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A robust fringe-adjusted joint transform correlator for efficient object 

detection  

Paheding Sidikea, Vijayan K. Asaria and Mohammad S. Alamb 
                 aDept. of Electrical and Computer Engineering, University of Dayton, OH, USA 45469; 
                 bDept. of Electrical and Computer Engineering, University of South Alabama, AL, USA 36688 

 

ABSTRACT 

The fringe-adjusted joint transform correlation (FJTC) technique has been widely used for real-time optical 

pattern recognition applications. However, the classical FJTC technique suffers from target distortions due to 

noise, scale, rotation and illumination variations of the targets in input scenes. Several improvements of the 

FJTC have been proposed in the literature to accommodate these problems. Some popular techniques such as 

synthetic discriminant function (SDF) based FJTC was designed to alleviate the problems of scale and rotation 

variations of the target, whereas wavelet based FJTC has been found to yield better performance for noisy 

targets in the input scenes. While these techniques integrated with specific features to improve performance of 

the FJTC, a unified and synergistic approach to equip the FJTC with robust features is yet to be done. Thus, in 

this paper, a robust FJTC technique based on sequential filtering approach is proposed. The proposed method 

is developed in such a way that it is insensitive to rotation, scale, noise and illumination variations of the targets. 

Specifically, local phase (LP) features from monogenic signal is utilized to reduce the effect of background 

illumination thereby achieving illumination invariance. The SDF is implemented to achieve rotation and scale 

invariance, whereas the logarithmic fringe-adjusted filter (LFAF) is employed to reduce the noise effect. The 

proposed technique can be used as a real-time region-of-interest detector in wide-area surveillance for automatic 

object detection. The feasibility of the proposed technique has been tested on aerial imagery and has observed 

promising performance in detection accuracy.  

Keywords: object detection, joint transform correlation, fringe-adjusted filter, correlation, local phase, 

synthetic discriminant function, logarithmic fringe-adjusted filter 

 INTRODUCTION 

In real-time optical pattern recognition, fringe-adjusted joint transform correlation (FJTC) [1] has shown promising results 

compared to alternate joint transform correlation (JTC) [2] techniques. However, it has been found that the performance 

of the FJTC is degraded when there is distortion, due to noise, scale, rotation and illumination variations, in the input 

scene. 

Several enhanced versions of the FJTC have been proposed in literatures, such as synthetic discriminant function (SDF) 

based FJTC [3, 4] which was designed to alleviate the problems of scale and rotation variations of the target. In this 

technique, a training step is required to obtain equal correlation peak intensity for all training images by finding the 

difference between the maximum and the minimum correlation peak intensities in each iteration stage. Our previous work 

in [5] suggests that using histogram representation and spectral FJTC can achieve rotation invariant FJTC. However, these 

techniques are not robust to handle noise and illumination changes.  

Illumination invariant JTCs [6, 7] have been introduced to accommodate the JTC to lighting sensitiveness when a target 

appears in various lighting conditions. Recently, local phase based FJTC (LPFJTC) [8] and logarithmic FJTC (LFJTC) [9] 

have been found to yield better performance for targets under varying illumination and noise, respectively. However, these 

techniques fails if there is certain scale or rotation change of the reference target occurs in the input plane. 
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While abovementioned techniques usually combine specific algorithm with JTC to tackle certain target distortion, a unified 

and synergistic approach to equip the FJTC with robust features is yet to be done. Therefore, in this paper, a new FJTC 

based object detection scheme is proposed. The proposed method is designed in such a way that it is insensitive to rotation, 

scale, noise and illumination variations of the targets. To achieve this, we utilize local phase (LP) features from monogenic 

signal [10] to accommodate illumination changes of the background, and the SDF is implemented to achieve rotation and 

scale invariance. Finally the logarithmic fringe-adjusted filter (LFAF) is employed to reduce the noise effect. The proposed 

technique can be used as a real-time region-of-interest detector in wide-area surveillance for automatic object detection.  

The rest of the paper is organized as follows. In section 2, we describe the steps in the proposed method that employs LP, 

SDF, and LFJTC to achieve robust FJTC. In section 3, we test the proposed algorithm for object detection including objects 

under different scale, rotation, illumination and noisy conditions in the input scene. Finally, in Section 4, we conclude our 

findings. 

 

 METHODOLOGY 

Objects in an input scene could be mainly distorted by four factors: rotation, scale, noise and illumination as shown in Fig. 

1. This introduces difficulty for FJTC-based techniques for efficient target discrimination. Therefore, our goal is to reduce 

the sensitivity of the FJTC to object distortions so that improve the detection capability in terms of sharper correlation 

peak intensity, narrow correlation width and higher pattern discriminability.   

             

A block diagram of the proposed method is briefly illustrated in Fig. 2. At first, the LP feature of the reference image is 

extracted using monogenic signal analysis. Then, SDF is applied for the obtained local phase information. Finally, the 

result of SDF undergoes the LFJTC technique. The final correlation output produces high correlation peaks for a matched 

target and negligible correlation peaks for a mismatch. The following part of this section will introduce the mathematical 

formulation of the proposed algorithm.  

2.1 Local Phase (LP) 

The LP is a contextual feature that is computed from the monogenic signal [10], expressed by  

 

                                               𝜑(𝒙) =  𝑎𝑟𝑐𝑡𝑎𝑛 (
√𝑓1

2(𝒙)+𝑓2
2(𝒙)

𝑓(𝒙)
) , 𝜑 ∈ [0, 𝜋)                                                                (1)  

 

(a) Rotation 

(b) Scale 

(c) Noise 

(b) Illumination 

Fig. 1.  Illustration of object distortions. First images in (a)-(d) are the reference target 

image (e.g. letter ‘M’), and the others are the distorted targets.  
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where  𝜑(𝒙) is the local phase and 𝑓(𝒙),  𝑓1(𝒙) and 𝑓2(𝒙) are the components of the monogenic signal. 

 

 

To obtain 𝑓(𝒙),  𝑓1(𝒙) and 𝑓2(𝒙), first let 𝐼(𝒙) be an image, represented by  

                                                      𝐼(𝒙) =   𝐴(𝒙)cos (𝜑)                                                                                                    (2) 

where 𝐴(𝒙) represents the local amplitude, and 𝒙 = (𝑥, 𝑦) is the spatial coordinates of the signal 𝐼. Then we can obtain 

the components of the monogenic signal representation (𝑓(𝒙), 𝑓1(𝒙), 𝑓2(𝒙)) by convolving 𝐼 with the transform function 

of even and odd pairs of spherical quadrature filters (SQFs), computed respectively as 

                                                      𝑓(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑒(𝒙)                                                                                                    (3) 

                                                      𝑓1(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑜1(𝒙)                                                                                         (4) 

                                                          𝑓2(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑜2(𝒙)                                                               (5) 

where ‘∗’ represents the 2D convolution, 𝑔𝑒(𝒙) is the spatial domain representations of log Gabor filter, and  𝑔𝑜1(𝒙) and 

𝑔𝑜2(𝒙) are the odd set of SQFs, respectively. In terms of physical interpretation, the local phase contains the structure 

information of the objects. 

2.2 LP-based FJTC 

To enable FJTC to accommodate target distortion due to illumination changes, we incorporate LP concept into the FJTC. 

In our previous work [8], we applied LP on both the reference image and the input image to achieve illumination 

invariance, however, it would computational expensive to apply LP on input images with big size, and furthermore it only 

can be processed online. To avoid this problem, we propose to extract LP feature only on the reference image and which 

can be pre-calculated and stored, thus it does not deteriorate the processing speed in real time. The mathematical formation 

of this proposed method is described as follows. 

Assume that 𝜑𝑟(𝑥, 𝑦 + 𝑦0) and 𝑠(𝑥, 𝑦 − 𝑦0) represents the local phase of the reference image and the unknown input 

scene, respectively. And they are separated by a distance 2𝑦0 along the 𝑦 axis. Accordingly, the input joint 𝑓(𝑥, 𝑦) is 

expressed as  

                                          𝑓(𝑥, 𝑦) = 𝜑𝑟(𝑥, 𝑦 + 𝑦0) + 𝑠(𝑥, 𝑦 − 𝑦0).                                                                                  (6) 

Applying Fourier Transform to Eq. (6), yields, 

                                         𝐹(𝑢, 𝑣) = Φ𝑅(𝑢, 𝑣) exp(𝑗𝑣𝑦0) + 𝑆(𝑢, 𝑣) exp(−𝑗𝑣𝑦0),                                                        (7) 

Fig. 2.   Block diagram of the proposed scheme. LP: Local phase. JPS: Joint power spectrum.  

LFAF: Logarithmic fringe-adjusted filter. 
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where Φ𝑅(𝑢, 𝑣)  and 𝑆(𝑢, 𝑣)  are the Fourier transforms of 𝜑𝑟(𝑥, 𝑦) and 𝑠(𝑥, 𝑦) , respectively; 𝑢  and 𝑣  are mutually 

independent frequency domain variables. Then joint power spectrum (JPS) can be obtained by 

     |𝐹(𝑢, 𝑣)|2  = |Φ𝑅(𝑢, 𝑣)|2 + |S(𝑢, 𝑣)|2 + Φ𝑅(𝑢, 𝑣)𝑆∗(𝑢, 𝑣) exp(𝑗2𝑣𝑦0) + Φ𝑅
∗ (𝑢, 𝑣)𝑆(𝑢, 𝑣) exp(−𝑗2𝑣𝑦0)                 (8)        

where * denotes a conjugate.   

     To eliminate the undesired strong zero-order peak that usually present in the output plane, the Fourier plane image 

subtraction technique [11] is used. In this technique, both the input-only image power spectrum and the reference-only 

power spectrum are subtracted from the JPS. The modified JPS is thus given by 

                         𝑃(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 − |Φ𝑅(𝑢, 𝑣)|2 − |S(𝑢, 𝑣)|2  

                                                = Φ𝑅(𝑢, 𝑣)𝑆∗(𝑢, 𝑣) exp(𝑗2𝑣𝑦0) + 𝑆(𝑢, 𝑣)Φ𝑅
∗ (𝑢, 𝑣) exp(−𝑗2𝑣𝑦0).                                 (9) 

The modified JPS of Eq. (8) is then multiplied by LP- based generalized FAF (LPGFAF) [8], given by  

                                    𝐺(𝑢, 𝑣) =  𝑃(𝑢, 𝑣) × 𝐻𝑙𝑝𝑔𝑓𝑎𝑓(𝑢, 𝑣)            

                                                                    = 𝑃(𝑢, 𝑣) × {𝐵(𝑢, 𝑣)[𝐴(𝑢, 𝑣) + |Φ𝑅(𝑢, 𝑣)|𝑚]−1}                                                             (10) 

where 𝐻𝑙𝑝𝑔𝑓𝑎𝑓(𝑢, 𝑣) represents the LPGFAF,  𝐴(𝑢, 𝑣) and 𝐵(𝑢, 𝑣) are either constants or functions, and 𝑚 is a constant, 

usually 𝑚 is set to 0, 1, or 2.  An inverse transform of Eq. (10) yields the correlation output. 

2.3 SDF-based LPFJTC 

Though successful in obtaining the illumination-invariant pattern recognition property from LPFJTC, FJTC technique 

suffers from scale and rotations variations of the target in the input scene. To alleviate this problem, we introduce the SDF 

concept on the LPFJTC. Accordingly, the LP reference image is first synthesized by using a linear combination of the 

distorted images from a training set, given by 

 

                                                                                     𝜑𝑟(𝑥, 𝑦) =  ∑ 𝑎𝑖𝜑𝑟𝑖
(𝑥, 𝑦)

𝑁

𝑖=1

                                                                           (11) 

where 𝑎𝑛 represents the weights,  and  𝜑𝑟1
, 𝜑𝑟2

, … , 𝜑𝑟𝑖
, … , 𝜑𝑟𝑁

 are N training images represents possible distortions of the 

reference image 𝜑𝑟(𝑥, 𝑦). Consequently the joint image in Eq. (6) rewritten as 

 

                                                               𝑓(𝑥, 𝑦) = ∑ 𝑎𝑖𝜑𝑟𝑖
(𝑥, 𝑦 + 𝑦0)

𝑁

𝑖=1

 + 𝑠(𝑥, 𝑦 − 𝑦0)                                                              (12) 

.                                                                          

Accordingly, the corresponding JPS, using the Fourier Plane image subtraction technique, is described by  

               �̂�(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 − |Φ𝑅(𝑢, 𝑣)|2 − |𝑆(𝑢, 𝑣)|2  

                                

                              = ∑  𝑎𝑖Φ𝑅𝑖
(𝑢, 𝑣)

𝑁

𝑖=1

𝑆∗(𝑢, 𝑣) exp(𝑗2𝑣𝑦0) + ∑  𝑎∗
𝑖  Φ

∗
𝑅𝑖

(𝑢, 𝑣)

𝑁

𝑖=1

S(𝑢, 𝑣) exp(−𝑗2𝑣𝑦0)                            (13) 

 

When the spatial SDF 𝜑𝑟(𝑥, 𝑦) is used in a fractional power FJTC, the 𝐻𝑙𝑝𝑔𝑓𝑎𝑓(𝑢, 𝑣) as in Eq. (10) is reformulated to 

                                                                 𝐻(𝑢, 𝑣) =  
𝐵(𝑢, 𝑣)

𝐴(𝑢, 𝑣) + |∑  𝑎𝑖Φ𝑅𝑖
(𝑢, 𝑣)𝑁

𝑖=1 |
𝑚                                                                   (14) 
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Then the SDF-based fractional power FJTC is obtained by multiplying 𝐻(𝑢, 𝑣) with Φ̂𝑃(𝑢, 𝑣), thus 𝐺(𝑢, 𝑣) in Eq. (10) 

becomes 

                                                                �̂�(𝑢, 𝑣) =  
�̂�(𝑢, 𝑣)𝐵(𝑢, 𝑣)

𝐴(𝑢, 𝑣) + |∑  𝑎𝑖Φ𝑅𝑖
(𝑢, 𝑣)𝑁

𝑖=1 |
𝑚                                                                   (15) 

To obtain a constant correlation peak intensity for each training image.  𝜑𝑟𝑖
(𝑥, 𝑦), 𝑖 = 1, 2, … , 𝑁, an iterative procedure 

[12] based on the Newton-Raphson algorithm is used. Then the synthesis coefficients 𝑎𝑖  (𝑛 =  1, 2, . . . , 𝑁) is limited to 

be real and obtain the trial solutions of the coefficients by using the iterative formula: 

                                                            𝑎𝑖
𝑗

  = 𝑎𝑖
𝑗

+ 𝛿 (𝐶𝑚𝑎𝑥
𝑗

−  𝐶𝑖
𝑗
)                                                                                               (16)                                                                             

where 𝑗 is the iteration number, 𝐶𝑚𝑎𝑥
𝑗

 is the maximum value of the correlation peaks for each iteration, 𝐶𝑖
𝑗
 is the correlation 

peak for the 𝑖th image of training set obtained in the iteration 𝑗. 𝛿 is the relaxation factor to determine the rate of changing 

the coefficients from one iteration to next, and 𝑎𝑖
0 = 1.  

2.4 Noise reduction using LFAF 

To attenuate noise such as sensor noise, we employ the LFAF during the generation of SDF composite image and final 

JPS processes. Consequently,  𝐻(𝑢, 𝑣) in Eq. (14) and �̂�(𝑢, 𝑣) in Eq. (15) are recomputed accordingly as 

                              𝐻(𝑢, 𝑣) = 𝑙𝑜𝑔  [𝐻(𝑢, 𝑣)] = 𝑙𝑜𝑔 [
𝐵(𝑢, 𝑣)

𝐴(𝑢, 𝑣) + |∑  𝑎𝑖Φ𝑅𝑖
(𝑢, 𝑣)𝑁

𝑖=1 |
𝑚]                                                            (17) 

and 

                                                              �̃�(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) +  𝑙𝑜𝑔 [�̂�(𝑢, 𝑣) ]                                                                                   (18) 

Finally, the resultant JPS in Eq. (18) is inversed Fourier transformed to produce the correlation output in spatial domain.  

 TEST RESULTS 

We consider experimental results for the FJTC, LFJTC, and the proposed robust FJTC (RFJTC) using the CLIF (Columbus 

Large Image Format) 2007 [13] dataset. In the experiment, we select a specific intersection in a frame with a high amount 

of cars for object detection. The size of the selected region of the frame is 220 × 220 pixels as shown in Fig. 3(a), and an 

object, manually marked by a red-color circle in Fig.3 (a), is chosen to be the target. For testing purposes, 𝐴(𝑢, 𝑣) was set 

to  0.001 to overcome the pole problem, 𝐵(𝑢, 𝑣) was set to unity and 𝑚 is 1 for all filters used in FJTC, LFJTC, and 

RFJTC.  

To verify the robustness of the RFJTC, twelve test images are created from the selected frame by the following three steps: 

1) rotate the frame in increments of 30 degrees from 0 degree to 360 degrees and crop the intersection regions with a high 

amount of cars of the frame and maintain the size of 220 × 220 pixels, considering each rotation as a new image which 

leads to twelve images; 2) randomly choose five images among the twelve images to change their intensity values by a 

factor of 0.3, 0.5, 0.6 1.5 and 2, respectively; 3) randomly select two images among the twelve images to change their 

image size by a factor of 0.6 and 1.5. These resultant twelve test images now contains global illumination changes, object 

scale and rotational variations, plus sensor noise if possible. Figure 3 (b), for example, shows an image with illumination 

change by a factor of 0.3 and with a rotation, while Fig.3 (c) shows a rotated image at an angle of 60 degrees, and Fig.3 

(d) shows a scaled image (scale factor of 0.6) with a rotation.  

In RFJTC, the training set for composing the SDF reference image by rotating the reference image (size: 30 × 30 pixels), 

obtained from Fig. 3(a) circled region, in increments of 20 degrees from 0 degree to 360 degrees, which form the 18 

training images. And then we select two sets from these 18 images to change their scales, where one set (6 images) is 
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scaled with a factor of 0.5 and another set (2 images) is scaled to 1.2. Lastly we linearly combine these 18 images as a 

composite reference image to feed into the rest of RFJTC process.  

Figure 4 illustrates the detection results of FJTC, LFJTC, and RFJTC for the aforementioned twelve challenging 

scenarios. In Fig. 4(a), the target presents in the scene as same as the reference image, and all the three techniques detect 

the target without any ambiguity. From Figs. 4(b) to 4 (l), the target has been distorted in the scene due to illumination, 

rotation and scale changes. In Fig. 4(d), it is clear that FJTC fails to detect the target and LFJTC nearly loses the target. 

This is because of the changes of illumination and rotation in the scene has detrimental effect on the performance of 

FJTC and LFJTC, however, there is no harm to RFJTC.  Figure 4(g) shows the darker scene with a rotation compared 

to the original image in Fig. 4(a), it can be seen that FJTC and RFJTC found the target with high discrimination ability, 

while LFJTC produces false alarm. Comparing the detection in the rest test images, it is evident that the proposed RFJTC 

is able to detect the distorted and undistorted targets while rejecting the non-target in the presence of illumination, 

rotation and scale variations, and the target always remain inside the red box (RFJTC detected target region) for the 

entire testing images, indicating the effectiveness of the proposed algorithm. Note that if the detected object is located 

outside of the bounding box indicates a lower accuracy or false alarm.   
 

 

 CONCLUSION 

In this paper, we presented a new algorithm for detecting a target under varying illumination, rotation, and scaling.  By 

utilizing LP feature from the monogenic signal and SDF-LFAF-based filter design, we achieved a robust pattern 

recognition technique which offers a high target discriminability. Test results show that the existing JTCs such as the FJTC 

and LFJTC fail to detect a target when there is certain factors of target distortion, whereas the proposed algorithm 

successfully detects the target without any false alarm. Future research work will focus on enhancing and implementing 

the proposed algorithm for object tracking in video frames with complex background.  

Fig. 3. Sample images used in the experiment. (a) Raw image (red-circle: target), (b) illumination and 

rotation changes, (c) rotation change, and (d) scale and rotation changes.   

(a) (b) 

(c) (d) 
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