lens also contains two surfaces of extremely
high radii of curvature. Once again, it would be advanta-
geous to set these radii of curvature to infinity.

Another concern involves the thickness of the second
component of the exit lens. This component might be dif-
ficult to fabricate because it is so thin, and it is thus desir-
able to eliminate it altogether. Recall that the second com-
ponent of the exit lens is made of AMTIR-1, which has an

index of refraction of approximately 2.5. Because this com-
ponent is so thin and the index of refraction is relatively
small with respect to the Ge element, it is reasonable to
assume that disposing of this element may not affect the
overall system performance dramatically. Finally, the accu-
racy of each dimension was reduced to one decimal point,
instead of the four decimal points seen in Table 4. This
would be a more realistic expectation when manufacturing
these lenses.

To summarize, the following practical changes where
made to the original system dimensions:

1. The first radius of curvature of the entrance lens was
changed to infinity.

2. The second radius of curvature of the exit lens was
changed to infinity.

3. The final component of the exit lens was eliminated.

4. The accuracy of each dimension was reduced to one
decimal place.

The modified system is shown to scale in Fig. 14, while the
dimensions for this system are listed in Table 5. The en-
circled energy plots on-axis and at the maximum steering
angle for Gaussian beam inputs are seen in Fig. 15. On-
axis, we see that the encircled energy within one mrad re-
mains above 90% at a range of 6 km. Off-axis, these num-
bers decrease to 63% at 5mm and 95% at 2mm. It is thus
evident that the divergence of our system is only minimally
compromised by our modifications.

Fig. 12 For a Gaussian input, the encircled energy within 1 mrad at
a range of 6 km decreases from 95% on-axis to 63% at 22.5 deg for
a source wavelength of 5 mm. At 2 mm, the encircled energy within 1
mrad remains above 90% for both cases.

Fig. 13 Maximum angular dispersion, occurring between the 2.6
and 5 mm wavelengths, is about 0.0372 deg, or 0.649 mrad.

Fig. 14 Scaled diagram of the modified system at the maximum
steering angle of 22.5 deg.

Table 5 Modified system dimensions.

Surface
y Radius

(mm)
Thickness

(mm) Glass
y Semiaperture

(mm)

Object Infinity Infinity

Stop Infinity 0.0 12.7000

2 Infinity 7.7 AMTIR-1 26.0000

3 271.1 6.4 Ge 26.0000

4 2112.3 72.5 26.0000

5 2137.2 3.0 AMTIR-1 35.0000

6 54.5 7.8 Ge 35.0000

7 77.3 66.3 35.0000

8 537.7 13.0 Ge 35.0000

Image Infinity 0.0 120.0000
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The angular dispersion for this system is seen in Fig. 16.
Here, we see an overall decrease in the maximum steering
angle by approximately 0.06 deg, as compared to Fig. 13.
This is inconsequential. First-order angular dispersion has
been reduced at 2.5, 3.3, and 4.25mm. The maximum sec-
ondary angular dispersion occurs between 2.5 and 5mm
and has increased only slightly to 0.0377 deg, or 0.658
mrad. This continues to remain well within our 1-mrad an-
gular dispersion specification.

We thus see that the minor alterations already discussed
can be made to the system without significantly affecting
its performance. This is extremely useful because it will not
only simplify the manufacturing processes to fabricate
these lenses, but will also likely reduce manufacturing
costs.

6 Conclusions

We showed that a system of three cemented achromatic
doublets enables us to eliminate many of the problems
demonstrated by microlens arrays, such as the diffraction of
light into spurious directions and multiple beam orders,
blind spots, and large dispersion. While a field lens was
used to allow for 100% throughput, power-handling issues
were avoided by using a negative field lens to eliminate
internal foci. After extensive CODE V® development, the
resulting system design followed our geometric theory very
closely, demonstrating a nearly 2 to 1 lens displacement
ratio between the exit and field lenses. In addition, the di-
mensions of each lens were carefully considered, and slight
modifications were made to aid in the fabrication process
without compromising the performance of the system.

The design, consisting of the materials AMTIR-1 and
germanium has an overall length of 178.37 mm and a
height at maximum lens displacement of 135.36 mm. Fur-
thermore, the use of achromatic doublets enabled a design
with a maximum secondary angular dispersion of 0.658
mrad over the full 2 to 5-mm range. Spot diagrams showed
the existence of residual coma at high steering angles, but
these aberrations did not significantly compromise our
beam divergence, and are therefore of less concern for this
application. For a 1-in. plane wave input, at least 63% of
the outgoing energy remained within a divergence of 1
mrad at the operating range of 6 km. In addition, for a
Gaussian beam input it was shown that the system perfor-
mance would be optimized with a beam waist of 4.1 mm.
In this case, the amount of energy within a divergence
angle of 1 mrad, at a range of 6 km, remains at least 63%.
As we have shown, this design meets the requirements for
our application.
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