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1 Introduction
In remote sensing, the detection of weak return signals is of
vital importance. One method of increasing the sensitivity of
a remote sensing device, such as a ladar (laser detection and
ranging) system, is to optically amplify the return signal be-
fore detection. Rare-earth-doped optical fiber amplifiers offer
a compact and lightweight optical preamplifier for integration
into a ladar system.

Mature solid state ladar technology exists for wavelengths
of 1.064 rim, built around Nd:YAG laser sources. A solid
state 1.O64-im ladar testbed has thus been constructed to
evaluate the potential of experimental optical fiber amplifiers
as components of a ladar system.' The primary fiber ampli-
fiers developed by the telecommunication industry, however,
are constructed using praseodymium- and erbium-doped fi-
bers, for amplification at 1 .3 and 1.55 pm, respectively.2'3
Because these amplifiers will not amplify a l.O64-m ladar
return signal, they are of little use for our application. For-
tunately, however, 1 .O64-im laser sources have successfully
been constructed using neodymium-doped (Nd3 ) optical
fibers.4'5 Configured as a fiber amplifier, this type of fiber
will be shown to be appropriate for amplifying l.O64-im
ladar return signals, thus providing an innovative application
of neodymium-doped fiber amplifiers to mature ladar tech-
nology.

5Cunent affiliation: Technology Scientific Services Inc., P.O. Box 3065, Overlook
Branch, Dayton, Ohio 45431.

Paper TPA-17 received April 12, 1993; revised manuscript received June 1, 1993;
accepted for publication June 15, 1993.
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Abstract. In an effort to increase the SNR of a continuous wave, 1 -pm
all solid state ladar system, a rare-earth-doped optical fiber amplifier is
investigated as a preamplifier for ladar return signals. The experimental
system is detailed and a theoretical analysis of the fiber amplifier's effect
on both heterodyne and direct detection schemes is provided. Beginning
with the optical powers incident on the detector, the signal and noises
are analyzed, through the detector electronics, to predict the SNR. The
SNR is then plotted as a function of the return signal power, and a SNR
threshold is defined to determine a minimum detectable signal power.
The return signals required to attain the SNR threshold are then com-
pared for four cases: direct detection with and without the fiber amplifier
and heterodyne detection with and without the fiber amplifier. For the
direct detection scheme considered, our results predict a sensitivity in-
crease of 20.6 dB with the addition of the fiber amplifier, yet for hetero-
dyne detection the predicted sensitivity increase is only 3.1 dB.

Subject terms: acquisition; tracking; pointing; ladar; laser radars; fiber amplifiers;
SNR.

Optical Engineering 32(1 1), 2671—2680 (November 1993).

Our system can be configured for heterodyne detection or
direct detection, allowing for comparisons between the two
detection schemes. When the fiber amplifier is added to the
ladar receiver, the return signal is increased by a power gain
factor. However, spontaneous emission from the fiber am-
plifier adds an optical noise to the receiver, so the benefit of
the gain must be weighed against the increased noise. In later
sections, the added noise, consisting of a shot-noise term and
several beat-noise terms, is examined in detail.

Direct detection ladar systems are limited by the noise
generated by the detection electronics. In a simple, inexpen-
sive system, these noises can be quite large. When the noise
added by the spontaneous emission does not have a significant
impact on the overall noise of the system, an increase in
direct detection sensitivity is achieved by adding the fiber
amplifier, as we show later.

For heterodyne detection, a large local oscillator (LO)
power is mixed with the return signal to ensure that the de-
tection is LO shot-noise limited. In this case, the spontaneous
emission directly increases the shot noise. Also, the beat-
noise term between the spontaneous emission and the large
LO has a strong impact on the noise level. Overall, the sen-
sitivity of a heterodyne ladar system will be shown to be
minimally affected by the addition of a fiber amplifier.

In Sec. 2, an overview of the ladar system is given, and
in Sec. 3 we discuss the experimental setup used to incor-
porate the fiber amplifier into the system. In Sec. 4, we derive
the SNR for direct detection with and without the fiber am-
plifier, plotting the SNR versus the return signal power to
give a measure of the sensitivity. In Sec. 5 we consider het-
erodyne detection with and without the fiber amplifier. Pre-

OPTICAL ENGINEERING / November 1993 / Vol. 32 No. 11 / 2671
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liminary experimental work is presented in Sec. 6, and in
Sec. 7 we present an analysis and comparison of the theo-
retical results of Secs. 4 and 5.

Finally, to limit the scope of this article, only the rigorous
theoretical analyses concerning the incorporation of an op-
tical fiber amplifier into a ladar system are presented. The
results of experiments we performed to verify our predictions
will be included in a forthcoming companion article.

2 Ladar Overview
This section reviews in detail the ladar system used to test
the performance of the neodymium-doped fiber amplifier. To
begin, we discuss the general heterodyne and direct detection
setup without the fiber amplifier. The heterodyne detection
scheme is described first, followed by a discussion of the
direct detection scheme.

Figure 1 shows the components of the heterodyne ladar
system. The laser source is a Lightwave Electronics model
120-03 continuous wave (cw), diode-pumped, Nd:YAG laser
with 40 mW of linearly polarized output at 1 .064 m. The
laser cavity is a MISER configuration, giving a frequency
stabilized output with a 5-kHz linewidth. This laser provides
the power for both the local oscillator leg and the output
signal. The beam then passes through an Electro-Optics Tech-
nology model 1845-5 Faraday optical isolator to prevent
backscatter from other optical components in the system from
reentering the laser head.

The local oscillator beam is split off using the combination
of a half-wave plate in a rotatable mount and a polarizing
beamsplitter cube. For linear polarization, the beamsplitter
transmits the horizontally polarized (s-polarization) com-
ponent of the beam and reflects the vertically polarized (p-
polarization) component. The polarization can be altered by
rotating the half-wave plate, allowing the power split into
the local oscillator leg to be continuously adjusted so as to
ensure local oscillator shot-noise-limited detection.

The power split into the local oscillator leg is then fre-
quency shifted 200 MHz by an acousto-optic modulator
(AOM). The AOM is an IntraActioñ Corporation model
AQS-2002A1, which has a diffraction efficiency of 20% into
the first order. The zero-order beam is stopped by a beam
dump to prevent backscatter.

The portion of the beam not split into the local oscillator
leg passes through a ' 'transmit-receive' ' switch, consisting

. Polarization
Optical BeamsphtterIsolator Cubes .; Diffuse

Nd:YAG Target
Laser * I I . ..

Acousto-Optic • Optical
RotatorModulator * ___________Fiber Amplifier

Beam Inserted Here

Dump Signal Fiber
* Coupler

LO
Fiber
Coupler Detector

Electronics
Evanescent

Wave Coupler
* : Half Wave Plates

Fig. 1 Heterodyne detection ladar system. The 1 .064-p.m ladar is
shown in its heterodyne configuration. The insertion point of the fiber
amplifier into the return signal leg is shown. The detection electron-
ics are shown in detail in Fig. 5.
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of the combination of a polarizing beamsplitter cube and an
Electro Optics Technology model 1845-5 Faraday optical
rotator. The light transmitted by the first beamsplitter is hor-
izontally polarized, so it is transmitted through the second
beamsplitter as well. The optical rotator rotates the polari-
zation by 45 deg, and the beam then travels to a target. The
return from the target then passes through the optical rotator,
rotating the polarization an additional45 deg. When the return
encounters the beamsplitter, the beam is vertically polarized
and is thus reflected into the signal leg. Note that the target
used does not affect the analysis, because our analysis begins
at the point where power is coupled into the fibers. However,
several targets have been used, including mirrors and a flame-
sprayed aluminum diffuse target.

The return signal and the frequency shifted local oscillator
are then coupled into a Canadian Instrumentation model
905P-TC-HR variable ratio, single-mode, polarization-
preserving evanescent wave coupler. This evanescent wave
coupler is used to mix the local oscillator and the return signal
into a single fiber pigtailed to the heterodyne detector. The
fibers in the evanescent wave coupler are standard single-
mode, polarization-preserving fibers with elliptical cores. Us-
ing free-space single-mode fiber couplers, the return signal
and local oscillator are each coupled into one of the single-
mode fibers. For the best mixing efficiency, the polarization
of the two beams must be matched, so before coupling the
beams into the fibers, half-wave plates are used to align the
polarization.

The system can be easily configured for direct detection,
as shown in Fig. 2. The first half-wave plate is adjusted so
that none ofthe laser power is reflected into the local oscillator
leg. Because the photodetector we chose to use is ac coupled,
a Laser Precision model CTX-534 chopper operating at 2 kHz
is then added to modulate the beam transmitted to the target.
The beam then passes through the transmit receive switch as
before, encounters the target and is reflected into the return
signal leg. The return is in turn coupled into a small section
of single-mode fiber, which is connected with ST-type con-
nectors to an Optics for Research free-space fiber-to-fiber
coupler. A 4-nm optical bandpass filter centered at 1 .064 m
is placed in this fiber-to-fiber coupler to filter out excess
background noise. The signal is then coupled to the fiber
pigtailed to the detector to generate the direct detection signal.

Polarization
Optical Beamsplitter
Rotator Cube

'
iffuse

NdXAG a s a aget
. Optical

Optical Rotator
'

Chopper 1/2 Wave Plate
1<

Fiber Fiber Amplifier

Coupler
Inserted Here

Detector
Electronics

Fiber to Fiber Coupler
with 4 nm Bandpass Filter

Fig. 2 Direct detection ladar system. The 1 .064-p.m ladar is shown
in its direct detection configuration. There is no optical power split
into the local oscillator leg, and an optical chopper has been added
to modulate the beam. The insertion point of the fiber amplifier into
the return signal leg is shown. The detection electronics are given
in detail in Fig. 5.
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1-tim LADAR SYSTEM INCORPORATING AN OPTICAL FIBER PREAMPLIFIER

3 Fiber Amplifier Design
Note that both Figs. 1 and 2 indicate the location at which
the optical fiber amplifier is to be added to the respective
ladar systems. This section describes the doped fiber used
for the amplifier and gives the design for incorporating the
amplifier into the ladar system. The amplifier is designed so
the return signal and the pump light are coupled into the fiber
simultaneously.

A 25-m spool of doped fiber was obtained from Rutgers
University. This fiber has an unusual profile, as shown in
Fig. 3. The fiber has a nearly rectangular inner cladding, used
to couple laser diode pump light into the fiber. The single-
mode core is doped with the rare-earth ion Nd3 and codoped
with aluminum.

Figure 4 shows the setup used to couple the return signal
and the pump light into the fiber amplifier.6 The laser diode
used to pump the fiber is a Laser Diode Incorporated model
LDT 26010 laser diode with an 808.4-nm, 500-mW cw out-
put. A built-in thermoelectric (TE) cooler acts as a heat pump
to cool the laser diode emitter. As the laser diode is cooled,
its output wavelength decreases, allowing the wavelength to
be tuned over a small range. The peak absorption wavelength
of the neodymium-doped fiber obtained from Rutgers Uni-
versity was given to be 805 nm. Using the TE cooler, the
wavelength of the laser diode is then shifted to the peak
absorption of the fiber.

A thermistor monitors the temperature of the diode, with
a feedback loop varying the current to the TE cooler to main-
tam a constant thermistor value. This gives the diode a stable
output in both power and wavelength to keep the operating
conditions of the fiber amplifier constant.

A graded-refractive-index (GRIN) rod lens from a New-
port F-GRK1 graded-index rod lens kit is used to minimize
the divergence of the beam from the laser diode. A dichroic
mirror transmits the 1 .064-tim return signal and reflects the
805-nm pump light. This allows the signal and the pump to
be coupled into the fiber simultaneously using a Newport
F-lOiS high-precision single-mode fiber coupler. The fiber
amplifier is then inserted into the return signal leg, with the
output end of the fiber connectorized with an AT&T ST-type
connector. The amplified signal is coupled via this connector
into the fibers leading to the bandpass filter unit, which blocks
excess background light (of primary concern during direct
detection) and any unabsorbed pump light. The amplified
signal is then launched into the signal arm of the evanescent
wave coupler, during heterodyne detection, or is used to di-
rectly illuminate the photodetector during direct detection.

4 SNR Theory for Direct Detection
The SNR is defined to be the ratio of the signal power to the
noise power. This section provides a theoretical analysis of
the overall postdetection electronic SNR for the ladar test
bed in a direct detection configuration, considering detection
both with and without the fiber amplifier. The analysis begins
with a discussion of the optical power incident on the detector
and follows with a derivation of the signal and noise voltages
after the detection electronics.

4.1 Direct Detection Without the Fiber Amplifier
Fora direct detection scheme, the outgoing continuous wave
laser power must be modulated so the signal current can be

Fig. 4 Fiber amplifier pump scheme. A dichroic mirror is used to
couple the pump light and the return signal light into the doped fiber.
The pump is a laser diode operating at 805 nm, with a graded-
refractive-index (GRIN) lens used to minimize the divergence. After
the fiber amplifier a 4-nm bandpass filter is inserted to block excess
pump light and minimize the spontaneous emission. After the band-
pass filter, the output is connected to the evanescent wave coupler
for heterodyne detection (see Fig. 1) and directly to the detector for
direct detection (see Fig. 2).

ac coupled into the postdetection electronics. The optical
chopper modulating the beam gives a 2-kHz square-wave
return signal. Figure 5 shows the electronic scheme between
the detector and the spectrum analyzer used to measure the
SNR. The detector is a Lasertron QDFT-250-301 p-i-n field
effect transistor (FET) detector package, with a multimode
fiber pigtail. The photodetector is saturated at 220 xW of
power and has a bandwidth of 250 MHz. The package in-
cludes an integrated current-to-voltage preamplifier with a
transimpedance of 5.9 kf. The detector package is termi-
nated with a 975-f' load as a precautionary measure, as rec-
ommended by the manufacturer, and is then ac coupled to
an electronic amplifier. For direct detection, the electronic
amplifier is an Analog Modules 324A-3-B voltage amplifier
with an input impedance Of Ramp =R1= 1 Mf1, a voltage gain
g =g = 1000, and an amplification bandwidth from 200 Hz
to 35 MHz. The amplified voltage is then connected to the
50-fl input of a Tektronix 495P spectrum analyzer whose
resolution bandwidth has been set to 10 Hz.

OPTICAL ENGINEERING / November 1993 / Vol. 32 No. 11 / 2673

Return Signal
1064nm

Outer Cladding:

___________125 microns Low Index Polymer

Core: 5 x 3.3 microns —
hO 2

Inner Cladding: ____
lit a 45 microns

I I 2' Nd3'

Fig. 3 Geometry of the Rutgers neodymium-doped fiber. The un-
usual aspect of the fiber is the rectangular inner cladding, used to
couple the pump light from the laser diode into the fiber.

Dichroic Mirror:
Reflect 805 nm

Transmit 1064 nm

Fiber Coupler

ST Connector

Fiber to Fiber Coupler
with 4 Nanometer Band
Pass Filter

25 Meter Spool of
Nd 3+ Doped Fiber
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Lasertron Detector Package with
Transimpedance Amplifier

(i) =(i) + (i) + (it)

fP\ 4kBT=
2eBe9t( I + 2eBeId+ D

e
(5)

\ I trans

thus yielding an average detector noise current at node A
of

. . . . (2)l/2 ((i2) + (i) +
Fig. 5 Detection electronics. The Lasertron detector package in- ' q

cludes the photodetector and a current-to-voltage amplifier. A safety
load of 975 (1 is used to terminate the detector package. An elec- / 4kB T\ /2
tronic amplifier is used to boost the voltage into the spectrum ana- = ( eB RP +2eB 'd

e
(6)

lyzer used to measure the SNR. \ e r e
Rtrans I

Calculating the amplified voltage Vnamp at node D,

The signal cunent from the detector, i , atnode A in Fig. 5 v = R. .
r n,amp g, trans\1n/

15 given by
. c:t I ,I1Dr\V2'r 'r [sqr(2rrft)] , (1) _ D I 1? cs;' D D I '+KDel

—g
transe

e r .(.eJJeldm R
where fl =0.704 A/W is the responsivity of the detector

trans

package, the optical return signal power, and the square- The electrical noise power seen by the spectrum analyzer is
wave function (sqr) in Eq. (1) represents a 50% duty cycle thus
positive square-wave function (i.e., values of only zero and
one). The signal voltage Vr just after the integrated pream- Vamp
plifier (at node B in Fig. 5) is then "n

RSA

V r rRtrans
+ 2eBeId + (4kBeT/Rtrans)I '/2}2

}1PrRras[sqr(21Tft)I , (2)
=

R
. (8)

SA

where Rtrans 5.9 k1 is the transimpedance of the pream-
plifier. The voltage is then amplified by the Analog Modules Note, however, that the noise power terms used in deriving
amplifier to yield a voltage at node D of Eq. (8) are white noises in nature, so the power is equally

spread across the full electrical bandwidth Be. The spectrum

Vramp gV analyzer thus displays the noise power of Eq. (8) as equally
divided among the bandwidth intervals defined by the res-

= , (3) olution bandwidth, iv =10 Hz. The actual noise power level
displayed by the spectrum analyzer, F, is then obtained

where we note that because of the large input impedance of by replacing Be with v in Eq. (8), yielding
the Analog Modules amplifier, there is no appreciable voltage
drop across the 975-fl series resistance. The signal power, ( 1? )21 ( y}IP + 2 (i V + [4k( "TIR. g trans L r I d " I transI ri ' seen by the spectrum analyzer centered at 2 kHz, is then F =

rl (4)
.

RSA

(9)

This noise power, however, is the noise due to the detector
where RSA 50 Il is the input impedance of the spectrum noises alone, and does not include excess noise added by the
analyzer. Analog Modules amplifier. This noise was measured by dis-

The total noise from the detector consists of shot noise connecting the detector package from the amplifier and mea-
from the optical return signal power on the detector, dark suring the noise level Famp on the spectrum analyzer due to
current noise, and thermal noise. The well-known equa- the amplifier alone. The total noise power Ni is then found
tions for these noise components, given as mean-squared by adding this measured value, Famp 57 dBm (2 nW), to
noise currents, are (i) = 2eBe(ir), () 2e8e1d, and the noise in Eq. (9), giving
(it) =4kBeT/Rtrans, respectively, where e is the charge on an
electron, Be 5 the electronic bandwidth of the detector, 'd is Ni + Famp
the detector dark current, k is the Boltzmann constant, T is
the temperature in degrees Kelvin, and (sr) =1ri"2 is the = + 2e(v)Id + [4k(V)T/Rtrans]}

average signal current from Eq. (1) (Ref. 7 and see, e.g., Refs.
8 and 9).

The total mean-squared detector noise (it,) is then + 2.0 X i0 W . (10)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 11/09/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



1-tim LADAR SYSTEM INCORPORATING AN OPTICAL FIBER PREAMPLIFIER

mode of the fiber, and is given by"

PseGhVB0 , (14)

where h is Planck's constant, v is the optical frequency of
the return signal, and B0 is the optical bandwidth of the spon-
taneous emission. The 4-nm bandpass filter, centered at the
optical frequency of the return signal, defines this bandwidth
such that B0 = 1.07 X 1012 Hz. For reasons similar to those
discussed prior to Eq. (9), the optical bandwidth of the spon-
taneous emission is broken into small frequency intervals,
the smallest measurable frequency increment being the res-
olution bandwidth of the spectrum analyzer. The power in a
single frequency component is thus obtained by replacing B0
in Eq. (14) with the spectrum analyzer resolution bandwidth
1) to yield

'se,v Ghv5v . (15)

In addition to the increased shot noise in Eq. (13), there
are two noise terms arising as a result of spontaneous emis-

( 1 2) The first of these terms arises because of beating be-
tween the spontaneous emission and the return signal,
whereas the second arises because of the spontaneous emis-
sion beating with itself, both of which result from the square-
law detection of optical radiation.'2

The spontaneous emission-return signal beat noise occurs
when a spontaneous emission component beats with the re-
turn signal. This noise is manifest at a frequency equal to the
separation between the center frequency of the return signal
and the frequency of the spontaneous emission noise corn-
ponents. The spontaneous emission—spontaneous emission
beat noise occurs between two spontaneous emission corn-
ponents of different frequencies. A detailed analysis of the
beat noises caused by spontaneous emission can be found in

(1 3) Appendix A of Ref. 12.
Only the portion of the spontaneous ernission—return sig-

nal beat noise contributing to the SNR at the signal modu-
lation frequency must be considered. This portion of the beat
noise occurs when spontaneous emission components sep-
arated by +/—2 kHz from the optical frequency of the return
signal beat with the return signal. The electric field incident
on the detector from the return signal and these two spon-
taneous emission components is'2

OPTICAL ENGINEERING / November 1993 /Vol. 32 No. 11 /2675

Using Eqs. (4) and (10), the direct detection SNR equation
without the fiber amplifier in place is

F'SNR=—--
"Ni

(l/2)(g0JtPR53ç)2

Threshold Signal to Noise Ratio

9
8
7

6
SNR 5

4
3
2

0
0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32

Return Signal Power (nanowatts)

Fig. 6 Direct detection SNR versus return signal power. The SNR
as a function of return signal power for direct detection without the
fiber amplifier is shown [see Eq. (11)]. The threshold SNR of 6 is
defined to be the SNR required to discern a signal above the noise.
A return signal power of 0.263 nW is required to reach the threshold
SNR.

.
+ 2e(iv)Id + [4k(aV)T/Rtransl}

+RSA.2.0X109 w
(11)

A useful measure of detection sensitivity can be obtained
by plotting the SNR from Eq. (1 1) as a function of the return
signal power 'yr' as shown in Fig. 6. A summary of the var-
iables used in Eq. (1 1) is given in Sec. 8. The plot can be
used to determine the return power necessary to achieve a
specified threshold SNR, defined to be the minimum SNR at
which a return signal can be reliably discerned from the noise.
The threshold SNR has been chosen to give a high probability
of detection for normal values of the probability of false
alarm.'° From Fig. 6, the minimum detectable return signal
for direct detection without the fiber amplifier for our chosen
threshold SNR of 6 is 0.263 nW. This will be compared to
the value for direct detection with the fiber amplifier, derived
in the following subsection.

4.2 Direct Detection with the Fiber Amplifier

For direct detection with the fiber amplifier, the return signal
is increased by a power gain factor G. This gain factor de-
pends on the amount of pump light absorbed and the length
of the fiber. With our 500-mW laser diode pump, measured
gains of 1 dB/m have been achieved. With 25 m of fiber, the
gain of 25 dB corresponds to a power gain factor of G =316.
The electrical signal power shown by the spectrum analyzer,
given by Eq. (4) for direct detection without the amplifier,
thus becomes

F —____________________
r2 D

"SA

The detector and electronic amplifier noises previously
discussed do not change, with the exception of the shot-noise
term. The shot noise is increased because the signal power
is amplified by G and because there are spontaneous emission
photons from the fiber amplifier directly adding to the shot-
noise term. Modifying Eq. (10) accordingly, the detector
noise plus electronic amplifier noise now becomes

(g0Rr0)2{2e(v)91[G(Pr/2) + Psel
— + 2e(v)Id+ {4k(V)T/Rtrans]}

FN2 D
"SA

+2.0x109W

where is the average spontaneous emission power incident
on the detector.

In general, the average spontaneous emission power is
dependent on the number of free-space modes considered.
For a single-mode fiber amplifier, the spontaneous emission
power propagating through the fiber is limited to the fraction
of photons emitted by the dopant into the single propagating
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E = v"iii COS(Wot)r+(2Psev)'2

x {cos[(w() — 2irf)t + —fib_f

+cos[(w0 + 2rrf)t+

where 2 kHz is the signal modulation frequency, and
_f are the random phases for the respective spontaneous

emission components, se,v the spontaneous emission
power in one 10-Hz frequency component, Or is the linear
polarization of the return signal, b _and b +are the random
polarizations of the two spontaneous emission components,
and w =2ir • 2.82 X 1014 is the angular frequency of the re-
turn signal. Recall now that the detector current resulting
from an electric field is equal to the responsivity of the de-
tector multiplied by the magnitude squared of the electric

i=9E2 . (17)

When Eq. (16) is substituted into Eq. (17), two 2-kHz beat
noise cunent terms arise from the beating between the spon-
taneous emission and the return signal. These terms are ma-
nipulated using trigonometric identities, resulting in the re-
turn signal—spontaneous emission beat noise current:

'r— se,2kHz = + 1 _f)'Jf _f

+cos(—2'rrft+f)J'fI (18)

where 'I' _ and 'Jff are random efficiency terms (i.e. , 0
'I, 1) arising because of the polarization mixing of the
two fields.

As for the spontaneous emission—spontaneous emission
beat noise, the electric fields resulting from all spontaneous
emission components must be considered, with any pair of
components separated by 2 kHz contributing to the SNR
noise terms at 2 kHz. The spontaneous emission electric field
is represented by a summation of components,'2 each of
which is separated by the resolution bandwidth of the spec-
trum analyzer, iv = 10 Hz, from its nearest neighboring fre-
quency component. That is,

Ese (2Psev)l/2 cos[(w0 + 2kSv)t+ kIbk , (19)
k= —M

where —Mand M designate spontaneous emission frequency
components at the edges of the 4-nm (B0 = 1.07X 1012 Hz)
bandpass filter. To arrive at the corresponding noise current,
the magnitude squared OfEse 5 multiplied by the responsivity
of the detector. When the summation of Eq. (19) is squared,
the cross terms give rise to the spontaneous emission—
spontaneous emission beat noise current, although we con-
sider only those beat terms affecting the SNR at 2 kHz. This
current is then written as a summation of those terms beating
at 2 kHz, to yield

'Se - se,2kHz
=2Psev [cos(2ft + )1It] , (20)

where is the random phase of each beat component, IJ
is a term that takes into account the polarization mixing ef-
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ficiency, and N is the number of spontaneous emission beat
terms at 2 kHz. The optical bandwidth, B0 =1.07 X 10' 2 Hz,
contains 1.07 X 10 ' of the 10-Hz frequency increments, and
there are 200 frequency increments in the 2-kHz band. The

(16) total number of components separated by 2 kHz, and thus
the number beating at that frequency, is obtained by
N= 1.07x 10" —200= 1.07x 10".

The beat-noise currents given by Eqs. (18) and (20) are
then analyzed through the transimpedance amplifier, the elec-
tronic amplifier, and the spectrum analyzer, resulting in

/1 D • 2\ ( D \2
1' \g transtr—se,2kHz) / — g1 trans") D D

n,r—se
— — r sefiv

and

IT — — se,2kHz) ) — ____________________
n,se — se

for the return signal—spontaneous emission and spontaneous
emission—spontaneous emission beat noise power terms, re-
spectively.

Adding the beat-noise terms from Eqs. (21) and (22) to
the detector noises from Eq. (13) and including the signal
power from Eq. (12), the SNRdirW for direct detection with
the fiber amplifier is

SNRdirI, =
FN2+ Fr_se+ sese

where

1 4k(iv)TA =
2e(iv)1t[G(\--)

+ Psej + 2e(iv)Id +
Rtrans

+ 2GPrPsejv + (flPsev)2N . (24)

Figure 7, a plot of SNR versus return signal power for
Eq. (23), shows that the signal required to reach the threshold
SNR of 6 is 2.28 pW. The values used to plot Eq. (23) are
found in Sec. 8. This value is 20.6 dB smaller than the power

field vectors such that

RSA RSA

RSA RSA

(1/2)(gGP I? 2r1ttrans'

i09 W (23)

10

9
8
7

SNR
5
4
3
2 dSi1toNoi
0.80 1.00 1.20 1.40 1.óO 1.80 2.00 2.20 2.40 2.óO 2.80

rReturnSignal Power (picowatts)

Fig. 7 Direct detection SNR versus return signal power with the fiber
amplifier. Equation (23) was used to plot the SNR as a function of
return signal power for direct detection with the fiber amplifier. A
return signal power of 2.28 pW is required to reach the threshold
SNR.
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F — (V,amp) —
IFa D

"SA SA

=
RSA

required to reach the threshold for direct detection without
(29)the fiber amplifier, thus showing a significant increase in

sensitivity obtained by adding the fiber amplifier to the direct
detection system. The derivation for the noise power level for the heterodyne

detection case without the fiber amplifier is very similar to
the derivation used to obtain Eq. (10). The noise power level5 SNR Analysis for Heterodyne Detection for heterodyne detection without the amplifier, FN3, is then

This section provides a theoretical analysis of the SNR for
heterodyne detection, both with and without the fiber pream- + '3Lo)
plifier included. As we will show, an additional noise term + 2e(v)Id +
must be accounted for because of beating effects between N3

RSAthe local oscillator and spontaneous emission fields. As a
result ofthis new noise term, the sensitivity gains when using + 6.3 x io ' w , (30)
the fiber preamplifier in a heterodyne ladar system are not as
dramatic as those achieved for the direct detection case. where the electronic amplifier noise, measured for the Miteq

amplifier by the same method as for the Analog Modules
amplifier, was determined to be 6.3 X 10 ' W. In compar-5.1 Heterodyne Detection Without the
ison to Eq. (10), a shot-noise term resulting from local os-FiberAmpilfier cillator power LO has been added, and a factor of 2 multi-

The detection electronics are again given in Fig. 5. The de- plying the total shot-noise term has been included, as the
tector package is the same as used for direct detection, but outgoing signal is no longer chopped [see Eqs. (4) and (5)].
a higher frequency electronic amplifier must be used to ensure Also, the voltage divider effect D has been included.
amplification of the 200 MHz IF signal. Our choice of am- For the heterodyne detection case without the fiber am-
plifiers has been a Miteq AU-4A-0150 amplifier, with a 5041 plifier, it is convenient to note the limiting noises of the
input impedance, a power gain of 6 1 dB, and an amplification detection scheme. With a measured local oscillator power of
bandwidth from 1 to 500 MHz. 200 iW, the various noise terms can be evaluated to show

Recall, in a heterodyne detection scheme, a local oscillator that the local oscillator shot noise dominates the other noise
is mixed with the return signal to improve receiver sensitivity. factors by almost 10 dB, thus ensuring local oscillator shot-
For the test system being considered, the local oscillator is noise-limited detection. The noise power, under this limiting
frequency shifted by an amount L\ =200 MHz. Referring case, then becomes
back to Fig. 1, the local oscillator and return signal mix at
the photodetector, resulting in two dc current terms and one

(31)beat term oscillating at the 200-MHz IF. Without the fiber
amplifier in place, the IF current term 1IF' is written as

Taking the ratio of Eqs. (30) and (31) yields the signal-
1IF 2(PrPLO)V2 cos(2'rrzt)] . (25) to-noise ratio, SNRhetW/O, for heterodyne detection without

the fiber amplifier, given as
After the integrated current-to-voltage preamplifier, the IF

— —
(32)signal at node B of Fig. 5 becomes SNRhetw/o _ _

N3

VIF hlFRtrans 2Rtrans(PrPLO)V2 cos(2t) . (26) Figure 8 is the plot of SNR versus return signal power from
Eq. (32) using parameters found in Sec. 8. We see from this

For this detection scheme, the input impedance of the Miteq figure that 1 .54 X 10 ' W of return signal power are re-
amplifier is not large enough to neglect voltage division with quired to reach the SNR threshold of 6.
respect to the 975-1k safety load resistance. The actual voltage
seen by the amplifier at node C is thus reduced by a factor 5.2 Heterodyne Detection with the Fiber Amplifier
D, given as

For heterodyne detection with the fiber amplifier in place,
the return signal is increased by the power gain factor G. The50c

D= = 0.048 . (27) total electric field incident on the detector is composed of the
amplified return signal, the local oscillator, and the sponta-
neous emission.The gain from the Miteq amplifier is a power gain of 61 dB,

The IF signal power, given by Eq. (29) for heterodynecorresponding to a voltage gain ofg =g 1 122. The voltage
detection without the fiber amplifier, becomesafter the amplifier, VIFamp at node D, is thus

VIFamp _gDV1 FIFb . (33)
RSA

= cos(2itht) , (28) The detector and electronic noise power level for detection
with the fiber amplifier is similar to Eq. (30). However, the

whereas the spectrum analyzer sees the following power return signal power is increased by G in the heterodyne shot-
level, FIFa, centered at 200 MHz: noise term, and the spontaneous emission power adds another

OPTICAL ENGINEERING / November 1993 / Vol. 32 No. 11 / 2677
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Fig. 9 Heterodyne detection SNR versus return signal power with

Fig. 8 Heterodyne detection SNR versus return signal power. The the fiber amplifier. Equation (36) was used to plot the SNR as a
plot shows the SNR as a function of return signal power for hetero- function of return signal power for direct detection with the fiber am-
dyne detection, without the fiber amplifier, using Eq. (32). A return plifier. A return signal power of 7.45x 1O18 W is required to reach
signal power of 1.54x iO W is required to reach the threshold the threshold SNR. a

SNR.

component to the shot-noise term. The electronic and detector 4k(v)TA =2e(av)(GPr+ LO se) + 2e(iV)Id +noise power level is thus
Rtrans

+ LO 1se) + GR2PrPsev + 'LOse,v (flPsev)2Nh . (37)+2e(v)Id+ [4k(aV)T/Rtransl}N4
RSA Figure 9 shows the SNR versus return signal power for

heterodyne detection with the fiber amplifier from Eq. (36),
+6.3 x 10— 14 W . (34) using the values found in Sec. 8. We see that the return signal

power required to reach the threshold SNR is
For the heterodyne case, three spontaneous emission beat- >< o — 1 8 W, giving an increase in the sensitivity of the

noise terms must be added to Eq. (34). The first two terms heterodyne detection system of only 3. 1 dB, with the fiber
are the spontaneous emission—return signal beat noise and amplifier added. This is because the local oscillator shot noise
the spontaneous emission—spontaneous emission beat noise. is no longer the dominating noise. Using the variables in
These noise terms are the same as for the direct detection Sec. 8, the noise terms can be examined to show that the beat
case and are described in Eqs. (2 1) and (22). The third term noises added due to the spontaneous emission dominate the
results from the beating between the spontaneous emission shot noise by 2 1 dB ! This counters the higher IF signal power
and the local oscillator and has the same form as the spon- and gives only a slight increase in SNR for heterodyne de-
taneous emission—return signal beat noise term, given by tection with the fiber amplifier.
Eq. (21). The spontaneous emission—local oscillator beat
noise term is obtained by replacing the amplified return signal
power, GPr, in this equation with the local oscillator power, 6 Initial Experimental Results
'LO The beat noises are thus given as'2 The fiber amplifier setup was assembled as shown in Fig. 5,

and initial measurements were made to determine the small
"n,beat 'n,se — r "n,se —LO 'n,se— se signal gain characteristics of the Nd3 -doped fiber amplifier

at the return signal wavelength of 1064 nm. Using a dichroic
= )2

S (GPrPse3v + 'LO'se,v PaVNh) . mirror, the laser diode pump and a 1064-nm test signal were
RSA coupled into the fiber amplifier. The pump laser diode pro-

(35) vides 500 mW of pump power at 805 nm (see Sec. 3),
whereas the test signal is supplied by tapping off a small

It is important to note that Nh in Eq. (35) represents the num- portion of the unmodulated Nd:YAG laser used in the ladar
ber of beat-noise terms at 200 MHz. Again, there are system of Fig. 1.
1 .07 x 101 1 incremental frequency components in B0 and To measure the signal power P coupled into the fiber
2.00 x iO of the components in the 200-MHz band. The total amplifier, the pump is blocked and the output power is mea-
number of terms beating at 200 MHz is obtained by sured after the 4-nm bandpass filter. To then measure the
N= 1.07 x —2.00x l0 1.07 x lOll The SNR for het- spontaneous emission power 1se the signal is similarlyerodyne detection with the fiber amplifier is obtained from blocked and another measurement is taken after the bandpass
Eqs. (33), (34), and (35) to yield filter (note that any excess pump light not absorbed by the

dopant is blocked by the filter). Next, both the signal and the
FIFb pump are coupled into the fiber amplifier in order to measureSNRhetss.

N4 ri,beat comb' the amplified signal power combined with the spon-
taneous emission power after the filter. The fiber amplifier
small signal gain can then be calculated from these three= (36)
measurements.

Based on these procedures, the following measurements
where have been made:

+ RSA .63 x o 14 W
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P=1.7iiW,
fLW,

'comb LW

Note that in the small signal gain regime, the input signal
power is small enough such that after amplification the ex-
cited state population is not appreciably depleted. The spon-
taneous emission power from the fiber amplifier is therefore
largely unaffected by the addition of the signal. Separate
measurements have indicated that signal powers of the order
of several milliwatts are required to significantly depopulate
the amplifier excited state such that there are detectable de-
creases in spontaneous emission power. Because a ladar re-
turn signal of 1 .7 pW would correspond to a very large return
signal (see, for example Figs. 6 to 9), this small signal gain
analysis is appropriate for determining the gain of the am-
plifier for most applications of our ladar system.

The fiber amplifier gain G is then calculated as follows:

G =comb se= 262 (24.2 dB) . (38) B
PS

e

The measured gain of 24.2 dB corresponds very well with
the assumed gain of 25 dB used to generate Figs. 6 to 9. Thus,
by incorporating this fiber amplifier into the ladar system,
our preceding theoretical SNR analysis can be evaluated ex-
perimentally. Currently, the fiber amplifier has been fully
incorporated into the ladar system, and preliminary mea-
surements show SNR increases of the order of those pre-
dicted. A companion paper will be submitted for publication
when conclusive data has been collected and analyzed.

7 Summary
We have derived the SNR for a direct detection and hetero-
dyne detection ladar system for two cases—detection without
a fiber amplifier and detection with a fiber amplifier.

The plots of SNR versus return signal power, Figs. 6 and
7, show an increase in sensitivity for the direct detection
scheme we have considered. The return signal power required
to obtain a threshold SNR for detection with the fiber am-
plifier is 20.6 dB lower than the power required for the case
without the fiber amplifier. These results are, however, very
dependent on the postdetection electronics, which define the
limiting noises. For a system designed with more sophisti-
cated postdetection electronics, the increase in sensitivity
might not be as large when a fiber amplifier is added, because
of the lower limiting noises. The primary application of a
fiber amplifier is in increasing the sensitivity of a noisy direct
detection ladar system. By incorporating a fiber amplifier,
trade-offs can be made when designing a system, allowing
lighter, less expensive detection electronics to be used with-
out sacrificing sensitivity.

For the heterodyne detection scheme, Figs. 8 and 9 show
a small increase of 3.1 dB in sensitivity when the fiber am-
plifier is added to the system. For heterodyne detection with-
out the fiber amplifier, the local oscillator shot noise domi-
nates the detection process. With the addition of the fiber
amplifier, however, the spontaneous emission beat noises
dominate the detection process, so the increase in return sig-
nal power is directly offset by the increase in noise caused
by the spontaneous emission.

Although the sensitivity of a direct detection ladar system
is increased with the addition of a fiber amplifier, it is im-
portant to note that the direct detection performance is still
less than the performance of the heterodyne system. The
direct detection system is significantly simpler, however, and
an increase in sensitivity warrants an examination of the
trade-offs between the performance and the simplicity of the
detection scheme.

Experimentally, a neodymium-doped fiber was configured
into a fiber amplifier with a measured gain of 24.2 dB. The
fiber amplifier has been fully incorporated into a 1-jim ladar
system, and initial experimental data show SNR increases of
the order of those predicted in the analysis. The incorporation
of optical fiber amplifiers thus shows promise for application
in the next generation of ladar receiver technology.

8 Nomenclature
Summary of the variables, and their values, used in the final
SNR equations.

Electrical bandwidth of the
detector 250 MHz

B0 Optical bandwidth of the
spontaneous emission
(4-nm bandpass filter) 1.07 X 1012 Hz

v Optical power center
frequency (1.064 jim) 2.82 X iO' Hz

v Spectrum analyzer resolution
bandwidth 10 Hz

Planck's constant 6.626 x 10 J s

Fiber amplifier power gain
(ldB/m,25m) 316

LO Local oscillator power (near
detector saturation) 200 jiW

1se Spontaneous emission power,
GhvB0 63 jiW

1se,v Incremental spontaneous
emission power, Ghviv 5.9 X 10-16 Hz

ga Analog Modules amplifier
(direct detection) voltage
gain 1000

g, Miteq amplifier (heterodyne
detection) voltage gain 1 122

D Voltage divider effect
Direct detection 1

Heterodyne detection 0.048

Ra Input impedance of the
Analog Modules amplifier 1 MIl

R1 Input impedance of the Miteq
amplifier 50

Rtrans Transimpedance of the
integrated amplifier 5900 11

RSA Spectrum analyzer input
impedance 50 Il

91 Responsivity of the detector
(Lasertron detector)

e Charge of an electron
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h
G

0.704 A/W
1.6x iO'9 C
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'd Detector dark current
(Lasertron detector)

k Boltzmann constant
T Temperature
N Number of spontaneous

emission beat components
at 2 kHz (direct detection)

Nh Number of spontaneous
emission beat components
at 200 MHz (heterodyne
detection)
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