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Wide-angle achromatic prism beam steering for
infrared countermeasure applications
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Abstract. The design and analysis of achromatic doublet prisms for use
in laser beam steering is presented. The geometric relationships describ-
ing the maximum steering angle are given, as are discussions of first-
and second-order dispersion reduction. Infrared (IR) material alterna-
tives and optimum IR material characteristics for wide-angle achromatic
prism beam steering are also investigated. Sixteen materials in 120 dif-
ferent combinations have been examined to date. For midwave IR appli-
cations it is shown that the minimum dispersion currently achievable
across the full 2 to 5 mm spectrum is 1.7816 mrad at an average maxi-
mum steering angle of 45 deg. This is accomplished using LiF/ZnS dou-
blet prisms. Several issues related to the azimuth and elevation angles
into which light is steered as a function of prism rotation angles are also
presented. © 2003 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1556393]

Subject terms: infrared countermeasures; achromatic prism; beam steering; Ris-
ley prism; dispersion correction.
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1 Introduction

Protecting military aircraft from infrared~IR! guided mis-
siles is a high priority within the U.S. Air Force. To track a
threat, modern IR countermeasure~IRCM! systems are de-
signed to slew a stabilized pointer along the threat’s line of
sight, as determined by a missile warning system. Tradi-
tionally, IRCM beam steering has been achieved using pre-
cision two-axis gimbaled mirror pod systems. However,
such systems necessarily protrude from the aircraft fuse-
lage, thereby increasing drag. Increased drag reduces en-
durance, performance, and payload capacity for all airborne
platforms, and especially for high-performance fighter air-
craft. To address this and other issues, the thrust of the
research reported herein centers on the design and optimi-
zation of a wide-angle broadband 2 to 5mm midwave IR
~MWIR! laser beam steering apparatus comprised of two
rotating achromatic prisms that need not protrude from the
aircraft body.

While the concepts of achromatic prism design and pris-
matic beam steering are themselves not new, their applica-
tion to MWIR countermeasures present several unique
challenges. Typically a discussion of achromatic prisms fo-
cuses on thin~i.e., small apex angle! prisms designed to
operate over a relatively narrow portion of the visible
wavelength ~i.e., ;400 to 700 nm! spectrum.1,2 While
novel applications include the use of achromatic prism
beam expanders, phase retarders, and planar waveguide
couplers, some of which are designed for near-IR applica-
tions, most achromatic prisms are designed to be achro-
matic over at most a 110 nm spectral range.3–6 In addition,
commercially available prism-based laser beam steerers are
not typically designed to be achromatic and are generally
designed to steer laser beams at most 20 deg off axis.7,8 By
contrast, our requirements dictate that we design a pris-

matic beam steerer that is capable of steering to at least 45
deg, while remaining achromatic over the entire 2 to 5mm
MWIR spectrum—a challenging spectral range that is 10
times wider than the entire visible spectrum.

This paper first provides a description of the basic con-
cepts of rotating prism beam steering. Next, the geometric
relationships describing the maximum steering angle are
presented, which, in turn, leads to a discussion of first-order
dispersion reduction. The reduction of secondary dispersion
is then discussed, after which IR material alternatives and
optimum IR material characteristics for wide-angle achro-
matic prism beam steering are presented. Sixteen different
materials in 120 different combinations have been exam-
ined to date. It is shown that the minimum secondary dis-
persion yet achievable is 1.7816 mrad using LiF/ZnS dou-
blet prisms, the properties of which are presented later.
Before concluding, the geometry and several issues related
to the azimuth and elevation angles into which light is
steered as a function of prism rotation angles are also pre-
sented.

2 Basic Concepts

The refractive properties of wedge prisms and their ability
to deviate and steer light is well known. As can be shown,
the deviation angled is a function of the incidence angle,
the prism’s apex angle and the material from which the
prism is made.9 By simply rotating a single prism then, it is
possible to steer light along a circular path. Similarly, if
light passes through two identical cascaded prisms that are
rotated independently, for the case of small deviation
angles, light can be steered in any direction falling within a
cone-shaped field of regard having a half angle of 2d, as
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shown in Fig. 1.7,8 ~We see in Sec. 7 that the situation
becomes rather more complex when large deviation angles
are considered.!

Now, simple wedge prisms made of a single optical ma-
terial can be used effectively to manipulate and steer mono-
chromatic beams of light. However, due to the dispersive
nature of optical materials, ‘‘singlet’’ prisms cannot be used
effectively to steer broadband radiation. In general, as
shown in Fig. 2, the shorter ‘‘blue’’ wavelengths in a given
spectrum are steered to larger angles than are the longer
‘‘red’’ wavelengths. On the other hand, as we show, chro-
matic dispersion in prisms can be nearly fully corrected by

forming composite ‘‘doublet’’ prisms made of two different
materials obeying certain properties that are then cemented
together. Specifically, we show that with knowledge of the
dispersive index characteristicsn(l) of appropriate IR ma-
terials, the apex angles of two cemented prisms can be
chosen to minimize angular dispersion over a broad spec-
trum, while enabling steering to very wide angles. This, by
the way, is exactly the opposite of the design of ‘‘direct
view’’ or ‘‘direct vision’’ prism systems, which are de-
signed for zero angular deviation and maximum angular
dispersion.2

Two doublet prism geometries are shown in Fig. 3 in
their maximum steering angle orientations. In practice, ei-
ther configuration can be used for the purpose of beam
steering. However, though the configuration in Fig. 3~a!
may at first seem to be the more natural and/or obvious
choice, there are practical advantages to the configuration
in Fig. 3~b!, which from this point forward is referred to the
‘‘reversed’’ prism geometry. The primary advantage of the
reversed geometry is that when one prism is rotated by 180
deg with respect to the other, a fully reciprocal optical sys-
tem is created. This, in turn, means that precise steering to
0 deg is possible at all wavelengths, with no axial blind
spot. By contrast, it can be shown that except possibly at
discrete wavelengths, the configuration in Fig. 3~a! always
has a small but nonnegligible on-axis blind spot—a charac-
teristic that is highly undesirable in any broadband IRCM
beam-steering device. For this reason, only the reversed
prism geometry is addressed throughout the remainder of
this paper. Note, however, that the reversed prism geometry
has one disadvantage. By comparing the two configurations
in Fig. 3, it is clear that due to the tilted entrance face of the
left-hand prism in Fig. 3~b!, light passing through the re-
versed prism geometry suffers dispersive refraction at one
additional surface, as compared to the geometry of Fig.
3~a!. This, in turn, means that the configuration in Fig. 3~b!
will be a bit more dispersive overall than the configuration
in Fig. 3~a!. In most situations, however, this increase in
dispersion is quite small, and the avoidance of an on-axis
blind spot by use of the reversed prism geometry far out-
weighs a modest increase in residual/uncorrected disper-
sion.

Before presenting the theory relevant to achromatic
prism beam steering, we mention one other issue; that is,
especially in the field of ophthalmology, the beam-steering
devices shown in Figs. 2 and 3 are commonly known as

Fig. 1 Ideal beam-steering rosette created using two thin (i.e., small
apex angle) coaxial rotating wedge prisms.

Fig. 2 Singlet prism beam steering is highly dispersive. In general,
shorter wavelengths are steered to larger angles than are longer
wavelengths.

Fig. 3 Alternative achromatic doublet prism beam steering geom-
etries: (a) the forward prism geometry and (b) the reversed prism
geometry. While the forward prism geometry provides slightly better
dispersion correction, the reversed prism geometry eliminates on-
axis blind spots at all wavelengths and is thus preferred.

Duncan, Bos, and Sergan: Wide-angle achromatic prism beam . . .
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Risley prisms. When referring to Risley prisms, it is com-
mon to discuss the maximum deviation angle in terms of
prismatic powerD, measured in diopters. A single prism
diopter is defined to be a deflection of 1 cm at a distance of
1 m from the prism.7,8 Thus, in general,D5100 tan(d0),
where d0 is the maximum deviation of the Risley prism
pair, as shown in Fig. 3. For example then, our requirement
to steer to at least 45 deg means that we have set out to
design a 100-diopter achromatic MWIR Risley prism beam
steering device.

3 First-Order Dispersion Reduction

The determination of the maximum steering angled0(l)
for the prism configuration in Fig. 3~b! is found by multiple
applications of Snell’s law of refraction. Though the pro-
cess is straightforward, the steps are many. Consequently,
only the result is presented here; i.e.,

d0~l!5~a2b!1sin21H n2 sinFb2sin21

3S n1

n2
sinH a2sin21Fsind i~l!

n1
G J D G J , ~1!

wherea and b are the apex angles indicated in Fig. 3~b!,
and where the angled i(l) is the angle at which light exits
the first doublet prism and enters the second. This angle is,
in turn, given by the following relationship:

d i~l!52sin21H n1 sinFa2sin21

3S n2

n1
sinH b2sin21Fsin~b2a!

n2
G J D G J . ~2!

Note that in all cases we have assumed thatn2.n1 in the
prisms shown in Fig. 3~b!.

Since the two prisms in Fig. 3~b! are assumed to be
identical, we can use the relationship in Eq.~2! to derive a
first-order relationship for the reduction of dispersion in our
beam-steering apparatus. To begin, we first rewrite Eq.~2!
under a small-angle assumption to yield

d i~l!.2n1Fa2
n2

n1
S b2

b2a

n2
D G

5b~n221!2a~n121!. ~3!

This approximation is valid fora and b less than;20
deg—an assumption that we later see is valid in almost all
circumstances. Next, we take the derivative of Eq.~3! with
respect to wavelength and set the result equal to zero. Solv-
ing for b in terms ofa, n1 , andn2 we find

b5a
n18~lc!

n28~lc!
, ~4!

wheren8(lc) indicates the first derivative of the index of
refraction, evaluated at wavelengthlc . Therefore, by
choosing apex angles that are related as in Eq.~4! we en-
sure that dispersion is eliminated in the vicinity oflc .

Though not required, we typically chooselc in the middle
of the spectrum of interest; e.g., for the MWIR spectrum
we setlc53.5mm.

It is instructive at this point to consider some examples
to demonstrate the principles we have just developed. For
purposes of these examples we assume that the low-index
n1 material comprising our doublet prisms is LiF, while our
high-indexn2 material is ZnS. These are both commonly
available materials for use in the IR, and their properties
are well known~Janos Technology, Inc., Townsend, Ver-
mont!. Using published index data, the indices of refraction
n(l) of each of these materials has been modeled accord-
ing the power series

n~l!5 (
n50

N

anln, ~5!

where the index coefficientsan are provided in Table 1
under the assumption that the wavelengthl is given in
micrometers~Janos Technology, Inc., and Refs. 10 and 11!.
In addition, the dispersion curves~i.e., index versus wave-
length! for LiF and ZnS are shown in Figs. 4 and 5, respec-
tively. From these figures and the polynomial regression
formulas, we find that at a central MWIR wavelength of
lc53.5mm:

Fig. 4 Dispersive characteristics of LiF over the MWIR spectrum.

Table 1 LiF and ZnS index of refraction coefficients for use in Eq.
(5). Using these coefficients over the 2 to 5 mm MWIR spectrum, the
R2 goodness of fit for both polynomial expansions is greater than
99.98%.

ZnS LiF

a0 2.21672 1.39022

a1 1.1517331021 22.0459331023

a2 28.8284731022 21.6517931023

a3 2.9617231022 29.6673631025

a4 24.6751731023 —

a5 2.8170531024 —

Duncan, Bos, and Sergan: Wide-angle achromatic prism beam . . .
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n151.3587, n18520.0172/mm ~LiF!

n252.2546, n28520.0048/mm ~ZnS!.

Then from Eq.~4! we find that, to a first order, dispersion is
reduced in the vicinity of 3.5mm when the apex angle ratio
R5b/a53.5645.

Using Eqs.~1! and~2!, the dispersive properties of LiF/
ZnS doublet prisms configured as shown in Fig. 3~b! are
shown in Fig. 6, where the maximum steering angle as a
function of wavelength is presented. To generate this figure,
the apex anglea was iteratively adjusted to create an aver-
age maximum steering angle of 45 deg over the full MWIR
spectrum, whileb was fixed at 3.5645a. Notice that for
LiF/ZnS doublet prisms, the apex angles required for wide-
angle steering are quite small, thus lending validity to the
small-angle assumptions made in the derivation of Eq.~3!.

Notice also that the first-order steering angle dispersion
~i.e., slope! in the vicinity of 3.5mm is precisely zero, as
expected, but that the steering angle is clearly still a func-
tion of wavelength overall. This residual dependence of
steering angle on wavelength is known as secondary dis-
persion. While a detailed discussion of the reduction of
secondary dispersion is reserved to the next section, we
define it here to be

Dd05
d0umax2d0umin

2
. ~6!

For LiF/ZnS prisms, we see from Fig. 6 that under the
conditions already stated, the secondary dispersion over the
full MWIR spectrum is Dd052.5033 mrad, though it is
only 0.2897 mrad over the 3- to 5-mm spectral region.

At this point one may wonder whether or not the effort
involved in designing achromatic doublet prisms is worth
the benefit. Indeed, for beam-steering purposes, do they
really perform better than singlet prisms? Figure 7 assists in
answering this question. Here the results of using two ZnS-
only singlet prisms configured in the reversed prism geom-
etry is shown. To generate this figure, we setn1 equal to
unity and apex angle alpha equal to zero in Eqs.~1! and~2!.
The apex angleb was then adjusted until the average maxi-
mum steering angle was made equal to 45 deg. We see that
compared to the results in Fig. 6, secondary steering angle
dispersion has increased substantially toDd0

59.0962 mrad. In addition, by examining Figs. 4 and 5 we
see that LiF is more than twice as dispersive as ZnS over
the full MWIR spectrum. Although not shown here it is
thus clear that steering with two LiF singlet prisms would
yield even greater dispersion than two ZnS singlet prisms.
We can therefore conclude that the effort required to design
achromatic doublet prisms does indeed show great promise
in enabling large steering angles to be achieved, while also
keeping beam dispersion under tight control.

Fig. 5 Dispersive characteristics of ZnS over the MWIR spectrum.

Fig. 6 Steering angle dispersion for LiF/ZnS doublet prisms in the
reversed prism geometry. The prism apex angles were adjusted to
yield an average maximum steering angle of 45 deg, while for this
figure only first-order dispersion reduction at a wavelength of 3.5 mm
was addressed.

Fig. 7 Steering angle dispersion for ZnS singlet prisms in the re-
versed prism geometry. The prism apex angles were adjusted to
yield an average maximum steering angle of 45 deg.

Duncan, Bos, and Sergan: Wide-angle achromatic prism beam . . .
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4 Reduction of Secondary Dispersion

As we have seen, choosing the apex angle ratioR5b/a
according to Eq.~4! does cause the steering angle disper-
sion in the vicinity oflc to be exactly zero. However, this
choice ofR does not necessarily ensure that the more im-
portant secondary dispersion is also reduced to a minimum.
Unfortunately, there is not a closed form relationship forR,
valid for all IR material combinations, that ensures that
secondary dispersion is minimized. This is due to the non-
linear dispersive characteristics governing the indices of re-
fraction of the materials, and also the nonlinear behavior of
the secondary dispersionDd0 as a function of apex angles
a andb @see Eqs.~1!, ~2!, and~6!#. As a result, minimiza-
tion of secondary dispersion is an iterative process gener-
ally proceeding according to the following steps:

1. Pick a target value for the average maximum steering
angle.

2. Pick starting values for apex anglesa andb.

3. Calculated0(l) according to Eq.~1!, and the second-
ary dispersion according to Eq.~6!. Iterate onb until
secondary dispersion is minimized.

4. For the current~a,b! combination, calculate the av-
erage maximum steering angle.

5. If the average maximum steering angle is different
from the target value, increase or decreasea a bit and
start again with step 3.@Note from Eqs.~1! to ~3! that
the steering anglesd0(l) generally decrease with in-
creasinga.#

6. When the target average maximum steering angle is
achieved, while also having minimized secondary
dispersion, determine the optimum apex angles and
print/plot the results.

As an example, consider Fig. 8, which was generated
using the preceding iterative procedure by assuming LiF/
ZnS doublet prisms in the reversed prism geometry. In cre-

ating Fig. 8 the apex angles were chosen to minimize sec-
ondary dispersion, while also causing an average maximum
steering angle of 45 deg. We see that the iterative process
results in a decrease in secondary dispersion from 2.5033
mrad in Fig. 6 to only 1.7816 mrad in Fig. 8. This is a
reduction of nearly 30%. Notice also in this case that the
apex angle ratio has been reduced slightly toR52.7439,
while first-order dispersion is now eliminated for wave-
lengths in the vicinity of 3.1mm.

5 IR Material Alternatives

For a given average maximum steering angle, the disper-
sive characteristics of an achromatic doublet prism beam
steerer are highly dependant on the materials making up the
prisms. Even though IR materials typically exhibit low dis-
persion, their dispersive nature cannot be ignored when de-
signing achromatic prisms intended for use over a wide
spectral range, as is our current task. At this point, it is thus
instructive to identify desirable material combination char-
acteristics, and identify alternative combinations of IR ma-
terials that can be used.

By careful examination of Eqs.~1! to ~3!, we can ob-
serve that the maximum steering angled0 increases as the
ratio n2 /n1 increases. In addition,d0 increases as apex
anglesa and b decrease and increase, respectively. More
specifically, for a givena, d0 increases if the apex angle
ratio R5b/a increases. From Eq.~4!, this in turn implies
that d0 nominally increases as the ration18/n28 increases.
Regarding the ratio ofn18 to n28 , although it is true that
dispersion correction can be performed as long as the
slopes of the dispersion characteristics for each of the ma-
terials are simply different, it can be shown that it is only
when n18.n28 that achromatic steering to large angles can
be achieved. Thus, to create achromatic prisms capable of
steering to large angles we desire that

n2

n1
.1 and

n18

n28
.1. ~7!

In fact we prefer these ratios to be as large as possible.
Table 2 provides data for 16 different candidate IR ma-

terials~Janos Technology, Inc., and Refs. 10 and 11!. Both
the nominal indices and the slope of the indices are pro-
vided, each of which was calculated at a wavelength of 3.5
mm ~i.e., the center of the MWIR spectrum of interest!.
Based on the data in Table 2, Table 3 shows the minimum
achievable secondary dispersion, at an average maximum
steering angle of 45 deg, for IR material combinations that
satisfy the ratios indicated in Eq.~7!. Note that in Table 3
the high-index materials are indicated along the top of the
table, while the low-index materials are given in the far
left-hand column. All possible combinations of the materi-
als indicated in Table 3 have been investigated thoroughly.
The result of this lengthy investigation showed that from
among the 32 potentially useful material combinations the
best was LiF/ZnS, the optimum steering results for which
are shown in Fig. 8. Note that this should not be taken to
imply that the LiF/ZnS combination is the universally op-
timum choice of materials for achromatic prism beam steer-
ing. Other materials, as yet not identified or developed, may
provide even better results.

Fig. 8 Steering angle dispersion for LiF/ZnS doublet prisms in the
reversed prism geometry. For this figure, the prism apex angles
were iteratively adjusted to yield an average maximum steering
angle of 45 deg, while also reducing second-order dispersion to a
minimum.

Duncan, Bos, and Sergan: Wide-angle achromatic prism beam . . .
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6 Optimum Material Characteristics

An interesting question now arises. That is, is it possible to
specify the refractive index properties of our achromatic
prism materials in such a way that dispersion is completely
eliminated over the entire 2 to 5mm spectral range? Inter-
estingly, the answer is yes as we now demonstrate.

From Eq. ~4! we see that if we can choose or design
materials such that at all wavelengths of interest

n18~l!5Rn28~l!, ~8!

whereR5b/a is a constant, then dispersion can be elimi-
nated completely. Assuming that the high-index material
has been specified, using Eq.~5! the index of refraction of
the low-index material that satisfies Eq.~8! can be written
as

n1~l!5n1~l0!1R@n2~l!2n2~l0!#

5n1~l0!1RF (
n50

N

a2nln2 (
n50

N

a2nl0
nG

5n1~l0!1RF (
n51

N

a2n~ln2l0
n!G , ~9!

wherea2n are the index coefficients of the high-index ma-
terial, and wherel0 is a single wavelength at which we
must precisely specify the indexn1 . For this work we as-
sumel053.5mm; i.e., in the middle of the 2 to 5mm
MWIR spectral region.

For purposes of illustration we assume that the high-
index material is ZnS, where over the 2 to 5mm spectral
range the index coefficients are provided in Table 1. As we
have previously demonstrated, very low dispersion doublet
prisms can be created when LiF is paired with ZnS, we also
set n1(l0)5nLiF (3.5m)51.3587. Furthermore, we will
set

R5
nLiF8 ~3.5 mm!

nZnS8 ~3.5 mm!
53.5645.

By these choices ofn1(l0) and R we will be able to di-
rectly compare LiF to the index profile of the hypothetical
material that has been optimized for pairing with ZnS. The
index profiles of LiF and the optimized material, which we
commonly refer to as BPV-1~i.e., Brad/Phil/Vassa-1!, are
shown in Fig. 9. From this figure we see that LiF is very
nearly an optimum match to ZnS, in terms of MWIR dis-
persion correction, over the 3 to 5mm spectrum, a fact
clearly evident from examination of Fig. 6. However, sub-
stantial correction is required in the 2 to 3mm regime. Of
course, the greater challenge now is to determine the
chemical properties/formulation of BPV-1 so that it can be
manufactured. This, however, is left as a topic for further
research.

7 Steering Angle Relationships

Now that the techniques by which achromatic prisms can
be designed have been presented, it is instructive to exam-
ine how the azimuth and elevation angles of a steered beam
of light depend on the rotation of the prisms in Fig. 3.@Note
that though the arrangement in Fig. 3~b! is preferred for the
practical reasons discussed earlier, the following analysis is
valid for either prism arrangement in Fig. 3.# Figure 10
depicts the geometry of interest. For small maximum steer-
ing angles, when viewed looking into thez axis the bases of
the cones in Fig. 10 correspond to the path traced by the
ideal steering rosette shown in Fig. 1. In addition, from Fig.
10, we see that if nominal beam propagation is in thez
direction, the azimuth angle is measured with respect to the
z axis in they-zplane. The elevation angle is then the angle
at which a ray parallel to the exiting beam of light is el-
evated with respect to they-z plane.

Now, to address the forward steering problem, refer to
Fig. 11. We begin by considering that the exit prism~the
right-hand prism in Fig. 3! is held fixed, while the entrance
prism is rotated through 2p. The result will be to trace a

Table 2 Index of refraction data for several candidate IR materials.

IR Material n at 3.5 mm n8 (104/m) at 3.5 mm

Ge 4.0308 22.030

GaAs 3.3081 20.972

CdTe 2.6884 20.795

AMTIR-1 2.5144 20.585

ZnSe 2.4356 20.490

ZnS 2.2546 20.481

CsI 1.7439 20.009

Al2O3 1.6953 23.686

MgO 1.6808 22.410

IRGN-6 1.5401 22.360

KBr 1.5362 20.108

KCl 1.4730 20.150

BaF2 1.4591 20.444

CaF2 1.4147 20.830

LiF 1.3587 21.716

MgF2 1.3548 21.109

Table 3 Minimum achievable second-order dispersion at an aver-
age maximum steering angle of 45 deg. All values are given in mil-
liradians.

n2

Ge GaAs AMTIR-1 ZnSe CdTe ZnS

Al2O3 8.833 4.588 3.163 2.057 4.002 1.922

n1

MgO 9.594 4.735 3.251 2.035 4.118 1.928

IRGN-6 9.367 4.810 3.368 2.144 4.230 2.084

MgF2 4.566 3.102 1.987 3.939 1.835

LiF 4.380 2.988 1.948 3.770 1.782

CaF2 3.292 1.992 4.235 1.869

BaF2

KCl No Useful Combinations

CsI

KBr
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quasi-circular steering path, as shown in Fig. 11~a!. @For
reference, when the two prisms of Fig. 3 are ‘‘parallel,’’ the
maximum steering angle is addressed; e.g.,uAZ8 50, while
uEL8 is maximum in Fig. 11~a!. Likewise, when the prism’s
are ‘‘anti-parallel,’’ bothuAZ8 anduEL8 are zero.# If we then
defineu1R to be the rotation of the entrance prism, relative
to the exit prism, the effective angle at which light enters
the exit prism is given by

d i ueff5sin21@sin~d i !cos~u1R!#. ~10!

In addition, theuAZ8 and uEL8 coordinates of Fig. 11~a! are
given by

uAZ8 5tan21@ tan~d i !sin~u1R!#

~11!

uEL8 5d0ueff ,

whereuEL8 is found by using Eq.~10! in Eq. ~1!. We then
use Eq.~11! to define the following intermediate variables,
which are shown graphically in Fig. 11~a!,

ux5tan21~uEL8 /uAZ8 !

~12!
r 5@~uEL8 !21~uAZ8 !2#1/2.

Now we allow the entrance and exit prisms to rotate in
tandem by angleu2 , as shown in Fig. 11~b!. While the exit
prism has only been rotated byu2 , we see that the entrance
prism has been rotated by an amountu15u1R1u2 . As a
result, the azimuth and elevation angles ultimately ad-
dressed by rotating the entrance and exit prisms byu1 and
u2 are, respectively,

uAZ5r cos~ux2u2!,
~13!

uEL5r sin~ux2u2!,

where, due to the implicit dependence of Eqs.~13! on the
indices of refraction, the azimuth and elevation angles are,
strictly speaking, wavelength dependent.

As an example, consider our the lowest dispersion de-
sign; i.e., two LiF/ZnS doublet prisms in the reversed ge-
ometry, with apex anglesa56.0600 deg ~LiF! and b
516.6283 deg~ZnS!. Using Eqs.~1!, ~2!, ~5!, and ~10! to
~13! we generated the steering angle rosette shown in Fig.
12. In this figure, the inner dashed circle indicates the steer-
ing path if only a single LiF/ZnS doublet prism is used,
while the large outer dashed circle indicates the maximum
steering angle boundary of 45 deg. In addition, the dash-
dotted curve shows the small-angle/paraxial steering angle
trajectory that would be expected if the exit prism simply
doubled the steering angle deflection of the entrance prism.
The solid curve, however, shows the actual steering path if
the exit prism is held fixed atu250, while the entrance
prism is rotated continuously through 2p rad. Note that the
true steering path is only quasi-circular—in fact it is more
egg-shaped than truly circular. This very real artifact in the
true steering angle path is negligible for very small maxi-
mum steering angles; however, as we wish to address maxi-
mum steering angles of at least 45 deg, it must be taken
into careful consideration.

Next we wish to consider the ‘‘inverse’’ steering angle
problem. In this case, we wish to first specify the AZ and
EL angles to be addressed, and then determine the required

Fig. 9 Comparison of LiF and the hypothetical BPV-1 indices of
refraction. We see that LiF is a very good match to ZnS for purposes
of dispersion correction over the 3 to 5 mm spectrum, though greater
correction is required in the 2 to 3 mm region.

Fig. 10 Azimuth and elevation angle geometry. When viewed look-
ing into the z axis, the bases of the cones in this figure correspond to
the paths traced by the ideal steering rosette shown in Fig. 1.

Fig. 11 Steering paths created (a) when the exit prism is held fixed,
while the entrance prism is rotated continuously through 2p rad, and
(b) when both the entrance and exit prisms are rotated in tandem by
an initial angle u2 , after which the entrance prism is rotated continu-
ously through an additional 2p rad.
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rotation of the entrance and exit prisms. By examining Eqs.
~1!, ~2!, and~10! to ~13!, it is clear that this is necessarily a
very complex iterative process, though computational
speed can be greatly enhanced by the use of look-up tables.
Furthermore, it can be shown that for a two-prism beam-
steering system, there are exactly two (u1 ,u2) solutions for
any desired AZ and EL coordinate to be addressed. This
simply compounds the complexity of the inverse steering
problem solution since we wish to avoid periodic ‘‘flip-
ping’’ of one or both of the prisms. In other words, though

there are always two (u1 ,u2) solutions for any new AZ and
EL coordinate to be addressed, we always want to take the
shortest angular path and choose the solution that allows
for the least amount of change in (u1 ,u2) from their current
values.

Without discussing the details of the Matlab™ routine
used to solve the inverse steering problem, we have been
able to demonstrate that for realistic~i.e., smooth! steering
paths, the trajectories ofu1 andu2 are strictly continuous,
with no singularities, or prism ‘‘flipping’’ being required.
Two examples are provided here, both of which assume the
use of the minimum dispersion LiF/ZnS prisms discussed
earlier. In the first example, an arbitrary straight line AZ/EL
path was chosen, as shown in Fig. 13. In determining the
required entrance and exit prism rotation angle trajectories,
we calculated the requiredu1 and u2 values as we step
through 200 uniformly spaced steps across the desired
steering angle path. As shown in Fig. 14, both the entrance
and exit prism rotation angle trajectories are strictly con-

Fig. 12 Actual steering rosette created by use of two LiF/ZnS dou-
blet prisms in their lowest dispersion reversed geometry configura-
tion. The solid curve shows the quasi-circular steering path if the exit
prism is held fixed while the entrance prism is rotated through 2p.

Fig. 13 Example straight-line steering path.

Fig. 14 (a) Entrance and (b) exit prism rotation angles required to
steer light along the straight line path shown in Fig. 13. Notice that
the rotation angle trajectories are continuous with no discontinuities
or singularities.
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tinuous, as expected, with no discontinuities or singulari-
ties. This is true for all linear paths that were examined,
including ones passing through the AZ/EL origin.

In our second example, the circular AZ/EL path shown
in Fig. 15 was chosen. Again, in calculating the required
entrance and exit prism rotation angle trajectories, we cal-
culated theu1 and u2 values required as we step through
200 uniformly spaced steps across the desired steering
angle path. As shown in Fig. 16, we again see, as expected,
that both the entrance and exit prism rotation angle trajec-
tories are strictly continuous, with no discontinuities or sin-
gularities.

8 Conclusion

We have seen that the use of two rotating prisms in a Risley
beam-steering configuration presents a very promising
technology for allowing wide angle steering with very low
chromatic dispersion across the wide 2 to 5mm MWIR
spectrum. Though the general concept of using rotating
prisms for laser beam steering is not new, there are impor-
tant issues related to wide-band MWIR beam steering that
have never been addressed. These issues include the reduc-
tion of secondary dispersion across the entire MWIR spec-
trum, and the identification of appropriate IR materials to
ensure that secondary dispersion is truly minimized in a
doublet prism beam-steering arrangement. This paper has
presented a summary of our efforts to date in addressing
these issues. For example, we have shown in closed form
how first-order chromatic dispersion can be reduced by use
of doublet prisms. We have also presented the steps that are
used to numerically determine optimum apex angles for a
doublet prism, for a desired average maximum steering
angle, which ensure that secondary dispersion is mini-
mized.

The general characteristics of IR materials appropriate
for doublet prism design were also presented, and the re-
sults of investigating 16 IR materials in 120 different com-
binations were provided. To date, the lowest secondary dis-

persion achieved across the full 2 to 5mm MWIR spectrum
has been 1.7816 mrad for LiF/ZnS doublet prisms in the
reversed prism configuration. In addition, the azimuth and
elevation angles for a laser beam steered by use of a rotat-
ing prism beam-steering device were developed. We have
shown that these angles are in general fairly complicated
functions of the prism rotation angles, as well as index of
refraction and wavelength. However, we have been able to
demonstrate that for realistic~i.e., smooth! steering paths,
by taking the ‘‘shortest path’’ approach, the rotation angle
trajectories of the entrance and exit prisms are strictly con-
tinuous, with no singularities, or prism ‘‘flipping’’ being
required.
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