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Multiclass Object Detection with Single Query in Hyperspectral Imagery 

Using Class-Associative Spectral Fringe-Adjusted Joint Transform 

Correlation 

Paheding Sidike, Student Member, IEEE, Vijayan K. Asari, Senior Member, IEEE, and  

Mohammad S. Alam, Fellow, IEEE 

 

Abstract — We present a deterministic object detection algorithm capable of detecting multiclass 

objects in hyperspectral imagery (HSI) without any training or preprocessing. The proposed 

method, named class-associative spectral fringe-adjusted joint transform correlation (CSFJTC), is 

based on joint transform correlation (JTC) between object and non-object spectral signatures to 

search for a similar match, which only requires one query (training-free) from object’s spectral 

signature. Our method utilizes class-associative filtering, modified Fourier plane image 

subtraction, and fringe-adjusted JTC technique in spectral correlation domain to perform the object 

detection task. The output of CSFJTC yields a pair of sharp correlation peaks for a matched target 

and negligible or no correlation peaks for a mismatch. Experimental results, in terms of receiver 

operating characteristic (ROC) curves and area-under-ROC (AUROC), on three popular real-

world hyperspectral datasets demonstrate the superiority of the proposed CSFJTC technique over 

other well-known hyperspectral object detection approaches.  

Index Terms — Hyperspectral imagery, multiclass object detection, joint transform correlation, 

fringe-adjusted filter, correlation, class-associative filter, Fourier transforms 
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I. INTRODUCTION 

Hyperspectral imagery (HSI) has been extensively used for object detection and identification 

applications [1-3] since it provides plenty of spectral information to uniquely identify materials by 

their reflectance spectra. HSI-based object detection algorithms can be generally classified into 

stochastic and deterministic approaches. Deterministic approaches are comparatively simple to 

apply since it is usually based on direct spectral similarity such as spectral angles [4] or spectral 

correlation [5]. In contrast, stochastic algorithms require statistical modeling and estimation for 

target class and non-target class [1], or look for pixels that are spectrally distinct from their 

neighbors without a priori information about the target [6]. However, the major challenges 

associated with stochastic approach is that either adequate data are not available for training 

samples that account for the target and background spectral characteristics or lacking of 

sophisticated methods to model the background statistics. Particularly, to make supervised 

stochastic algorithms perform properly, a great deal of training sets is needed to avoid the well-

known Hughes effect [7]. However, training samples are limited and quite difficult to obtain in 

real-life remote sensing scenarios. Therefore, there is a need for developing a non-training based 

algorithm to perform object detection tasks. Inspired by this motivation, we herein propose a 

solution to perform a training-free hyperspectral object detection technique based on joint 

transform correlation (JTC) [8].  

JTC is originally developed for optical pattern recognition, where the reference image and the 

input scene are introduced in the input plane to create a joint image by use of spatial light modulator 

(SLM). Then an optical lens 𝐿1 performs the Fourier transform on the joint image. The intensity 

of the complex light distribution produced in the back focal plane of 𝐿1 called joint power 

spectrum (JPS) which is detected by a square-law device or a liquid crystal light valve (LCLV). In 
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the final stage of JTC, the resultant JPS is inverse Fourier transformed by a lens 𝐿2 to yield the 

correlation output. If the target is present in the input scene, a pair of strong cross-correlation peaks 

will appear in the output plane. Since the role of 𝐿1 and 𝐿2 is to perform Fourier transform and 

the joint image can be achieved by the addition operation of the reference image and the input 

image, the optical implementation of JTC can be easily adopted in image processing.  

JTC-based algorithms have shown promising results for pattern recognition in two- and three-

dimensional image processing applications [9-18]. Among the various JTC techniques, fringe-

adjusted JTC (FJTC) [18] appears to be particularly attractive because it avoids the issues 

otherwise associated with the alternates. To provide an efficient deterministic target detection 

algorithm in case of HSI, the spectral FJTC (SFJTC) has been proposed in [5]. The SFJTC 

determines a desired target by analyzing the correlation intensity between an unknown spectral 

signature and a known reference spectrum and it is able to accommodate noise and certain 

variations of the spectral signatures compared to alternate deterministic detection algorithms in 

HSI. To improve the feasibility of the SFJTC, shifted phase-encoded SFJTC has been presented 

to alleviate the effects of false alarms and other artifacts [19], while the discrete wavelet-based 

SFJTC, as a supervised training algorithm, has been suggested to make the SFJTC more insensitive 

to spectral variability [20]. However, all of these techniques were designed to detect only similar 

patterns (single class objects) in constant time using spectral signature correlation. JTC-based 

dissimilar pattern detection techniques from two-dimensional image have been introduced in the 

literatures [21-23] and JTC-based multiclass target detection in HSI has been initiated in [24]. In 

this paper, we propose a class-associative spectral fringe-adjusted joint transform correlation 

(CSFJTC) technique for detecting multiclass objects consisting of dissimilar patterns.  
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In our proposed algorithm, input spectral signatures from a given hyperspectral image data cube 

are correlated with multiple reference signatures via spectral signature combination and class-

associative method [25]. To achieve a better correlation output, the concept of FJTC and the 

modified Fourier plane image subtraction (FPIS) technique [21, 26] are incorporated in the 

multiple target detection processes. The output of CSFJTC provides a pair of sharp and high 

correlation peaks for a match and negligible or no correlation peaks for a mismatch. In other words, 

if there are desired multiclass patterns are present in the scene, CSFJTC yields distinctive 

correlation peaks for multiclass objects simultaneously without losing inherent advantages of the 

SFJTC. Similar to some deterministic target detection approaches, it also does not need any a 

priori training step, whereas in many machine learning techniques, such as support vector 

machines (SVMs) [27-30] and extreme learning machines (ELMs) [31-33], require the target and 

non-target information before performing target detection or classification process. Furthermore, 

CSFJTC employs the decision metric such as peak-to-clutter mean (PCM) [5] to make its output 

hinged on the signature of the target but not the amplitude. This also enables CSFJTC robust to 

variations of spectral signature since the reflectance information of a material is usually maintained 

in HSI whereas the intensity may change due to background noise.  

In a nutshell, the proposed method operates using a single pixel spectrum of a similar or 

dissimilar class of objects to find matches, does not require prior knowledge (learning) about 

objects or background, and does not require any preprocessing step of a target spectrum. 

The main innovative contributions of this paper can be summarized as follows.  

1) A class-associative SFJTC technique is developed for object detection in HSI.  

2) A deterministic training-free, multiclass object detection algorithm for hyperspectral data is 

proposed in this paper.      
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   We also conduct a comparative study and investigate the relationship between SFJTC and 

CSFJTC techniques in hyperspectral target detection. It is shown that they are closely related and 

essentially equivalent provided that the reference spectral signatures in SFJTC and CSFJTC are 

the same and input hyperspectral data has negligible noise or large signal-to-noise ratio (SNR).  

The rest of this paper is organized as follows: Section II reviews SFJTC algorithm and provides 

formulation of the proposed method. In Section III, test results are presented and discussed. 

Finally, Section IV outlines concluding remarks and further directions of this technology. 

II. THEORETICAL ANALYSIS 

A. Spectral Fringe-adjusted Joint Transform Correlation (SFJTC) 

The basic concept of SFJTC is derived from the JTC, where a target signal correlated with 

unknown input signals through Fourier transform process. In case of hyperspectral pattern 

recognition for a single pixel object, the target signal can be viewed as discrete one-dimensional 

vector to represent spectral signature. With incorporating the fringe-adjusted filter (FAF) [18] in 

spectral JTC leads to the SFJTC. To seek the desired targets, all of the pixels spectra in 

hyperspectral data are individually correlated through the SFJTC process. To mathematically 

formulate this concept, consider a hyperspectral dataset with 𝑀 pixels {𝒔𝑖} 𝑖=1
𝑀   in ℝ𝐿 where 𝐿 is 

the number of spectral bands and 𝒔𝑖 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝐿] represents the 𝑖th (𝑖 = 1,2, … , 𝑀) pixel 

spectrum. Further assume a row vector 𝒓 = [𝑟1, 𝑟2, … , 𝑟𝐿] as the reference (pure target) spectral 

signature and let 𝒓 and 𝒔𝑖 be separated by a distance 2𝑑 along the 𝑥–axis, then the joint spectral 

signature 𝒇𝑖 can be expressed as  

                      𝒇𝑖(𝑥) = 𝒓(𝑥 + 𝑑) + 𝒔𝑖(𝑥 − 𝑑)                                                                            (1) 
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Form (1), it can be observed that each pixel vector in hyperspectral data cube is individually jointed 

to the reference spectrum. Applying the Fourier transform to (1), yields,   

                          𝑭𝑖(𝑢) = |𝑹(𝑢)|exp[𝑗𝜙𝒓(𝑢) + 𝑗𝑢𝑑] + |𝑺𝑖(𝑢)|exp[𝑗𝜙𝒔𝑖
(𝑢) − 𝑗𝑢𝑑],                    (2)  

where |𝑹(𝑢)| and |𝑺𝑖(𝑢)| are the amplitude; 𝜙𝒓(𝑢) and 𝜙𝒔𝑖
(𝑢) are the phases of the Fourier 

transform of 𝒓(𝑥) and 𝒔𝑖(𝑥), respectively; and 𝑢 is a frequency-domain variable in 𝑥–axis 

direction. The corresponding JPS can be calculated by 

                        𝒀𝑖(𝑢)  =  |𝑭𝑖(𝑢)|2 = 𝑭𝑖(𝑢)𝑭𝑖(𝑢)∗ 

                                   =   |𝑹(𝑢)|2  +  |𝑺𝑖(𝑢)|2 + |𝑹(𝑢)||𝑺𝑖(𝑢)|∗ 

                                   ×  exp[𝑗{𝜙𝒓(𝑢) − 𝜙𝒔𝑖
(𝑢)  + 2𝑢𝑑}] + |𝑹(𝑢)|∗|𝑺𝑖(𝑢)|  

                                  × exp[𝑗{𝜙𝒔𝑖
(𝑢)  − 𝜙𝒓(𝑢) − 2𝑢𝑑}],                                                           (3) 

where * denotes complex conjugate, |𝑹(𝑢)|2 and |𝑺𝑖(𝑢)|2 are the autocorrelation components of 

𝒓(𝑥) and 𝒔𝑖(𝑥), respectively; and the last two terms are the cross-correlation components between 

the reference and input signatures. The inverse Fourier transform of the JPS in (3) yields  

                                     𝒚𝑖(𝑥)  = 𝒓(𝑥) ⨂ 𝒓(𝑥) +  𝒔𝑖(𝑥) ⨂ 𝒔𝑖(𝑥)                                

                                                + 𝒓(𝑥) ⨂ 𝒔𝑖(𝑥) ∗ 𝛿(𝑥 + 𝑑) +  𝒔𝑖(𝑥) ⨂ 𝒓(𝑥) ∗ 𝛿(𝑥 − 𝑑)            (4)  

where ⨂ and ∗ denote the correlation and convolution operations, respectively. The first two terms 

in (4) are dc terms, or zero-order diffractions at the origin of the output plane. These terms usually 

introduce false alarms to the system, thus to avoid this issue, the power spectra of the input 

signature and the reference signature are subtracted from the JPS. This resultant in the modified 

JPS, expressed as 

|𝑷𝑖(𝑢)|2  =  𝒀𝑖(𝑢) − |𝑹(𝑢)|2 −  |𝑺𝑖(𝑢)|2 =  |𝑹(𝑢)||𝑺𝑖(𝑢)|∗ 

                                                    × exp[𝑗{𝜙𝒓(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑}] +  |𝑹(𝑢)|∗|𝑺𝑖(𝑢)| 

                                                × exp[𝑗{𝜙𝒔𝑖
(𝑢) − 𝜙𝒓(𝑢) − 2𝑢𝑑}]                                                  (5)                          
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Performing inverse Fourier transform of the modified JPS, produces two cross-correlation 

components, given by 

𝒑𝑖(𝑥) = 𝒓(𝑥) ⨂ 𝒔𝑖(𝑥) ∗ 𝛿(𝑥 + 𝑑) +  𝒔𝑖(𝑥) ⨂ 𝒓(𝑥) ∗ 𝛿(𝑥 − 𝑑)                  (6) 

The performance of the correlation output can be further improved by multiplying the modified 

JPS with FAF before the final inverse Fourier transform. The FAF is characterized by the transfer 

function, defined as 

                                                𝑯(𝑢) =
𝐵(𝑢)

𝐴(𝑢) + |𝑹(𝑢)|2
                                                                            (7) 

where 𝐴(𝑢) and 𝐵(𝑢) are either constants or functions of 𝑢. When 𝐵(𝑢) = 1 and |𝑹(𝑢)|2 ≫ 𝐴(𝑢), 

the FAF becomes a perfect inverse filter. The FAF filtered JPS is given by 

                                            𝑮𝑖(𝑢) = 𝑯(𝑢) × |𝑷𝑖(𝑢)|2                                                                  (8) 

Finally, an inverse Fourier transform of the 𝐺𝑖(𝑢) yields the correlation output as 

                                           𝒈𝑖(𝑥) = 𝐹−1{𝑯(𝑢) × |P(𝒖)|2}                                                                      (9) 

Assuming that the reference spectrum is the same as the input spectrum, (8) may be rewritten as 

                                           𝑮𝑖(𝑢)  ≈ |𝑹(𝑢)|−2 × |𝑹(𝑢)|2[exp(𝑗2𝑢𝑑) + exp(−𝑗2𝑢𝑑)] 

≈ exp(𝑗2𝑢𝑑) + exp(−𝑗2𝑢𝑑)                          

                                                   ≈ 2cos (2𝑢𝑑)                                                                        (10) 

Consequently, (9) becomes 

                                          𝒈𝑖(𝑥) ≈ 𝛿(𝑥 + 2𝑑) +  𝛿(𝑥 − 2𝑑)                                                                     (11) 

From (11), it is evident that if the target signal exists in the input scene, SFJTC produces the desired 

pair of delta-function-like cross-correlation. 

B. Proposed Class-associative SFJTC (CSFJTC) 

    SFJTC can be only performed on single reference (i.e., single class) based target detection tasks, 

which is incapable of multiclass object detection in HSI. Therefore, we propose a multiclass target 
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detection strategy, termed as CSFJTC. Block diagram of the CSFJTC algorithm for correlating the 

input spectral signature with two reference spectra is shown in Fig. 1. To simply illustrate the 

concept, let us consider two known targets from two classes have unique spectral signatures, 

denoted as 𝒓1(𝑥) and 𝒓2(𝑥), respectively. Then two joint signatures of 𝒓1(𝑥) and 𝒔𝑖(𝑥) in 𝑥-axis 

direction can be obtained as follows 

   𝒇11𝑖(𝑥)  = 𝒓1(𝑥 + 𝑑) + 𝒔𝑖(𝑥 − 𝑑)                                                  (12-a)                                 

                                       𝒇21𝑖(𝑥)  = 𝒓1(𝑥 + 𝑑) − 𝒔𝑖(𝑥 − 𝑑)                                                  (12-b)      

       

Similarly, using 𝒓2(𝑥) and 𝒔𝑖(𝑥), another two joint spectral signatures are generated by 

     𝒇12𝑖(𝑥)  = 𝒓2(𝑥 + 𝑑) + 𝒔𝑖(𝑥 − 𝑑)                                                (13-a)                                      

                                         𝒇22𝑖(𝑥)  = 𝒓2(𝑥 + 𝑑) − 𝒔𝑖(𝑥 − 𝑑)                                                (13-b) 

Applying Fourier Transform to (12) with respect to reference spectrum 𝑟1, we get        

                     𝑭11𝑖(𝑢) = |𝑹1(𝑢)|exp[𝑗𝜙𝑟1(𝑢) + 𝑗𝑢𝑑] + |𝑺𝑖(𝑢)|exp[𝑗𝜙𝒔𝑖
(𝑢) − 𝑗𝑢𝑑]            (14-a)                         

                     𝑭21𝑖(𝑢) = |𝑹1(𝑢)|exp[𝑗𝜙𝑟1(𝑢) + 𝑗𝑢𝑑] − |𝑺𝑖(𝑢)|exp[𝑗𝜙𝒔𝑖
(𝑢) − 𝑗𝑢𝑑]            (14-b)                        

Fig. 1.   Block diagram of the proposed pattern recognition scheme for the case of two reference spectra. JPS: Joint Power 

Spectrum; CJPS: Combination of JPS; CSGFAF: Class-associative Spectral Generalized Fringe-Adjusted Filter.  
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where 𝑭11𝑖 and 𝑭21𝑖 are the Fourier transform of 𝒇11𝑖, 𝒇21𝑖, respectively. Similarly, applying 

Fourier transform to (13), we obtain 

           𝑭12𝑖(𝑢) = |𝑹2(𝑢)|exp[𝑗𝜙𝑟2(𝑢) + 𝑗𝑢𝑑] + |𝑺𝑖(𝑢)|exp[𝑗𝜙𝒔𝑖
(𝑢) − 𝑗𝑢𝑑]                       (15-a)  

           𝑭22𝑖(𝑢) = |𝑹2(𝑢)|exp[𝑗𝜙𝑟2(𝑢) + 𝑗𝑢𝑑] − |𝑺𝑖(𝑢)|exp[𝑗𝜙𝒔𝑖
(𝑢) − 𝑗𝑢𝑑]                       (15-b)  

where 𝑭12𝑖 and 𝑭22𝑖
 are the Fourier transform of 𝒇12𝑖, 𝒇22𝑖, respectively. The corresponding JPS 

to (14) can be computed as follows:  

𝑻11𝑖 =  |𝑭11𝑖|
2 =  |𝑹1(𝑢)|2 + |𝑺𝑖(𝑢)|2 + 2|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos [𝜙𝑟1(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]   (16-a)                  

𝑻21𝑖 =  |𝑭21𝑖|
2 =  |𝑹1(𝑢)|2 + |𝑺𝑖(𝑢)|2 − 2|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos [𝜙𝑟1(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]   (16-b)                  

Likewise, the JPS for (15) are expressed by   

𝑻12𝑖 =  |𝑭12𝑖|
2 =  |𝑹2(𝑢)|2 + |𝑺𝑖(𝑢)|2 + 2|𝑹2(𝑢)||𝑺𝑖(𝑢)|cos [𝜙𝑟2(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]   (17-a)                 

𝑻22𝑖 =  |𝑭22𝑖|
2 =  |𝑹2(𝑢)|2 + |𝑺𝑖(𝑢)|2 − 2|𝑹2(𝑢)||𝑺𝑖(𝑢)|cos [𝜙𝑟2(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]   (17-b)                                    

On the right-hand side of (16) and (17), the first two terms corresponding to the zero-order terms, 

whereas the third term is the desired cross-correlation between the reference spectrum and the 

input spectrum. The zero-order diffractions are due to autocorrelation of the reference spectrum 

and the input spectrum, which are responsible for producing false alarms in the JPS. To suppress 

the zero-order term and reduce the effects of input-scene noise, the combination of the JPS is 

computed as 

           𝑷1𝑖(𝑢) = 𝑻11𝑖 −  𝑻21𝑖  =  4|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟1(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]                        (18)           

and 

            𝑷2𝑖(𝑢) = 𝑻12𝑖 −  𝑻22𝑖 =  4|𝑹2(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟2(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]                        (19) 

From (18) and (19), it is evident that the undesired zero-order terms are eliminated simply by 

subtraction operation using the JPS of two joint spectral signatures for each reference class, which 
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can be considered as an alternative approach compared to FPIS, we may term our approach as a 

modified FPIS (MFPIS). In contrast, SFJTC employs the FPIS technique to eliminate the zero-

order terms, where the power spectra of the input signature and the reference signature are 

subtracted from the JPS as shown in (5). However, the FPIS approach requires the power spectra 

of the input signature and the reference signature, which introduces complexity for both real-world 

optical implementation. Therefore, we generate two joint spectral signatures for each reference 

class to remove the undesired autocorrelation terms and avoid implementation complexity. 

Comparison of FPIS-based and MFPIS-based CSFJTC will be discussed in Section III-C.  

   To detect multiple class objects simultaneously, the JPS in (18) and (19) are further combined to 

achieve equal correlation peaks for both targets and their energy contents are controlled by 

coefficients 𝑎1
  and 𝑎2, such that 𝑎1 +  𝑎2 = 1 as 

                                                        𝑷𝑖(𝑢) = 𝑎1𝑷1𝑖(𝑢) +  𝑎2𝑷2𝑖(𝑢)                                                                           

                                                = 𝑎1{4|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟1(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]} 

                                                + 𝑎2{4|𝑹2(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟2(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]}                (20) 

If there are 𝑁 classes in the input hyperspectral image, (20) can be rewritten as 

                            𝑷𝑖(𝑢) = ∑ 𝑎𝑗𝑷𝑗𝑖(𝑢)

𝑁

𝑗

 

                                   = 𝑎1{4|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟1(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]} 

                                   + 𝑎2{4|𝑹2(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟2(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]} + ⋯                   

                                   + … + 𝑎𝑁{4|𝑅𝑁(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝒓𝑁(𝑢) − 𝜙𝒔𝑖
(𝑢) + 2𝑢𝑑]}                    (21) 

where 𝑎1, 𝑎2, … , 𝑎𝑁 are nonzero coefficients constrained to ∑ 𝑎𝑗 = 1𝑁
𝑗=1 . Note that 𝑎1

 and 𝑎2
 in 

(20) correspond to the case of two classes. The values of 𝑎𝑗(𝑗 = 1,2, … , 𝑁) may be varied 

depending on the energy content of the JPS 𝑷𝑗𝑖. The study in [21], different values of parameters 
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𝑎1
 and 𝑎2

 for multiclass object detection in 2D imagery is investigated and it is found that the 

detection performance can be improved by fine tuning these parameters.  

    In FJTC, the FAF is effectively utilized to suppress the noise spectrum at the Fourier plane. 

Thus, to produce sharper and larger correlation peak intensity, the FAF filter in (7) is employed 

and reformulated to a class-associative spectral generalized FAF (CSGFAF), defined as 

                                       𝐻̃(𝑢) =
1

𝜖 + |𝑹1(𝑢)|𝑚 +  |𝑹2(𝑢)|𝑚
                                                               (22) 

where 𝜖 is a constant which is used to avoid the presence of zero poles that may force the gain of 

the CSGFAF to approach infinity, thereby creating a serious design problem in realizing this filer. 

The parameter 𝑚 is a constant that may be either 0, 1 or 2. Depending on the value of 𝑚, CSGFAF 

in (22) corresponds to the classical matched filter (𝑚 = 0), phase only filter (𝑚 = 1), or fringe-

adjusted filter (𝑚 = 2). Thus, all important types of matched filter based correlators can be 

implemented using the proposed CSGFAF while avoiding the limitations of matched filter based 

correlators. Previous work in [23] has shown that for an input signal with noise, the phase-only 

filter (𝑚 = 1) yields better correlation outputs than the fringe-adjusted filter (𝑚 = 2). 

Accordingly, the JPS in (20) can be further enhanced by multiplying the CSGFAF and yields,   

                             𝑮̃𝑖(𝑢)   =  𝑷𝑖(𝑢)  ×   𝑯̃(𝑢) 

                                               =
[𝑎1𝑃1𝑖(𝑢) +  𝑎2𝑃2𝑖(𝑢)]

𝜖 + |𝑹1(𝑢)|𝑚 +  |𝑹2(𝑢)|𝑚
                                                                 (23) 

It is worth to mention that for single class object detection, only one reference spectral signature 

will be used in CSFJTC. In this case, (23) will be expressed as  

                            𝑮̃𝑖(𝑢)   =  𝑷𝑖(𝑢)  ×   𝑯̃(𝑢) 

                                              =
𝑎1𝑃1𝑖(𝑢)

𝜖 + |𝑹1(𝑢)|𝑚
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                                          =
𝑎1{4|𝑹1(𝑢)||𝑺𝑖(𝑢)|cos[𝜙𝑟1(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]}

𝜖 + |𝑹1(𝑢)|𝑚
                       (24) 

If input and reference spectral signatures are the same and |𝑹1(𝑢)|m ≫ 𝜖 for 𝑚 = 2, then (24) 

becomes 

                                                     𝑮̃𝑖(𝑢)  ≈  4𝑎1 cos(2𝑢𝑑)                                                                                 (25)                                                        

Finally, applying an inverse Fourier transform to 𝑮̃𝑖(𝑢) produces the final correlation output.  

     For the case of two reference spectral signatures from different class, i.e., 𝒓1 ≠  𝒓2, if the input 

pixel spectral signature is the same as 𝒓1, the parameter 𝑚 = 2, and for |𝑹1(𝑢)|2, |𝑹2(𝑢)|2 ≫ 𝜖, 

𝑮̃𝑖(𝑢) in (23) becomes 

              𝑮̃𝑖(𝑢)  ≈  𝑷𝑖(𝑢)  ×   𝑯̃(𝑢)     

= 4
𝑎1 cos(2𝑢𝑑) + 𝑎2𝐾1 cos[𝜙𝑟2(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]

1 +  𝐾1
2                                      (26) 

where 𝐾1 = ∑
|𝑹2(𝑢)|

|𝑹1(𝑢)|
. For 𝐾1 ≪ 1 and 𝑎1 = 𝑎2,  𝑮̃𝑖(𝑢) in (26) may be approximated as  

                                                     𝑮̃𝑖(𝑢)  ≈  4𝑎1 cos(2𝑢𝑑)                                                                                 (27)                                                        

Similarly, if the input spectrum is the same as 𝒓2, 𝑮̃𝑖(𝑢) in (23) becomes 

              𝑮̃𝑖(𝑢)  ≈  𝑷𝑖(𝑢)  ×   𝑯̃(𝑢)

= 4
[𝑎2 cos(2𝑢𝑑) + 𝑎1𝐾2 cos[𝜙𝑟1(𝑢) − 𝜙𝒔𝑖

(𝑢) + 2𝑢𝑑]]

1 +  𝐾2
2                                     (28) 

when 𝐾2 = ∑
|𝑅1(𝑢)|

|𝑅2(𝑢)|
. For 𝐾2 ≪ 1 and 𝑎1 = 𝑎2, 𝑮̃𝑖(𝑢) in (28) may be recomputed as  

                                              𝑮̃𝑖(𝑢)  ≈  4𝑎2 cos(2𝑢𝑑)                                                                               (29)                                                                         

For 𝐾1 = 1, i.e., 𝒓1 =  𝒓2, using the same parameters as in (26), 𝑮̃𝑖(𝑢) may be estimated as 

                𝑮̃𝑖(𝑢)  ≈  2[𝑎1 cos(2𝑢𝑑) + 𝑎2 cos(2𝑢𝑑)] ≈  2cos(2𝑢𝑑)                                                (30) 
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Accordingly, the same result can be obtained for (26) when 𝐾2 = 1. From (27), (29) and (30), it is 

observed that an inverse Fourier transform of the 𝑮̃𝑖(𝑢) will generate a pair of delta-function-like 

cross-correlation peaks indicating the presence of a target. In addition, comparing (10), (25) with 

(30), it can be seen that SFJTC and CSFJTC yield similar outputs when input targets are same as 

the reference spectral signature. However, here we assume that signal-to-noise ratio (SNR) is large 

enough or noise can be negligible.   

    Study in [5] has shown that the highest value of the correlation output does not yield reliable 

decision for target discrimination. This is because the correlation peak intensity (CPI) from false 

signals may have very close value with that from true signals in the correlation plane. Therefore, 

to avoid false target detection, we utilizes PCM instead of CPI to identify the targets. PCM 

corresponding for 𝑖th pixel spectrum is defined as 

                                    𝑃𝐶𝑀    =    (
𝐶𝑃𝐼

𝐿 − 1
 ∑  𝒈̃𝑖(𝑥)

𝑔̃𝑖≠𝐶𝑃𝐼

     )                                                              (31) 

where 𝒈̃𝑖(𝑥) is the inverse Fourier transform of 𝑮̃𝑖(𝑢) in (30), and 𝐿 represents the half length of 

the correlation output vector. If the target presents in the input image, the final correlation output 

in the half correlation plane will produce the desired delta-function-like correlation peak at the 

location of the target in the scene.  

     The performance of the proposed technique can also be quantified in terms of the true positive 

rate (TPR) and false positive rate (FPR), which are defined as 

                                         𝑇𝑃𝑅 =  
∑ 𝑡𝑝

∑ 𝑡𝑝 + ∑ 𝑓𝑛
                                                                                        (32) 

and 
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                                         𝐹𝑃𝑅 =  
∑ 𝑓𝑝

∑ 𝑓𝑝+∑ 𝑡𝑛
                                                                                                (33) 

where 𝑡 is the target pixel as per the truth mask, 𝑡𝑝 is the target pixel detected correctly (true 

positive), 𝑓𝑝 is the false alarm target pixel (false positive), 𝑡𝑛 is background pixel detected correctly 

(true negative), and 𝑓𝑛 is the false background pixel (false negative). 

 

     To illustrate a correlation output of CSJTC based on the analysis above, we correlate two known 

reference spectral signatures with three input spectral signatures as shown in Figs. 2(a) and 2(b), 

respectively. Figure 2(a) shows two known reference signals, whereas Fig. 2(b) shows the 

unknown input spectral signal is dissimilar with either the reference signal 1 or the reference signal 

2 which may be considered as a non-target object or false input. The corresponding correlation 

outputs of the CSFJTC are shown in Fig. 3, where y-axis indicates the correlation intensity, i.e., 

CPI. From this figure, it is evident that CSFJTC yields a pair of distinct peaks for a matched signal 

and negligible ones for a mismatch. Table 1 shows quantitative results from Fig. 3 in terms of CPI 

and PCM metrics. From Table 1, it can be seen that CSFJTC produces much higher CPI and PCM 

when an input is a true target spectral signature than an input is a false signal. It can also be 

Fig. 2. (Color online) Reference and input spectral signatures. (a) Reference 1 and reference 2 spectral signatures. (b) 

Reference 1 and reference 2 with a false input. 
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observed that PCM provides better discriminability than CPI. Note that the values of CPI and PCM 

for the two true inputs are not equal. This is due to the energy content of the power spectra of the 

two reference signals are different. However, we can obtain the desired correlation output by 

simply adjusting parameters 𝑎1
 and 𝑎2. 

 

TABLE I 

QUANTITATIVE ANALYSIS OF THE CSFJTC OUTPUTS CORRESPONDING TO FIGURES 2 AND 3. 

Spectral signatures Metric CSFJTC (Fig. 3) 

An input as Reference 1  
CPI 0.59 

PCM 32.48 

An input as Reference 2  
CPI 0.54 

PCM 23.63 

A false input (Fig. 2(b)) 
CPI 0.14 

PCM 3.93 

 

Fig. 3. Correlation outputs with spectral signatures. (a) Correlation output of CSFJTC for an input as reference 1. (b) 

Correlation output of CSFJTC for an input as reference 2. (c) Correlation output of CSFJTC for a false input as in Fig. 

2(b).  For parameters in CSFJTC,  𝑎1 = 𝑎2 = 0.5 and 𝑚 =  2.  

(c) 

(a) (b) 
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III. EXPERIMENTAL RESULTS 

    In this section, we validate the proposed CSFJTC technique on three commonly used 

hyperspectral datasets from two aspects.  We first evaluate the performance of CSFJTC in single 

class object detection in HSI, as well as comparisons to other eight competitive hyperspectral target 

detection algorithms which do not require training. They are adaptive matched filter (AMF) [1], 

spectral JTC (SJTC) [5], SFJTC [5], spectral angle mapper (SAM) [4], constrained energy 

minimization (CEM) [34], adaptive cosine/coherent estimator (ACE) [35, 36], spectral 

information divergence (SID) [37], and Euclidian minimum distance (EMD) [38]. Then we 

conduct experiments on multiclass object detection tasks with one query in each class of objects 

as a reference spectral signature for CSFJTC and compare the results with two well-known non-

training based multiclass hyperspectral object detectors.  

A. Dataset Description and Setups 

Three hyperspectral datasets, as described below, are used for testing and evaluation.   

    Indian Pines: Indian Pines hyperspectral data was acquired by the airborne visible/infrared 

imaging spectrometer (AVIRIS) over the northwestern Indiana. The image has 220 spectral bands 

of size 145×145 pixels within spectral range from 0.4 to 2.5µ𝑚. There are sixteen mutually 

exclusive classes considered in this test site. Prior to experiments, twenty water absorption bands 

are removed, resulting in 200 spectral bands remained. Figure 4 (a) shows the false color composite 

image and the corresponding ground truth is depicted in Fig. 4 (b). 

    Salinas: This scene was gathered by 224-band AVIRIS over Salinas Valley, California. The 

data has a size of 512×217 pixels with a spatial resolution of 3.7-meter per pixel. Twenty water 

absorption bands (108-112, 154-167, 224) were discarded before experiments. The scene is 
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covered by vegetables, bare soils and vineyard fields which consists sixteen classes.  Figures 5 (a) 

and 5 (b) show the corresponding false color composite image and ground truth data, respectively.  

The University of Pavia: The University of Pavia test site was collected by the Reflective Optics 

System Imaging Spectrometer (ROSIS) over Pavia, northern Italy. The image has 115 bands of 

size 610 × 340 pixels with wavelength ranging from 0.43 to 0.86 µm and is characterized by a 

spatial resolution of 1.3-meter per pixel. By removing the noisy bands, the remaining 103 spectral 

channels were used in the experiment. Nine land-cover classes were identified as shown in Fig. 6.  

   

                   

B. Experiments on Single Class Object Detection 

   In Section II-B, we have theoretically shown that the proposed CSFJTC algorithm can perform 

single object detection tasks by choosing one reference spectral signature for each class at a time. 

Similar to SFJTC, CSFJTC is also insensitive to the intensity changes of the reference signature, 

since it records the ratio of the highest peak to the clutter mean for the pixel under analysis. We 

also concluded that under certain circumstance, SFJCT and CSFJYC will yield approximately the 

same results. To examine these remarks, we apply CSFJTC and SFJTC as well as SJTC, AMF, 

SAM, CEM, ACE, SID, and EMD on abovementioned three hyperspectral datasets. The detection 
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(a) (b) 

Fig. 4. The Indian Pines dataset. (a) False-color composite. (b) Ground truth. 
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results are then compared both visually and quantitatively using receiver operating characteristic 

(ROC) curves and the corresponding area-under-ROC (AUROC). The ROC curve describes the 

true positive rate (TPR) as a function of the false positive rate (FPR). The TPR and FPR can be 

computed as expressed in (32) and (33), respectively.  

    Experimental Setup: In all experiments, we firstly normalize the input image between 0 and 1. 

Next, apply maximum noise fraction (MNF) [39] transform, which is also referred to noise-

adjusted principal components (NAPC) [40] transform, on the original image as a feature 

extraction. Compared to principal component analysis (PCA) [41], MNF arranges principal 

components (PCs) in decreasing order of SNR rather than variance. By retaining the sufficient 

lower bands in MNF transformed image, we are able to reduce the data dimension and obtain large 

SNR band images. As mentioned earlier, larger SNR makes the outputs of CSFJTC and SFJTC 

the same or similar, and MNF transform provides such a stage for this condition. In this 

experiment, we empirically choose the first 50 bands of MNF transformed image. To convincingly 

compare and estimate the capabilities of the proposed method with other approaches, we run the 

experiments ten times with randomly selected reference spectrum for each trial, and ROC and 

AUROC are averaged over these ten repeated trials.  

    Parameters Setting: For the parameters of CGFAF in CSFJTC, we select standard values as 𝜖 =

10−3 and 𝑚 = 2. To demonstrate the similarity of SFJTC and CSFJTC for single class object 

detection, we use one reference spectral signature in CSFJTC for each class object detection and 

the JPS coefficient 𝑎𝑗(where 𝑗 = 1 in single class object detection) is set to 1.  As for the FAF in 

SFJTC, we also set 𝐴(𝑢) = 10−3 and 𝐵(𝑢) = 1 to have a fair comparison with CSFJTC.  

Results and Comparisons: In this section of experiments, since we deal with single class object 

detection, ROC curve can be generated for each class to visually assess different detection 
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methods. However, due to large amount of classes in the datasets, it would be inefficient to present 

all ROC curves here. Thus, we suggest to produce a mean ROC (MROC) curve for each dataset 

by averaging ROC of each class. Figures 7, 8 ad 9 show the corresponding MROC curves obtained 

by different methods that tested on Indian Pines, Salinas and University of Pavia datasets, 

respectively. Qualitatively, the closer to the upper left corner of the plot in ROC curves, the better 

the performance is. Consequently, a bigger value of AUROC indicates a better outcome.  
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Fig. 5. The Salinas Scene dataset. (a) False-color composite. (b) Ground truth. 
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From test results on the Indian Pines dataset as shown in Fig. 7 and Table II, it is clear that 

CSFJTC and SFJTC have superior performance than the other approaches. It is worth noting that 

CSFJTC and SFJTC have identical results, so their ROC curves in Fig. 7 are overlapped, which 

makes the plot for SFJTC is not visible in this figure and also the other similar figures. Table II 

reports the corresponding AUROC of various detection algorithms for each class in the dataset. 

The bold numbers in the table denote the greatest performance among all detectors. From this 

table, it can be observed that both SFJTC and CSFJTC provide highest AUROC in nine out of 

sixteen classes and thus yield best results when considering the average AUROC. Comparing AMF 

with CEM, it is not surprising to discover that they have very similar outputs. This is due to the 

fact that the AMF is essentially a mean-centered version of CEM, except that AMF uses the 

covariance matrix instead of the correlation matrix used in CEM.  

Figure 8 depicts MROC curves for the Salinas dataset and Table III exhibits the corresponding 

AUROC for the sixteen types of land-cover classes. Similar to the results obtained from the 

Fig. 6. The University of Pavia dataset. (a) False-color composite. (b) Ground truth. 
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experiments on the Indian Pines image, CSFJTC and SFJTC outperform the other methods in terms 

of AUROC. Moreover, from ROC curves provided in Fig. 8, we observe that for any given false 

positive rate, CSFJTC and SFJCT produce higher true positive rate than the other techniques, 

indicating their effectiveness.  

Test results on the University of Pavia dataset are shown in Fig. 9 and Table IV. From the ROC 

plots in Fig. 9, it is obvious that the proposed algorithm along with SFJTC still achieve stellar 

detection results, this is also verified in Table III in terms of AUROC. Comparing test results on 

this image with previous two datasets, most detectors including ACE, CEM, AMF, SID, SFJTC 

and CSFJTC yield lower AUROC, this may be because of heavier spectral variability and large 

amount of pixel mixture happened in this test site. 

    Performance of the aforementioned detectors can be further analyzed in terms of their 

mathematical formulation, such as deterministic or statistic based measure. Deterministic target 

detection techniques, such as SAM, calculate the spectral similarity value between an input 

spectral signature and target spectral signatures using only spectral vectors, which is effective only 

if the spectral signature vectors to be compared are pure signatures of the materials. Accordingly, 

if a target signature vector is either mixed by other substances such as background signatures (non-

target signatures) or embedded in a single signature as a subpixel target, the deterministic approach 

may fail in target determination and produce false alarms. These obstacles can be partially resolved 

by statistical approaches, such as ACE which is capable of detecting subpixel targets. This echoes 

with results from Tables II, III, IV where statistical approaches yields better detection results than 

deterministic ones due to mixed spectral signatures may occur in the input datasets. However, 

many statistical models, such as AMF and ACE, assume the background as a multivariate normal 

distribution, which requires covariance matrices should be calculated over normally distributed 
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data region which is not always true in real-world HSI data. Even though CEM as subpixel detector 

is not based on assumption of background statistics, it is found to be very sensitive to noise [42].  

Furthermore, it is worth to noting that although the proposed CSFJTC is a deterministic target 

detection algorithms, it even outperforms the abovementioned statistic based methods. This is 

because CSFJTC is not a simple step process to measure similarity of spectral signatures, but it 

involves multiple stages to aid target determination, such as JPS subtraction and fringe-adjusted 

filtering which play significant roles in accommodating corrupted spectral signatures. 
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Fig.7. MROC for the Indian Pines dataset.  
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Fig.9. MROC for the University of Pavia dataset.   
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TABLE II 

 AUROC COMPARISONS FOR THE INDIAN PINES DATASET 

 

TABLE III 

 AUROC COMPARISONS FOR THE SALINAS DATASET 

 

Class Samples 
Methods 

SAM ACE CEM AMF SID EMD SJTC SFJTC CSFJTC 

Alfalfa 46 0.401 0.868 0.923 0.929 0.891 0.326 0.578 0.936 0.936 

Corn-notill 1428 0.431 0.539 0.598 0.602 0.829 0.601 0.889 0.839 0.839 

Corn-mintill 830 0.567 0.625 0.685 0.685 0.858 0.879 0.768 0.866 0.866 

Corn 237 0.651 0.536 0.614 0.616 0.764 0.926 0.666 0.833 0.833 

Grass-pasture 483 0.626 0.703 0.710 0.713 0.665 0.791 0.265 0.716 0.716 

Grass-trees 730 0.591 0.720 0.758 0.767 0.756 0.614 0.392 0.790 0.790 

Grass-pasture-mowed 28 0.416 0.931 0.969 0.967 0.932 0.248 0.598 0.971 0.971 

Hay-windrowed 478 0.602 0.767 0.877 0.875 0.921 0.099 0.608 0.958 0.958 

Oats 20 0.597 0.812 0.888 0.887 0.942 0.849 0.438 0.955 0.955 

Soybean-notill 972 0.362 0.562 0.624 0.622 0.828 0.473 0.847 0.835 0.835 

Soybean-mintill 2455 0.491 0.565 0.636 0.635 0.833 0.592 0.887 0.863 0.863 

Soybean-clean 593 0.445 0.540 0.638 0.638 0.775 0.722 0.739 0.781 0.781 

Wheat 205 0.490 0.893 0.908 0.931 0.918 0.772 0.347 0.942 0.942 

Woods 1265 0.487 0.613 0.662 0.665 0.868 0.251 0.077 0.910 0.910 

Buildings-Grass-Trees-

Drives 
386 0.600 0.560 0.624 0.622 0.703 0.518 0.338 0.742 0.742 

Stone-Steel-Towers 93 0.515 0.846 0.929 0.938 0.842 0.680 0.737 0.866 0.866 

Average AUROC 0.517 0.693 0.753 0.756 0.833 0.584 0.573 0.863 0.863 

Class Samples 
Methods 

SAM ACE CEM AMF SID EMD SJTC SFJTC CSFJTC 

Brocoli_green_weeds_1 2009 0.501 0.985 0.994 0.994 0.993 0.820 0.998 0.995 0.995 

Brocoli_green_weeds_2 3726 0.597 0.888 0.938 0.948 0.980 0.373 0.956 0.990 0.990 

Fallow 1976 0.741 0.677 0.786 0.785 0.829 0.174 0.651 0.870 0.870 

Fallow_rough_plow 1394 0.500 0.862 0.904 0.915 0.939 0.561 0.507 0.991 0.991 

Fallow_smooth 2678 0.303 0.745 0.834 0.842 0.951 0.483 0.660 0.989 0.989 

Stubble 3959 0.599 0.948 0.980 0.981 0.996 0.370 0.630 0.997 0.997 

Celery 3579 0.306 0.971 0.981 0.986 0.979 0.229 0.969 0.983 0.983 

Grapes_untrained 11271 0.762 0.605 0.726 0.723 0.901 0.742 0.932 0.938 0.938 

Soil_vinyard_develop 6203 0.311 0.602 0.717 0.717 0.890 0.746 0.823 0.953 0.953 

Corn_senesced_green 

_weeds 
3278 0.571 0.679 0.770 0.777 0.740 0.728 0.508 0.761 0.761 

Lettuce_romaine_4wk 1068 0.764 0.966 0.981 0.981 0.929 0.772 0.541 0.938 0.938 

Lettuce_romaine_5wk 1927 0.553 0.576 0.671 0.670 0.874 0.755 0.578 0.870 0.870 

Lettuce_romaine_6wk 916 0.698 0.915 0.951 0.954 0.989 0.730 0.993 0.995 0.995 

Lettuce_romaine_7wk 1070 0.676 0.942 0.969 0.969 0.890 0.735 0.963 0.946 0.946 

Vinyard_untrained 7268 0.851 0.579 0.689 0.690 0.917 0.850 0.904 0.938 0.938 

Vinyard_vertical_trellis 1807 0.577 0.915 0.947 0.950 0.895 0.897 0.884 0.906 0.906 

Average AUROC 0.582 0.803 0.865 0.868 0.918 0.623 0.781 0.941 0.941 
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 TABLE IV 

 AUROC COMPARISONS FOR THE UNIVERSITY OF PAVIA DATASET 

 

C. Experiments on Multiclass Object Detection 

   For single class object detection, SFJTC yields similar performance as CSFJTC as analyzed in 

Section II theoretically and in Section III-B experimentally. However, SFJTC is incapable of 

performing multiclass object detection tasks at a time. In contrast, the proposed CSFJTC as a 

deterministic training-free algorithm possesses such a capability.  

    As mentioned in Section II-B, FPIS and MPIS are two different approach for reducing the 

undesired correlation terms. Although we used MPIS in CSFJTC formulation, FPIS can be adopted 

in CSFJTC. So it would be interesting to use these two approaches to evaluate the performance of 

CSFJTC on multiclass object detection. Thus, we apply CSFJTC with FPIS and MFPIS to the 

aforementioned three datasets separately, and the results are compared using AUROC. For single 

class object detection, we computed AUROC for each class of objects in each dataset, whereas in 

the case of multiclass object detection, AUROC is computed only one time for all classes in each 

dataset.  

   In the following sections, we will discuss the difference between single class and multiclass 

object detection in CSFJTC, the effects of CSFJTC parameters and MNF bands selection.   

Class Samples 
Methods 

SAM ACE CEM AMF SID EMD SJTC SFJTC CSFJTC 

Asphalt 6631 0.630 0.527 0.589 0.600 0.764 0.508 0.792 0.846 0.846 

Meadows 18649 0.566 0.537 0.575 0.585 0.679 0.583 0.549 0.686 0.686 

Gravel 2099 0.598 0.600 0.722 0.721 0.877 0.891 0.877 0.927 0.927 

Trees 3064 0.567 0.621 0.747 0.742 0.883 0.529 0.815 0.884 0.884 

Painted metal sheets 1345 0.694 0.998 0.999 0.999 0.862 0.586 0.562 0.978 0.978 

Bare Soil 5029 0.478 0.522 0.550 0.551 0.573 0.428 0.614 0.615 0.615 

Bitumen 1330 0.723 0.552 0.605 0.634 0.870 0.599 0.867 0.897 0.897 

Self-Blocking Bricks 3682 0.556 0.535 0.606 0.607 0.830 0.770 0.863 0.891 0.891 

Shadows 947 0.628 0.806 0.702 0.877 0.636 0.666 0.175 0.608 0.608 

Average AUROC 0.604 0.633 0.677 0.702 0.775 0.618 0.680 0.815 0.815 
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   Differences from single class object detection: There are three major differences between single 

class and multiclass object detection in the proposed method: 1) Only one reference spectral 

signature is used in single class objection detection, while 𝑁 (𝑁 ≥ 2) dissimilar reference spectral 

signatures (one reference for each class) are used in multiclass object detection which allows for 

detecting multiple objects from different classes simultaneously. 2) One JPS parameter 𝑎1 is used 

in single class objection detection, whereas 𝑁 (𝑁 ≥ 2) such parameters as shown in (21) are used 

in multiclass object detection where each parameter 𝑎𝑗(𝑗 = 1,2, . . , 𝑁) corresponds to each 

reference spectral signature related JPS. 3) Formulation of CSGFAF for single class and multiclass 

object detection is slightly different. For the former one, only two terms (i.e., 𝜖 and |𝑹1(𝑢)|𝑚 ) 

appear in denominator of CSGFAF, while 𝑁 + 1 terms (i.e., 𝜖, |𝑹𝒋(𝑢)|
𝑚

𝑗 = 1,2, … , 𝑁) are 

produced in the latter one.  

   Parameters Setting: For the JPS coefficients 𝑎𝑗(𝑗 = 1,2, … , 𝑁), we select 𝑎1 = 𝑎2 =  …  =

𝑎𝑁 = 1/𝑁 to have equal weights for each class of JPS, where 𝑁 is 16 for both Indian Pines and 

FPIS(m=1) FPIS(m=2) MFPIS(m=1) MFPIS(m=2)
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150 MNF Bands

200 MNF Bands

Fig.10. Effects of MNF bands on the Indian Pines dataset.   
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Salinas datasets, and 9 for The University of Pavia dataset. It is worthy to mention that varying the 

values of these coefficients may produce slightly different results based on the input dataset. The 

way to obtain the optimal coefficient will be investigated in our future research direction. As for 

the parameters 𝑚 in CSGFAF, we choose 𝑚 = 1  and 𝑚 = 2 to examine their performance.  

Effect of Parameter 𝑚: For the proposed CSFJTC technique, the selection of parameter 𝑚 

determines the filter types which may also influence the performance. The influence of the 

parameter 𝑚 on the detection results for FPIS-based CSFJTC and MFPIS-based CSFJTC are 

depicted in Figs. 10, 11 and 12, the detailed quantities of corresponding AUROC are summarized 

in Tables V, VI and VII, respectively. From these results, it can be seen that CSFJTC (𝑚 = 1) 

using both FPIS and MFPIS provides the best results for the Indian Pines and the University of 

Pavia datasets, and yields slightly lower average AUROC for the Salinas dataset than CSFJTC 

(𝑚 = 2). Thus, wise choice of the parameter 𝑚 can achieve greater detection performance. 

Moreover, it is also observed that FPIS-based CSFJTC and MFPIS-based CSFJTC yield same 

results for both cases of (𝑚 = 1) and (𝑚 = 2), which is expected since FPIS and MFPIS perform 

similar roles in CSFJTC but different formulation.    

However, comparing average AUROC, CSFJTC with 𝑚 = 1 provides the best output, this is 

due to the fact that there is always an additive amount of noise from various sources (sensor, 

atmosphere, etc.) in the input hyperspectral image and higher MNF bands contains more noise 

information, and this causes the joint power spectrum will contain noise terms in forms of 

autocorrelation of noise itself, cross-correlation between the noise and the reference, and cross-

correlation between the noise and the input pixel spectral signature. If we choose 𝑚 = 2 in 

CSFJTC for the case of 𝑁 classes, the abovementioned noise terms will be divided by a factor of 

∑ |𝑹𝒋(𝑢)|
2
 𝑁

𝑗=1 , while the factor will be ∑ |𝑹𝒋(𝑢)| 𝑁
𝑗=1 for 𝑚 = 1. Therefore, when |𝑹𝒋(𝑢)| ≪ 1, the 
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effect of noise will be less predominant in 𝑚 = 1. As it is evident in Tables V, VI and VII, 𝑚 = 1 

provides better correlation output when more MNF bands (i.e., large noise fraction or smaller 

SNR) are applied.  
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Fig. 12. Effects of MNF bands on University Pavia dataset. 

Fig. 11. Effects of MNF bands on the Salinas dataset. 
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Selection of MNF Bands: Similar to experiments in Section III-B, MNF is first applied to the 

raw images before subsequent processes. For the purpose of multiclass object detection, we 

randomly select one MNF transformed target spectral signature from each class to represent 

reference spectral signatures, which is a matrix with a size: (number of target classes) × (dimension 

of MNF transformed pixel vector). For example, if we use 50 MNF bands for Indian Pines dataset, 

the reference spectral signatures will be a matrix with size of 16 × 50.  

TABLE V 

AUROC COMPARISONS FOR THE INDIAN PINES DATASET 

 

 

 

 

 

 

TABLE VI 

AUROC COMPARISONS FOR THE SALINAS DATASET 

 

 

 

 

 

 

MNF transform segregates noise in the data by maximizing SNR. Lower MNF bands typically 

contain significant information with higher SNR. The amount of spectral information can be 

adjusted by varying the number of MNF bands. We herein choose various sets of MNF bands to 

check how the final performance is affected. For the University of Pavia dataset, which has 103 

# MNF Bands 

Methods 

CSFJTC-FPIS 

(m=1) 

CSFJTC-FPIS  

(m=2) 

CSFJTC-MFPIS  

(m=1) 

CSFJTC-MFPIS 

 (m=2) 

50 0.613 0.540 0.613 0.540 

100 0.677 0.577 0.677 0.577 

150 0.625 0.601 0.625 0.601 

200 0.697 0.660 0.697 0.660 

Mean AUROC 0.653 0.595 0.653 0.595 

# MNF Bands 

Methods 

CSFJTC-FPIS 

(m=1) 

CSFJTC-FPIS  

(m=2) 

CSFJTC-MFPIS  

(m=1) 

CSFJTC-MFPIS 

 (m=2) 

50 0.736 0.817 0.736 0.817 

100 0.818 0.825 0.818 0.825 

150 0.806 0.791 0.806 0.791 

200 0.827 0.810 0.827 0.810 

Mean AUROC 0.797 0.811 0.797 0.811 
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channels, MNF bands 20, 40, 60, and 80 are selected. As for the Indian Pines and Salinas datasets, 

which have 224 spectral channels, MNF bands 50, 100, 150, and 200 are used.  

Figures 10, 11 and 12 illustrate the effects of the MNF bands on the performance of different 

methods. It can be observed that a better result can be obtained when more MNF bands are used 

for the case of m = 1. On the other hands, it can be concluded that CSFJTC is sensitive to the 

number of MNF bands, such as about 9% of improvement can be achieved when using 200 MNF 

bands compared to 50 bands when m = 1 in the Salinas dataset.  

In addition, it is conceded that degraded performance is found for both CSFJTC (m = 1) and 

CSFJTC (m = 2) in all three testing datasets without MNF transform. The possible reason is that 

most pixels in hyperspectral imagery are mixed with other substances, such that a target pixel 

spectrum can be approximated by a linear mixture of its endmember and background (non-target). 

Consequently, the joint spectral signature will have the noise term, which leads to additional 

correlation peaks that may yield false alarms. 

TABLE VII 

AUROC COMPARISONS FOR THE UNIVERSITY OF PAVIA DATASET 

 

 

 

 

IV. CONCLUSION 

    In this paper, a new deterministic pattern recognition technique in HSI was proposed. The 

proposed algorithm is designed to detect multiclass objects consisting of similar and dissimilar 

# MNF Bands 

Methods 

CSFJTC-FPIS 

(m=1) 

CSFJTC-FPIS  

(m=2) 

CSFJTC-MFPIS  

(m=1) 

CSFJTC-MFPIS 

 (m=2) 

20 0.514 0.499 0.514 0.499 

40 0.536 0.512 0.536 0.512 

60 0.533 0.526 0.533 0.526 

80 0.550 0.522 0.550 0.522 

Mean AUROC 0.533 0.515 0.533 0.515 
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target spectral signatures. Since our method is deterministic, no prior training or complex 

stochastic analysis is required. This would show the usefulness of the proposed CSFJTC algorithm 

especially when no sufficient training data are available for performing successful object detection 

tasks. The obtained results suggest robustness and accuracy of CSFJTC as compared to the other 

state-of-the-art training-free object detectors in HSI. An observation on the proposed method is 

that the optimization of filter parameters and selection of MNF dimension will have influence on 

the object discrimination performance. Test results from multiclass object detection showed that 

CSFJTC with 𝑚 = 1 yields better outputs than that using 𝑚 = 2, and improved performance can 

be obtained by using more features from MNF transformed bands. In general, considering all 

comparison results, we can assess that CSFJTC can be a promising candidate for object detection 

in hyperspectral remote sensing applications. In our future work, improvements may be achieved 

by adaptively adjusting JPS coefficients and the parameter 𝑚 in CSGFAF. Furthermore, 

integration of spatial and spectral information, and incorporation CSFJTC with neural network for 

hyperspectral image classification will be investigated. 
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