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Gaussian Weighted Neighborhood Connectivity of Nonlinear
Line Attractor for Learning Complex Manifolds

Theus H. Aspirasa, Vijayan K. Asaria Wesam Saklab

aUniversity of Dayton, 300 College Park, Dayton, USA;
bAir Force Research Lab, Sensors Directorate, WPAFB, Fairborn, USA

ABSTRACT

The human brain has the capability to process high quantities of data quickly for detection and recognition
tasks. These tasks are made simpler by the understanding of data, which intentionally removes redundancies
found in higher dimensional data and maps the data onto a lower dimensional space. The brain then encodes
manifolds created in these spaces, which reveal a specific state of the system. We propose to use a recurrent
neural network, the nonlinear line attractor (NLA) network, for the encoding of these manifolds as specific
states, which will draw untrained data towards one of the specific states that the NLA network has encoded. We
propose a Gaussian-weighted modular architecture for reducing the computational complexity of the conventional
NLA network. The proposed architecture uses a neighborhood approach for establishing the interconnectivity of
neurons to obtain the manifolds. The modified NLA network has been implemented and tested on the Electro-
Optic Synthetic Vehicle Model Database created by the Air Force Research Laboratory (AFRL), which contains
a vast array of high resolution imagery with several different lighting conditions and camera views. It is observed
that the NLA network has the capability for representing high dimensional data for the recognition of the objects
of interest through its new learning strategy. A nonlinear dimensionality reduction scheme based on singular
value decomposition has found to be very effective in providing a low dimensional representation of the dataset.
Application of the reduced dimensional space on the modified NLA algorithm would provide fast and more
accurate recognition performance for real time applications.

1. INTRODUCTION

The human brain has an incredible ability to process high volumes of data and provide outputs to interact with
the body and its surroundings. Through several synaptic junctions, the neurons in the brain activate to discern
different inputs that come in and activate other neurons to allow a response for other neurons. These neurons
are interconnected in a large web of connections, which fire in different ways. To represent the activation and
training of the brain, we use neural networks as the best model.

There several types of neural networks that are available. We have the feed-forward neural network,1 which
is able to propagate activations to different layers in the network, thus creating an output at the end. These
types are suitable for different recognition tasks,2 function approximation,3 and data compression.4 There are
also recurrent neural networks, which propagates outputs to the same layer of the network. This uses a stability
criteria to take inputs and converge towards a specific trained pattern. Recurrent neural networks can be used
for modeling,5 optimization,6 and noise reduction.7

A recurrent neural network that was discovered was the Hopfield network,8 which converges towards a desired
trained state due to the energy function to reduce the error. It has the ability to store several orthogonal patterns
and recall these patterns, even with the presence of noise. This type is a point attractor network, which attracts
an input towards a certain trained pattern. There are also line attractors and oscillatory attractors which can
attract to certain types of patterns. The nonlinear line attractor (NLA) network, formed by Seow et al.9 is the
type we will be focusing on, which has applications in skin color association, pattern association,10 and pose and
expression invariant face recognition.11
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Most recurrent neural networks are totally interconnected, meaning that every node in the network is con-
nected to each other. If we glean information about the structures in the brain, we can see that the neurons
are not fully interconnected, but connected only to surrounding neurons. These types of structures introduce
modularity to the network, thus different regions of the network must be able to interact with each other. Happel
et al.12 investigated modularity in neural networks and found that it increase the recognition in different tasks.
Even to reduce the complexity of a model, we can use modularity to help recognition in certain regions to help
in the recognition in the whole task.13

If we incorporate this type of structure with the NLA network, we should be able to reduce the training time
for the network, since the amount of interconnections are less. We can also see an increase in the recognition
rates and a decrease in convergence times due to the modularity reducing redundancies in computation.

The main contributions of this paper is:

• Gaussian weighting to the Nonlinear Line Attractor Network

• Reduction of computational complexity for the NLA

2. METHODOLOGY

Let the response xi of the ith neuron due to the excitations xj from other neurons for the sth pattern in a fully
connected recurrent neural network with n neurons be expressed as:

xsi =
1

N

N∑
j=1

Λi(x
s
j) for 1 ≤ i ≤ N (1)

where Λ is defined by a kth order nonlinear line as:

Λi(x
s
j) =

k∑
m=0

ws
(m,ij)(x

s
j)

m for 1 ≤ i, j ≤ N (2)

The mth order term of the resultant memory ws can be expressed as:

ws
m =

 ws
(m,11) . . . ws

(m,1N)

...
. . .

...
ws

(m,N1) . . . ws
(m,NN)

 for 0 ≤ m ≤ k (3)

To calculate the weights, we can use the above equation. The least squares estimation approach is able to
calculate the best fit line using the polynomial method. To minimize the least squares error in the weight matrix,
we can formulate the following equation.

Eij [w(0,ij),w(1,ij), ..., w(k,ij)] =

P∑
s=1

[xis − Λi(x
s
j)]

2 for 1 ≤ i, j ≤ N
(4)

To minimize the least squares error, we must find that the derivative of the error with respect to the weight
should be zero, as shown in the following equation.

δEij

δw(m,ij)
= 0 for each m = 0, 1, . . . , k (5)
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We can then find that the equation can be reduced to a set of equations based on the order of the polynomial,
as shown in the following equation.

w(0,ij)

P∑
s=1

(xsj)
0 + w(1,ij)

P∑
s=1

(xsj)
1 + . . .

+ w(k,ij)

P∑
s=1

(xsj)
k =

P∑
s=1

ysi (xsj)
0

w(0,ij)

P∑
s=1

(xsj)
1 + w(1,ij)

P∑
s=1

(xsj)
2 + . . .

+ w(k,ij)

P∑
s=1

(xsj)
k+1 =

P∑
s=1

ysi (xsj)
1

...

w(0,ij)

P∑
s=1

(xsj)
k + w(1,ij)

P∑
s=1

(xsj)
k+1 + . . .

+ w(k,ij)

P∑
s=1

(xsj)
2k =

P∑
s=1

ysi (xsj)
k

(6)

Given that there is a nonlinear line that models the relationship between inputs, there must be another
modeling of the variances of the data. This is done by creating an activation function, as shown in equation 7.

Φ {Λ[xj(t)]} =

{
xi(t) if ψ−

ij ≤ {Λi[xj(t)− xi(t)} ≤ ψ+
ij

Λi[xj(t)] otherwise
(7)

where

Λi(xj(t)) =

k∑
v=0

w(v,ij)(xj(t))
v (8)

These threshold regions can be expressed as:

ψ−
ij =


ψ−

1,ij if 0 ≤ xj < L
Ω

ψ−
2,ij if L

Ω ≤ xj <
2L
Ω

...

ψ−
Ω,ij if (Ω− 1)L

Ω ≤ xj < L

(9)

ψ+
ij =


ψ+

1,ij if 0 ≤ xj < L
Ω

ψ+
2,ij if L

Ω ≤ xj <
2L
Ω

...

ψ+
Ω,ij if (Ω− 1)L

Ω ≤ xj < L

(10)

Figure 1 shows how the weights are interconnect through the inputs.
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Figure 1. Interconnection of weights. The green line captures the nonlinear line modeling and the red lines capture the
variances of the data

2.0.1 Nonlinear Dimensionality Reduction

To reduce the size and the computation time of the weight sets, we can reduce the dimensionality of the weights.
Since the weights already have embedded the manifolds, we can use the weights in the reduction process. Given
that there are r different line attractor networks, there will be y different outputs, as shown in the following
equation.

Y1 = W1,kX
k +W1,k−1X

k−1 + · · ·+W1,0X
0

Y2 = W2,kX
k +W2,k−1X

k−1 + · · ·+W2,0X
0

...

Yr = Wr,kX
k +Wr,k−1X

k−1 + · · ·+Wr,0X
0

(11)

Each mth term of the networks’ memory is evaluated using singular value decomposition (SVD), as shown in
the following equation.

wd
m = Ud

mΣd
m(V d

m)T for 0 ≤ m ≤ k and 1 ≤ d ≤ r (12)

The projection of the N-dimensional data to a z-dimensional subspace using a z × N sub-matrix obtained
from the V-matrix of the SVD yields a z-dimensional output Y

′

m where z << N .

2.0.2 Computational Strategy

We can reduce the amount of computations in the network so that training the network will take much less time.
Given equation 6, we can compute certain portions of the data to reduce redundancies in the calculations. The
following stages are given below.

Stage 1 would be the calculation of powers for the inputs. In equation 6, we see that every xsj has an order
next to it, and this would be redundant for all different combinations of inputs and outputs and even inside the
equations, since there are multiple terms with the same order, hence the same value.

Stage 2 would be the calculation of the weights, given the set of normal equations and using the values
obtained from stage 1. This stage will take the most time due due to the amount of data, since the weight
matrix is #inputs×#inputs× order.

Stage 3 would be the calculation of the activation function, which is about the same as the calculation of
stage 2. Since all of the orders are known, we can reduce the amount of computations needed for finding the
order summation.

Stage 4 would be the calculation of the nonlinear dimensionality reduction. This step is dependent on the
number of inputs and the order of the system.
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0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 1 2 3 4 3 2 1 0 0 0

0 0 1 4 9 15 18 15 9 4 1 0 0

0 1 4 13 29 48 57 48 29 13 4 1 0

0 2 9 29 67 111 131 111 67 29 9 2 0

1 3 15 48 111 183 216 183 111 48 15 3 1

1 4 18 57 131 216 255 216 131 57 18 4 1

1 3 15 48 111 183 216 183 111 48 15 3 1

0 2 9 29 67 111 131 111 67 29 9 2 0

0 1 4 13 29 48 57 48 29 13 4 1 0

0 0 1 4 9 15 18 15 9 4 1 0 0

0 0 0 1 2 3 4 3 2 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0

Figure 2. An example of a 13 x 13 Gaussian kernel

2.1 Gaussian Nonlinear Line Attractor (GNLA) Network

The Gaussian Nonlinear Line Attractor Network is a modification to the original NLA network, which uses a
neighborhood approach to improve the algorithm. Local information is more important that distant information,
when looking at a biological perspective, so we can assume that using this architecture for the NLA algorithm
would improve run times and classification ability.

When implementing a Gaussian neighborhood approach, we can change the coefficient in the front and add
the distance equation. The equation can then be modified as:

xsi =

N∑
j=1

αijΛi(x
s
j) for 1 ≤ i ≤ N (13)

where

αij = exp

(
−
(

(xi − xj)2

2σ2
x

+
(yi − yj)2

2σ2
y

))
(14)

Instead of using the Gaussian Function, we can use the Gaussian kernel , for example a 13x13 Gaussian kernel
as shown in Figure 2:

Instead of the implementing the just the coefficients, we can use this kernel for each neuron, which will
effectively reduce the computation time. We can then change the equation

xsi =

N∑
j=1

AijΛi(x
s
j) for 1 ≤ i ≤ N (15)

Where n is the size of the kernel and

Aij = exp

(
−
(

(xi − xj)2

2σ2
x

+
(yi − yj)2

2σ2
y

))
(16)

We can also effectively reduce the computation time of the kernel by not computing the portions that contain
zeros, as shown in Figure 3. According to the Gaussian kernel above (which is a 13x13), we can reduce the
computation time even further since there are zeros in the kernel (28% of the Gaussian kernel are zeros).
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1 1 1

1 2 3 4 3 2 1

1 4 9 15 18 15 9 4 1

1 4 13 29 48 57 48 29 13 4 1

2 9 29 67 111 131 111 67 29 9 2

1 3 15 48 111 183 216 183 111 48 15 3 1

1 4 18 57 131 216 255 216 131 57 18 4 1

1 3 15 48 111 183 216 183 111 48 15 3 1

2 9 29 67 111 131 111 67 29 9 2

1 4 13 29 48 57 48 29 13 4 1

1 4 9 15 18 15 9 4 1

1 2 3 4 3 2 1

1 1 1

Figure 3. An example of a 13 x 13 Gaussian kernel with zeros removed

2.1.1 Nonlinear Dimensionality Reduction

When calculating the weight matrices for the Gaussian NLA network, none of the weights contain any information
of the Gaussian distances. To incorporate the function inside the weights, we must embed the terms into the
weights by multiplying the normalized mask into the weights. Given equation 16, we can embed the normalized
coefficients to multiply the weights using the following equation.

as =

 as(11) . . . as(1N)

...
. . .

...
as(N1) . . . as(NN)

 (17)

The resultant multiplcation of the weight set is given by the equation below.

w̄s
m =

 w̄s
(m,11) . . . w̄s

(m,1N)

...
. . .

...
w̄s

(m,N1) . . . w̄s
(m,NN)

 for 0 ≤ m ≤ k (18)

This nonlinear dimensionality reduction technique using SVD only focuses on a specific order of the weight
matrices. There is no interconnection between the orders, in which the algorithm contains a summation between
the orders to results in the final outputs. We propose that instead of reducing this dimensionality by adding
the orders of the matrix for the results, we can keep the orders separate concatenate all of the orders, which are
multiplied by the input, to give a larger but more meaningful distinction between the orders. This will allow even
better recognition results using fewer total weights, even though the resulting vector can be potentially larger.

2.1.2 Complexity

In Stage 1, we can find that it will be the same complexity as the previous algorithm since we are just computing
the powers.

In Stage 2, the original complexity is #inputs × #inputs × order2 due to the linear solve algorithm, but
modified complexity is #inputs × #neighbors × order2, where # neighbors is significantly smaller than the
size of the network. For example, given that we have a network of 60x80, which is 4800, an order of 4 for the
polynomial, and a kernel of size 13×13, the computation time will be 3.52% the computation time of the original.
If we reduce the kernel by taking out all zeros in the function, the computation will be 2.52% the computation
time of the original and 71.6% the computation time of the original kernel.
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Honda Chic

Nissan Srnva

Toyota Canai Nissan hlawta Toyota .Avalon

Mitsubishi lancer 1993 Jasp Wagon., 1999 Jeep Cherokee

To Ola Tacoma Mazda t lPV

Table 1. The training times of all the different stages of the algorithms. it is found that the kernel algorithm without
using zeros provides faster training times than all of the other algorithms.

Runtime Original Current Kernel Kernel (No zeros)
Stage 1 N/A 15.2 min 15.2 min 15.2 min
Stage 2 1280 min 95.3 min 3.35 min 2.4 min
Stage 3 87.5 min 87.5 min 3.08 min 2.21 min
Stage 4 10.8 min 10.8 min 10.8 min 10.8 min
Total Runtime 1378.3 min 208.8 min 32.43 min 30.61 min

In Stage 3, the complexity should be reduced just as stage 2. In Stage 4, the complexity should be the same
as the previous algorithm.

Table 1 shows the different run times for each stage of the algorithm. Going from the original to the current
architecture, we see a large reduction in stage 2, which contains several redundancies in the data. Then using
the kernel functionality, the run time for stage 2 is reduced even further, due to the algorithm only calculating
regions with the kernel. The run time is further reduced when calculating without the zeros in the kernel.

3. RESULTS

The dataset is a EO Synthetic Vehicle Database, which contains several different cars, various lighting conditions,
and multiple viewing angles, as shown in Figure 4. This dataset has been created to test the algorithms ability to
model an entire vehicle manifold across these different scenarios. The following testing scenario has been setup
using the EO Synthetic Vehicle Database. For training and testing data, we have limited the dataset to one
specific lighting scenario and 120 viewpoints of three different vehicles (Avalon, Camry, Civic). We also scale
the imagery to a 60x80 image for faster processing times. For dimensionality reduction, we use singular value
decomposition and then use euclidean distance of the transformed data in comparison to the trained data for
recognition of specific vehicles.

Figure 4. The EO Synthetic Vehicle Database. The top image contains the different camera views and lighting schemes
and the bottom image contains the different vehicles in the database.

In Table 2, we can see that the Gaussian nonlinear line attractor has the best recognition results across all
principal components. Even in small numbers of principal components, the GNLA network still is able to have
the best recognition results for this database against both kernel principal component analysis (PCA) and the
original NLA network. This is due to the modularity in the network. We can also see that the network has a
run time much less than the original NLA architecture. By incorporating both the Gaussian weighting concept
and the computational strategy, we are able to create a network that is better in most aspects.

4. CONCLUSION

It is observed that the Gaussian Nonlinear Line Attractor (GNLA) network has been drastically improved from
the previous architecture. By introducing modularity to the network, we are able to reduce the computational run
time, improve convergence characteristics, and increase the recognition rates. It has been seen in the results that

Proc. of SPIE Vol. 9477  94770E-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/01/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Table 2. The recognition results using the nonlinear line attractor network with the reduced dimensionality. It is found
that the GNLA network produced the best results.

# Prin. Comp. Kernel PCA NLA GNLA
1 39.81 47.50 35.83
2 50.16 59.72 52.78
3 53.39 86.67 63.06
4 62.52 61.39 76.94
5 63.10 63.89 81.67
6 66.75 69.17 85.00
7 65.43 66.94 86.39
8 68.61 75.28 87.22
9 68.61 72.22 91.39
10 68.72 78.61 91.94
All 98.36 99.19 99.44

the GNLA architecture works well in the EO Synthetic Vehicle Database, and we are projecting that it will work
well in other databases. Future work includes finding new weighting schemes to improve the NLA architecture
even more, find other ways to incorporate different nonlinear dimensionality techniques, and improve run times
for a robust recognition algorithm.
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