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a b s t r a c t

We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These
include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most
traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand,
the SA system represents a new algorithm class requiring 8 user-supplied control points. This does
increase the burden on the user, but we show that the resulting system is highly robust and can handle
a variety of challenging cases. The proposed hybrid system starts with the FA system. If improved seg-
mentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free
parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in
a search process guided by a regression neural network (RNN). The RNN uses a number of features com-
puted for each candidate segmentation. We train and test our systems using the new Lung Image
Database Consortium and Image Database Resource Initiative (LIDC–IDRI) data. To the best of our knowl-
edge, this is one of the first nodule-specific performance benchmarks using the new LIDC–IDRI dataset.
We also compare the performance of the proposed methods with several previously reported results
on the same data used by those other methods. Our results suggest that the proposed FA system improves
upon the state-of-the-art, and the SA system offers a considerable boost over the FA system.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lung cancer remains the leading cause of cancer death in the
United States (ACS, 2013). Computed tomography (CT) is currently
considered the best imaging modality for early detection and
analysis of lung nodules. A wealth of image processing research
has been underway in recent years developing methods for the
automated detection, segmentation, and analysis of lung nodules
in CT imagery (Pham et al., 2000). To facilitate such efforts, a
powerful database has recently been created and is maintained
by the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC–IDRI) (Armato et al., 2011). In this paper,
we present new robust segmentation algorithms for lung nodules
in CT, and we make use of the latest LIDC–IDRI dataset for training

and performance analysis. Note that nodule segmentation is a criti-
cal tool in lung cancer diagnosis and for the monitoring of treat-
ment. Multi-temporal CT scans are used to track nodule changes
over certain time intervals. To make this process more accurate,
consistent, and improve radiologist workflow, effective automated
and semi-automated segmentation tools are highly desirable
(Wormanns and Diederich, 2004). Given segmentation boundaries,
nodule volume and volume doubling time can be readily computed
(Ko et al., 2003; Reeves et al., 2009). For more than two decades, a
variety of methods and improvements have been proposed for
such lung nodule segmentation. A selected chronological listing
of nodule segmentation algorithms that we believe are most clo-
sely related to our methodology is presented in Table 1. This is pro-
vided in order to put the novel contribution of our proposed
methods into proper context.

While many powerful nodule segmentation methods have been
proposed including the works in Table 1 and that of Coleman et al.
(1998), Elmoataz et al. (2001), Wiemker and Zwartkruis (2001),
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Fan et al. (2002), van Ginneken et al. (2002), Xu et al. (2002), Kawata
et al. (2003), Ko et al. (2003), Mullally et al. (2004), Tachibana and
Kido (2006), Way et al. (2006), van Ginneken et al. (2006), Hardie
et al. (2008), Kubota et al. (2008), Dehmeshki et al. (2008), Diciotti
et al. (2008), Ye et al. (2009), Bendtsen et al. (2011), Gu et al.
(2013), Keshani et al. (2013), Jacobs et al. (2014), none that we are
aware of are able to fully and ideally address all of the challenges
presented by the LIDC–IDRI dataset. Some of these advanced chal-
lenges include juxtapleural nodules that significantly invade the
pleura, cases where density/intenity information is ineffectual,
and non- or part-solid nodules with irregular regions-of-exclu-
sions/cavities (Armato et al., 2011). In light of this newly expanded
dataset, it behooves us to continue to explore new and more robust
solutions for nodule segmentation. In this paper, we present a highly
robust and novel approach for segmenting the various LIDC–IDRI
nodules. Furthermore, we believe our results are among the first
comprehensive nodule segmentation results produced for the new
LIDC–IDRI database. Thus, it is our hope that this work may serve
as a benchmark for many future nodule segmentation studies.

Our full nodule segmentation solution is a hybrid, combining a
fully-automated (FA) subsystem that requires only a single central-
ized cue point within the nodule, and a semi-automated (SA)
method that requires a set of 8 control points from the expert user.
The FA subsystem builds on the unpublished dissertation work of
Tuinstra (2008). The improvements to the method presented in
Tuinstra (2008) are many fold. Note that the work of Tuinstra
(2008) assumes an ideal lung mask, contoured around juxta-pleu-
ral nodules, is available a priori. In contrast, here we incorporate a
fully automated lung segmentation algorithm. Other important
advancements include, a sequence of modified morphological

operations that are adapted jointly for each nodule, a shape-model
based ‘‘limiting’’ mechanism to treat ill-conditioned segmentation
candidates and a regression neural network (RNN) that uses new
salient features to evaluate the candidate segmentations. We shall
show that the FA subsystem can be used alone and is competitive
with other state-of-the-art systems of the same genre.

While we believe the FA system has improved robustness, some
unusual and complex cases may still be problematic. Hence, if the
final segmentation of the FA system is deemed inadequate the
hybrid system switches to the SA subsystem. Our SA system is
similar to the FA system, but uses 8 control points from the end-
user. SA frameworks, that allow user intervention and/or require
guiding landmarks from expert end-users for routine use in clinical
settings like the ones presented in Aubin et al. (1994), Mitton et al.
(2000), van Ginneken (2001), Xu et al. (2002), Pomero et al. (2004),
Kuhnigk et al. (2006), Rousson et al. (2006), Dehmeshki et al.
(2008), Diciotti et al. (2008), Moura et al. (2009), Moltz et al.
(2009), Bendtsen et al. (2011), Vidal et al. (2011), Diepenbrock
and Ropinski (2012), Gu et al. (2013) have been found to be effec-
tive in resolving advanced challenges. However, our SA system is
not interactive like the nodule segmentation algorithms presented
in Xu et al. (2002), Kuhnigk et al. (2006), Diciotti et al. (2008),
Dehmeshki et al. (2008), Moltz et al. (2009), Bendtsen et al.
(2011), Gu et al. (2013). In our proposed SA method, the required
control points are entered only once. After that, the process pro-
ceeds in an automated fashion to provide the final segmentation.
The extra points are used to estimate an adaptive shape limiting
boundary that is used to impose constraints on the segmentation
candidates. They are also used to modify the automatically deter-
mined lung boundary when applicable. To our best knowledge, this

Table 1
A selected listing of nodule segmentation algorithms that are most closely related to our proposed methods.

Author(s) Brief description

Armato et al. (1999, 2001) Presents a complete Computer Aided Detection (CAD) where multiple gray-level thresholding and connectivity scheme are put to
use to segment contiguous 3D structures. A rolling ball morphological algorithm is used to treat juxta-pleural nodules

Zhao et al. (1999a,b) Uses multiple gray-value thresholding, 3D connected components analysis, and a 3D morphological opening operation. Features
such as gradient strength and compactness are examined to determine the optimal segmentation candidate

Kostis et al. (2003) Uses thresholding and morphological opening. Attempts to find an optimal threshold and a fixed structuring element radius
suitable for all small nodules. Note that they recommend that in practice the radius of the structuring element ought to be
adjusted depending on the nodule under consideration. Also to note is user input is required to classify the nodule beforehand

Gurcan et al. (2004) Patented a system that consists of, thresholding and morphological operation to get a preliminary result, adjusting the location of
the supplied cue point and refining the segmentation result by using an expanded version of a fitted ellipsoid for multi-step
pruning. Invention also consists of mirroring the ellipsoid about the refined cue point to create an artificially symmetric core so as
to treat invasive juxtapleural nodules

Okada and Akdemir (2005), Okada
et al. (2005)

Presents a scheme that makes use of an ellipsoid model using anisotropic Gaussian fitting. The volume of the nodule is estimated
from the resultant ellipsoid

Kuhnigk et al. (2006) Uses fixed thresholding followed by morphological methods. The so called smart opening is introduced and is adapted for each
nodule. Interactive correction includes allowing the user to change the erosion strength. A convex hull operation is used to
separate juxtapleural nodules.

Reeves et al. (2006) As an improvement to their earlier work in Kostis et al. (2003), an iterative algorithm that separates the nodules from the pleural
surface using a clipping plane is introduced

van Ginneken (2006) Uses a novel learning-based approach involving region growing, an iterative morphological operation, and non-linear regression.
The regression system is trained voxel-wise. It uses a local 2D lung segmentation algorithm, but no evaluation for pleura-nodules
is provided

Wang et al. (2007) Uses a number of radial lines originating from the center of the volume of interest (VOI) are spirally scanned to provide a 2D
projection image. Dynamic programming is then used to find the optimal outline. The favored outline is mapped to 3D space to
yield the final result

Tuinstra (2008) Makes use of multiple gray-level thresholding and morphological processing of varying strength. That engine assumes that a lung
mask is provided. A trainable regression system that is similar to the one described in van Ginneken (2006) is employed to select
the final nodule boundary

Li et al. (2008) A voxel-wise segmentation approach that makes use of a 3D region growing technique is presented as part of a CAD scheme
Wang et al. (2009) Develops a segmentation algorithm that makes use of a 3D dynamic programming model and a multi-direction fusion technique

to improve the final segmentation accuracy
Moltz et al. (2009) Presents an extension of their original work Kuhnigk et al. (2006) to improve segmentation of solid nodules located at concave

parts of the pleura. An ellipsoid enclosing points obtained via ray-casting is calculated A convex hull operation, restricted to the
dilated ellipsoid, is performed. The algorithm does not target non-solid nodules

Messay et al. (2010) Makes use of a similar segmentation engine to that of Tuinstra (2008) for the CAD system. Rule based analysis and a logical
operation are used to produce the final results

Kubota et al. (2011) Proposes a voxel-wise transformation, figure-ground separation, localization of a nodule core, region growing, surface extraction
and convex hull processing

T. Messay et al. / Medical Image Analysis 22 (2015) 48–62 49



particular type of user input has not been used in previously pub-
lished nodule-specific studies. We think that the idea of setting the
8 points once in advance and then not manipulating the output,
has the opportunity to provide more repeatability and make the
radiologists workflow more consistent. Note that among other pos-
sible scenarios for incorporating extra guidance from the user, we
believe that our approach effectively balances the trade-off
between taxing the user and segmentation performance enhance-
ment (i.e., a tremendous robustness and generally a large perfor-
mance boost is attained in return). Also to note is that the FA
system alone yields good results in many cases, and the SA system
is not used.

Another novel contribution of this paper is the study of the
capabilities of the FA and SA subsystems to provide segmentation
characteristics that match the training truth. Since there is con-
siderable dissent among the different radiologist truth seg-
mentations (Armato et al., 2004, 2007, 2011), we have trained
and tested multiple regression systems, each with a different form
of consensus truth. This allows us to study how well our seg-
mentation systems can adapt to various styles of truth. Finally,
using our FA, SA, and full hybrid systems, we provide a thorough
performance analysis and new performance benchmarks using
the new LIDC–IDRI dataset.

The remainder of this paper is organized as follows. We begin
by describing the LIDC–IDRI database in Section 2. The FA, SA,
and hybrid nodule segmentation algorithms are described in
Section 3. The RNN approach to segmentation parameter selection
is described in Section 4. Experimental results and related discus-
sion are presented in Section 5. The results include performance
results on new LIDC–IDRI data, as well as a comparison with sev-
eral other previously published systems using the previously avail-
able data. Finally, in Section 6 we offer conclusions. Where
relevant, some of the previously published methods described in
this Section are discussed further in the paper.

2. Material and methods

In this paper, we use the new LIDC–IDRI dataset (Armato et al.,
2011) to train and test our algorithms. This dataset is publicly
available in The Cancer Imaging Archive (TCIA), and currently con-
tains 1010 CT scans and corresponding truth metadata (Armato
et al., 2011). The truth information includes manually drawn nod-
ule boundaries for each nodule from up to four board-certified
radiologists. Details about this powerful database, such as the
methods and protocols used to acquire image data, the truth anno-
tation process, a thorough analysis of lesions, and a quality assur-
ance evaluation, can be found in Armato et al. (2011).

2.1. The LIDC–IDRI(-) dataset

Let LIDC–IDRI(-) denote all the CT scans from LIDC–IDRI exclud-
ing those belonging to what used to be known as Lung Image
Database Consortium (LIDC), originally hosted by National
Biomedical Imaging Archive (NBIA) before the migration (Armato
et al., 2004, 2007; Reeves et al., 2007; McNitt-Gray et al., 2007;
Wang et al., 2007; Sahiner et al., 2007; Opfer and Wiemker,
2007; Tuinstra, 2008; Wang et al., 2009; Messay et al., 2010;
Kubota et al., 2011) This LIDC–IDRI(-) subset is comprised of 926
CT scans (since the LIDC dataset contains 84 CT scans).

We have randomly selected 456 CT scans from LIDC–IDRI(-) to
train and test our systems. The 456 CT scans that we use contain
432 nodules that are manually segmented by all four board-certi-
fied radiologists. We opted to use only the 432 nodules ‘‘truthed’’
by all four radiologists to allow us to study the impact of training
and testing on various types of consensus truth. Most other

nodule-segmentation-specific studies to date (van Ginneken,
2006; Way et al., 2006; Tachibana and Kido, 2006; Wang et al.,
2007; Tuinstra, 2008; Wang et al., 2009; Messay et al., 2010;
Kubota et al., 2011) have used a 50% consensus criterion to com-
bine segmentations from multiple radiologists into a single truth
boundary to score their algorithm against. In this case, two or more
of the four radiologists must include a given voxel in the nodule
boundary to make that voxel part of the consensus truth. In addi-
tion to that common practice, here we also investigate training and
testing our systems using 25%;75% and 100% consensus truths.

To perform a rigorous validation of our systems, we have ran-
domly partitioned the 432 nodules obtained from LIDC–IDRI(-)
into three subsets, training, validation, and testing. These subsets
are comprised of 300, 66, and 66 nodules, respectively. All aspects
of the segmentation algorithm training and tuning is done here
using the training and validation sets only (i.e., using 366 nodules).
The system is then tested on the remaining 66 testing nodules. The
exact testing data is publicly available through http://dx.doi.org/
10.7937/K9/TCIA.2014.V7CVH1JO (download link labeled ‘‘LIDC-
IDRI Image Dataset’’) such that it serves as an easily reproducible
benchmark. Note that each expert reader has been asked to
independently assess several subjective characteristics, such as
subtlety, internal structure, spiculation, lobulation, shape (spheric-
ity), solidity, margin, and likelihood of malignancy, for each lesion

Table 2
Distribution of averaged nodule characteristic ratings of the 432 nodules acquired
from LIDC–IDRI(-). The ratings are on an ordinal scale of 1–5 except for calcification
where the expert readers assigned a maximum rating of 6.

Subtlety rating 1 2 3 4 5

Training data (%) 0.00 0.67 13.67 47.00 38.67
Validation data (%) 0.00 0.00 22.73 37.88 39.39
Testing data (%) 0.00 1.52 16.67 40.91 40.91

Internal structure 1 2 3 4 5

Training data (%) 99.00 1.00 0.00 0.00 0.00
Validation data (%) 100.00 0.00 0.00 0.00 0.00
Testing data (%) 98.48 0.00 1.52 0.00 0.00

Calcification 1 2 3 4 5 6

Training data (%) 0.00 0.00 5.33 7.00 7.00 80.67
Validation data (%) 0.00 0.00 6.06 6.06 4.54 88.33
Testing data (%) 0.00 0.00 3.03 4.54 9.09 88.33

Sphericity 1 2 3 4 5

Training data (%) 0.00 0.33 16.33 63.33 20.00
Validation data (%) 0.00 1.51 25.76 59.09 13.64
Testing data (%) 0.00 1.51 21.21 46.97 30.30

Margin 1 2 3 4 5

Training data (%) 0.00 1.33 8.67 42.33 47.67
Validation data (%) 0.00 3.03 16.67 33.33 46.97
Testing data (%) 0.00 3.03 15.15 25.76 56.06

Lobulation 1 2 3 4 5

Training data (%) 39.00 40.33 14.33 6.00 0.33
Validation data (%) 33.33 48.48 13.64 4.54 0.00
Testing data (%) 39.39 39.39 19.70 1.51 0.00

Spiculation 1 2 3 4 5

Training data (%) 52.67 32.33 8.67 4.67 1.67
Validation data (%) 42.42 40.91 7.58 6.06 3.03
Testing data (%) 48.48 40.91 7.58 3.03 0.00

Texture 1 2 3 4 5

Training data (%) 0.33 2.00 2.33 7.33 88.00
Validation data (%) 1.51 0.00 1.51 7.58 89.39
Testing data (%) 3.03 6.06 1.51 7.58 81.82

Malignancy 1 2 3 4 5

Training data (%) 9.67 10.00 46.67 27.33 6.33
Validation data (%) 7.58 9.09 43.94 27.27 12.12
Testing data (%) 6.06 10.61 46.97 33.33 3.03
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that he or she has identified as a nodule P3 mm in size after the
un-blinded read phase (Armato et al., 2011). Table 2 presents the
distributions of the various characteristic ratings for the 432 nod-
ules used here. The ratings are on ordinal scale of 1–5 except for
calcification where the expert readers assigned a maximum rating
of 6 (Armato et al., 2011; Horsthemke et al., 2010). Note that we
average the individual ratings of the four readers to produce the
statistics shown in Table 2. Also note that the percentage of
juxtapleural nodules for the training, validation, and testing sets
is 27:67%;30:30%, and 31.82%, respectively. For a given nodule,
we deduce nodule size by averaging the maximum diameter mea-
surements in the maximum area slices. Using this method, the
mean nodule sizes in the training, validation, and testing sets
respectively are: 12.31 ± 5.88 mm (ranging from 4.21 to
31.62 mm); 12.96 ± 5.69 (ranging from 3.88 to 27.61 mm); and
12.88 ± 5.69 mm (ranging from 4.28 to 31 mm). Note that
Table 2, and the above statistics, show we have an approximately
even distribution of nodule characteristics in each of our data
subsets.

2.2. The original LIDC dataset

Since many prior works on nodule segmentation have made use
of the original LIDC dataset, including Wang et al. (2007, 2009),
Kubota et al. (2011), we also test on this dataset to allow for a
direct performance comparison. Note that since our training and
validation nodules come from LIDC–IDRI(-), LIDC serves as a sec-
ond independent testing set for our systems. Following the
approach in Wang et al. (2007, 2009), Kubota et al. (2011) for this
particular data subset, we test using only a 50% consensus truth for
nodules that were segmented by three or more expert readers (out
of a possible four). This leads to a total of 77 LIDC testing nodules.
The original LIDC data is also publicly available via http://dx.doi.
org/10.7937/K9/TCIA.2014.V7CVH1JO (download link labeled
‘‘LIDC Image Dataset’’) so as to aid future research efforts and com-
parisons. Informative works presenting details of the original LIDC
dataset, such as scanner vendors, scanning protocols, reconstruc-
tion methods, and type and size of nodules, can be found in
Armato et al. (2004, 2007), Reeves et al. (2007), McNitt-Gray
et al. (2007), Wang et al. (2007), Sahiner et al. (2007), Opfer and
Wiemker (2007), Wang et al. (2009), Tuinstra (2008), Messay
et al. (2010), Kubota et al. (2011), Armato et al. (2011). After care-
fully examining the nodules in LIDC and LIDC–IDRI(-), it appears
that the LIDC database contains a greater fraction of cavitary,
irregularly-shaped, and extremely subtle nodules, compared to
those of LIDC–IDRI(-). Thus, we are in agreement with Wang
et al. (2009) and Kubota et al. (2011) that the LIDC dataset does
indeed present difficult challenges.

3. Nodule segmentation algorithms

In this section, we describe our proposed nodule segmentation
systems. We begin with the FA segmentation engine in Section 3.1.
Next, we present the SA segmentation engine in Section 3.2.
Finally, the hybrid system, utilizing both the FA and SA subsys-
tems, is presented in Section 3.3. The RNN, used to automatically
determine the parameters for these segmentation engines, is
described in Section 4. There, both the network architecture and
features are discussed.

3.1. FA method (TR segmentation engine)

A block diagram of the FA subsystem is shown in Fig. 1. The
method has two free parameters, T and R. Hence, we refer to this
as the TR segmentation engine. The FA subsystem assumes that

we are supplied with a CT scan in HUs, and a single well centralized
cue-point in the nodule to be segmented.

As a pre-processing step, the lung fields are segmented using
the automatic 3D global lung segmentation algorithm described
in Messay et al. (2010). However, to improve the lung boundaries
in the vicinity of juxtapleural nodules, we depart from that in
Messay et al. (2010) and apply multiple successive 2D rolling ball
filters of decreasing size along the outside border of the lung mask
(Armato et al., 1999, 2001; Korfiatis et al., 2014). Note that all tun-
ing parameters of the lung segmentation algorithm have been
selected based on empirical studies, exclusively using the
University of Texas Medical Branch data described in Ernst et al.
(2004), Messay et al. (2010).

The TR segmentation engine may be viewed as a natural exten-
sion of the methods presented in Zhao et al. (1999a), Kostis et al.
(2003), Gurcan et al. (2004), van Ginneken (2006), Kuhnigk et al.
(2006), Tuinstra (2008), Moltz et al. (2009), Messay et al. (2010).
To begin, an 80 mm3 volume of interest (VOI) around the cue point
in the CT and lung mask arrays are extracted for processing. We
choose the voxel that belongs to the consensus truth and that is
closest to the centroid of the consensus truth mask to serve as
the supplied cue point. This is done to define a unique cue point
for each type of consensus truth discussed in Section 2. We apply
the threshold T to the CT VOI data. The resulting logical array is
then locally ANDed with the lung mask to exclude voxels outside
the lung field and/or to disconnect juxtapleural nodules from the
lung wall. The process of ANDing with the lung mask is done if
and only if the delineated lung regions include the supplied user
cue point. If the lung segmentation mask fails to include the cue
point, which implies that the lung mask has failed to include the
majority of the nodular region, we simply do not make use of the
lung mask. Note that as shown in Fig. 1, if that is the case, the
deployment of a limiting sphere that we are about to introduce
becomes mandatory.

Next, a modified 2D opening that is similar to smart opening
described in Kuhnigk et al. (2006), Moltz et al. (2009) is performed
using disk-shaped structuring elements. However, we differ in that
we make the dilation strength higher than the erosion. Fig. 2 shows
a block diagram of the proposed modified opening. As shown in
that figure, erosion is performed using a structuring element of
radius R, and then dilation follows using another structuring ele-
ment of radius Rþ 1. The modified opening is done to detach/re-
move residual structures, such as vessels, that may be attached
to the nodule. We have discovered that using a larger dilation than
erosion makes it easier to match the truth using our feature-based
regression system. This is likely due to the fact that the provided
truth outlines are intended as ‘‘outer borders’’ that do not overlap
with voxels belonging to the nodule (Armato et al., 2011). Features
such as intensity gradients tend to favor smaller segmentations
where the intensity inflection boundary occurs. Note that the pro-
posed modified opening requires the specification of the parameter
R only. The static +1 offset has been selected based on empirical
study, exclusively using the 300 training nodules. The study shows
+1 to be the best offset on average with respect to the multiple
types of consensus truth. The area criterion (less than 2 mm2)
shown in Fig. 2, used to remove small structures prior to dilating,
has been similarly determined using the training data. We recom-
mend 2D morphological processing here (i.e., in each cross-sec-
tional CT slice) because of the non-isotropic nature of the LIDC–
IDRI data (Armato et al., 2011).

After the modified opening, we enforce connectivity to the cue
point, as shown in Fig. 1. In some difficult cases, the segmentations
at this point in the system may still include significant non-nodular
anatomical structures. It is for that reason that we include the lim-
iting sphere block in Fig. 1. Here, if the candidate segmentation
exceeds a size threshold, or if the cue point is outside the

T. Messay et al. / Medical Image Analysis 22 (2015) 48–62 51



computed lung mask, the candidate mask is logically ANDed with a
sphere obtained using the ray shooting/casting technique
described in Moltz et al. (2009). However, instead of using a fixed
threshold of �400 HU, as is done in Moltz et al. (2009), we use a
threshold that is slightly lower than the intensity/density at the
supplied cue point. The median of the ‘‘valid’’ radial distances
(Moltz et al., 2009) is multiplied by 1.15 to give the radius of the
limiting sphere. We believe that this mechanism is a practical
way to add robustness without greatly increasing computational
complexity. Note that although the described provision was origi-
nally intended to address unusual cases, we have found that it is
effective in many well-conditioned cases as well. The limiting
sphere takes some of the ‘‘burden’’ of pruning non-nodulate struc-
ture off of the opening operation. This often allows for the use of
smaller R values, which tend to better preserve detail on the nod-
ule boundary (Serra, 1983; Strickland, 2002; van Ginneken, 2006).
We believe that this relatively simple segmentation engine can be
exceptionally powerful, provided that the T and R parameters are
jointly optimized for each nodule. Of course, the big challenge lies
in how to best determine these parameters automatically. This is
addressed in Section 4.

3.2. SA method (eTRE segmentation engine)

The SA subsystem block diagram is shown in Fig. 3. The free

parameters, which will be explained below, are the threshold eT ,
structuring element size R, and ellipsoid scaling parameter E. As

such, this method will be designated the eTRE segmentation engine.

In addition to the CT scan and lung mask, the eTRE segmentation
engine requires eight control points from the expert end-user.
These eight control points should include the four end-points of
the major and minor axes of the nodule in the maximum nodule
area slice. The end points of the major axes of the first and last nod-
ule-containing slice make up the other 4 points. Note that major

and minor axes here are the length and width of the nodule as
defined by the ELCAP protocol (Henschke et al., 2002; Kubota
et al., 2011). In this work, unique sets of control points are
extracted from the multiple types of consensus truth. From the 8
user points, we compute the minimum volume enclosing ellipsoid
(MVEE) (Gurcan et al., 2004; Okada et al., 2005; Okada and
Akdemir, 2005; Moshtagh, 2005; Moltz et al., 2009). The MVEE is
scaled in size by the scalar parameter E and used to bound seg-
mentation mask. For nodules that only appear in one CT slice,
the user is only required to provide the four control points from
the maximum area slice. In that case, a 2D enclosing ellipse is com-
puted and a scaled version is used to bound the segmentation.
Fig. 4 illustrates the 8 control-points and fitted shape model for
an LIDC–IDRI(-) nodule. Note that the scaled ellipsoid is truncated
in the axial direction, so as to not extend past the user points spec-
ifying the top and bottom slices.

We acknowledge that this novel 8 cue points approach is more
demanding on the user, compared to the FA subsystem and other
single cue point systems (Kostis et al., 2003; Gurcan et al., 2004;
van Ginneken, 2006; Wang et al., 2007; Tuinstra, 2008; Wang
et al., 2009; Moltz et al., 2009; Kubota et al., 2011). Be that as it
may, the open-minded reader will recognize that this is far less
burdensome than manually delineating the boundary of the nodule
in its entirety. Moreover, we believe that our approach may lead to
more consistent segmentation results by using the well defined 8
control points designation task, and potentially eliminating the
need for subjective post-segmentation mask editing. This could
potentially improve the accuracy of volume doubling time analy-
ses. Furthermore, SA is only utilized in our overall hybrid system
when necessary (i.e., treating special/irregular cases that present
difficult challenges). To make the acquisition of these 8 points as
fast and convenient as possible, a special graphical user interface
can be employed to allow the user to ‘‘drag and drop’’ the linear
extents of all four axes, while enforcing the orthogonality of the
two axes at the max area slice. Among other possible scenarios
for incorporating extra guidance from the user, we believe that
our approach effectively balances the trade-off between taxing
the user and segmentation performance enhancement.

The basic functionality of the SA subsystem is similar to that of
the FA subsystem. It is based on thresholding, opening, bounding,
and connectivity. However, there are some important differences
in other aspects of the system. First of all, for the SA system, the

Fig. 1. FA subsystem (TR segmentation engine) block diagram.

Fig. 2. Modified 2D opening operation.
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VOI extracted from the CT data and lung mask is not of fixed size.
Rather, the VOI size is selected so as to contain the 8 points with
appropriate padding, so as to facilitate feature computation. Also,
unlike the TR segmentation engine, we do not directly set the
threshold as an input in HUs. Instead, the threshold is based on
the mean and standard deviation of the voxels along the major
and minor axes at the max area slice, and along the major axes
at the first and last slices. In particular, the applied threshold is

given by T ¼ l� eT � r, where eT is the input tuning parameter
and l and r are the mean and standard deviation in HUs,
respectively.

Another important distinction of the eTRE segmentation engine
is the revised lung mask concept. Note that in Fig. 3, the MVEE is
logically ORed with the computed lung mask. This guarantees that
the MVEE is considered part of the lung and yields what we refer to
as the ‘‘revised’’ lung mask. This revised lung mask allows us to
cope with juxtapleural nodules that significantly invade the pleural
surface. Three such nodules from the LIDC–IDRI(-) datatset are
shown in Fig. 5. Our standard lung masks are shown in green on
the left in Fig. 5. The revised lung masks, that incorporate the
MVEE, are shown on the right. The red contours are the 50% con-
sensus truth masks. The rolling ball technique in Armato et al.
(1999, 2001), Messay et al. (2010), Korfiatis et al. (2014) is effective
at compensating for the indentations along the contour lines of
each lung caused by juxtapleural nodules. However, it is insuffi-
cient for the purpose of segregating the perimeter of pleura-nod-
ules that are significantly embedded in the lung wall. The pleural
segmentation algorithm (clipping plane), proposed by Reeves

et al. (2006) to approximate the pleural surface, is also inadequate
in resolving the problem. It only works well when the surface
between the nodule and the lung wall can be approximated by a
plane (Reeves et al., 2006). The convex hull method, described in
Kuhnigk et al. (2006), has similar difficulty with embedded
juxtapleural nodules, since it implicitly assumes that the average
boundary of the lung is smooth. A ray casting approach is sug-
gested in Moltz et al. (2009) to segment nodules that are attached
to non-convex parts of the pleura. Their latest suggestion assumes
that the points found by the ray casting procedure cover a major
part of the actual nodule surface (Moltz et al., 2009). That is not
always the case for some LIDC–IDRI nodules. For example, consider
the juxtapleural nodule depicted in Fig. 5(e) and (f). Performing the
region growing and ray casting procedure on this nodule will yield
few valid ray end-points, and these end-points will not fully cap-
ture the geometry of the nodule. The mirroring method, described
in Gurcan et al. (2004), may also be inadequate to resolve the chal-
lenge presented by this particular nodule due to the severe asym-
metry with respect to the original segmented lung boundary. For
these reasons, we believe that using the MVEE from the extra user
points to revise the lung mask to be an effective and robust
solution.

The final processing block for eTRE segmentation engine shown
in Fig. 3, enforces a connectivity constraint. Here we impose a 6-
connected 3D connectivity rule to the 8 user points, plus a com-
puted centralized point (9 points total). The ‘‘central point’’ is com-
puted by finding the intersection of the supplied major and minor
axes in the max area slice.

Note that the three free parameters, eT ;R, and E, are to be
selected jointly for each nodule in an adaptive fashion. These
parameters can work together in interesting ways. The scaled
MVEE bounding method can be thought of as another way to
remove attached non-nodule structures, but in a much more tar-
geted manner than we are able to do in the TR engine. This relieves
the opening operation of the sole duty of pruning the thresholded
segmentation. Also, since the bounding ellipsoid is a scaled version
of the MVEE, the system can be tuned to provide just the necessary
pruning, or even no pruning at all. This is particularly important for
non-elliptical nodules. At the same time, we are still providing a
natural nodule boundary, that is based on thresholding and gentle
opening, for the vast majority of the nodule surface. This is in con-
trast to Okada and Akdemir (2005), Okada et al. (2005), where the
volume of the nodule is obtained using a fitted ellipsoid itself. One
other powerful benefit of the user input based MVEE, is that it
reflects the desired shape parameters sought by the expert user.

Fig. 3. SA subsystem (eTRE segmentation engine) block diagram.

Fig. 4. Left: maximum area CT slice of an LIDC–IDRI(-) nodule with 50% consensus
truth, 4 corresponding control points, and MVEE cross-section. Right: 3D rendered
view with all eight control points.
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This way the system is better able to deliver a final segmentation in
accordance with the desires of the user. In Section 4, we address

how the parameters of eTRE subsystem can be found jointly in an
automated manner.

3.3. Hybrid segmentation system

The full proposed nodule segmentation system is a hybrid that
combines the FA and SA segmentation engines. Fig. 6 shows a top
level block diagram of this hybrid system. To start with, the system
requires a single central cue point to initiate the TR segmentation
engine of the FA subsystem. The result is analyzed to determine
if the TR segmentation is adequate. If it is deemed to be adequate,
the resulting mask may be used as the final output and processing
is complete. However, if the TR segmentation is deemed to be
inadequate (or there is a desire to seek improvement), the SA sub-
system is launched and the user is cued to provide the 8 control
points required. The decision rule can be a manual, one controlled
by the user, or an automated one built into the system. For our
automated approach, we employ a relatively simple decision rule.
This decision rule is based on the estimated overlap score (EOS) for
each output segmentation as provided by the RNN described in

Section 4. The true overlap score is commonly used as a seg-
mentation performance measure and it is defined to be the size
of the intersection set of the true and estimated segmentation
masks divided by size of the union set (van Ginneken, 2006;
Wang et al., 2007; Tuinstra, 2008; Wang et al., 2009; Messay
et al., 2010; Kubota et al., 2011). EOS can be used as a measure
of confidence in the TR segmentation. The other factor that we find
to be highly relevant, is the amount of contact a nodule candidate
has to the pleural surface. Since the TR segmentation engine is
known to have limitations for deeply embedded juxtapleural nod-
ules, we have decreasing confidence as the amount of pleural con-
tact increases. Thus, our automated system declares a TR
segmentation to be adequate if the EOS is greater than 70% and
the fraction of segmented voxels along the outer boundary of the
mask that are in contact with the lung wall is less then 0.3.
Otherwise, the system will recommend to the user that the SA

module, using the eTRE engine, be launched. Note that it is possible
to provide the user with multiple TR candidate segmentations,
based on training with different truth, for consideration at this

stage. If the eTRE segmentation engine is launched, the user is able
to significantly control the resulting segmentation mask through
the 8 provided cue points. If the system is trained on multiple

Fig. 5. Three nodules from LIDC–IDRI(-) with corresponding 50% consensus truth (red) and lung masks (green). Left: standard lung mask used by the TR engine. Right: revised
lung mask formed by ORing with the MVEE in the eT RE engine. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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truths, multiple eTRE outputs could be presented to the user for
final selection. Note that the user may also choose to reposition

the control points, as deemed fit, and rerun the eTRE segmentation
engine, or restart the hybrid system from the start.

4. Segmentation engine parameter selection

4.1. Regression neural network

Given the parametric segmentation engines, the challenge is to
automatically, and jointly, optimize the engine parameters for each
nodule. Of course, such parameters could be set manually, as men-
tioned in Tuinstra (2008). To automate the process, our system
trains and deploys an RNN to serve as a computational/artificial
expert to ‘‘grade’’ segmentations. The RNN takes as input an exten-
sive set of salient features, computed from the CT data and the can-
didate segmentation mask, and produces an EOS. Note that
feature-based trainable algorithms have been previously proposed
by van Ginneken (2006) and Tuinstra (2008). This approach is
attractive in the sense that it can not only be applied to different
types of nodules, but also adapt to the multiple types of truth by
simply changing the training data. Other methods, like the ones
described in Zhao et al. (1999a), Gurcan et al. (2004), van
Ginneken (2006), Hardie et al. (2008), Tuinstra (2008), Messay
et al. (2010), that optimize segmentation parameters based on
computed features have also been developed. However, most of
these prior methods have used a small number of features and a
simple rule based parameter selection. To the best of our knowl-
edge, here we use the most extensive set of features applied to this
problem to date. More will be said about the features and feature
selection in Section 4.2. Because of the large number of features,
a simple rule based parameter selection is not feasible. Thus, we
employ an RNN to process the features and embody the knowl-
edge-base contained within the training set. The availability of
the expanded dataset in LIDC–IDRI makes the use of an expanded
feature set and RNN feasible (Wang et al., 2000; van Ginneken,
2006).

Fig. 7 shows how the RNN is used to evaluate candidate seg-
mentations and allow us to optimize the segmentation engine
parameters in a custom manner for each nodule. Note that this

same approach is used for the TR and eTRE segmentation engines.
After a candidate segmentation is generated, a set of features is
computed and fed into the neural network. The resulting EOS is
then fed into an adaptive algorithm that controls the segmentation

engine tuning parameters. The goal is to find the candidate that
produces the highest EOS, and this candidate is selected as the out-
put for the segmentation engine. In the results presented in this
paper, we have elected to use an exhaustive search over a fine grid
of parameters. The engine parameters that give the highest EOS
score over a fine grid of parameters are selected for the final seg-
mentation. The idea is to focus on top performance, and not pro-
cessing speed, at this stage in the research. Future work may
focus on acceleration of the algorithm implementation.

To create the necessary training data, we generate candidate
segmentations for all of the training nodules using a uniform grid
of segmentation engine parameters. For the TR system, we use
R 2 f0;1;2;3g and T 2 f�1024;�1020;�1016; . . . ;�4g. This gener-
ates a total of 1024 different segmentation candidates for each
nodule. The cue point for training is automatically generated by
using the voxel within the truth mask that is closest to the cen-

troid. For eTRE, we let eT take on 65 linearly spaced values ranging
from 0 to 4. For the parameter E (normalized ellipsoid scaling val-
ues), we use 8 values ranging from 1.01 to 2.5. Note that the
bounding ellipsoid is required to be larger than the MVEE during
scaling, so as to avoid cropping one of the user specified cue points.

The parameter R in eTRE serves the same purpose as in TR, hence it
takes on the same range of values. This results in a total of 2080

Fig. 6. Hybrid nodule segmentation system combining the FA and SA segmentation engines.

Fig. 7. Regression neural network based nodule segmentation evaluation and
engine parameter selection.
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segmentation candidates for every nodule.. After the segmentation
candidates are created, features and overlap scores are computed
for each segmentation candidate. These are used for RNN training.
Since we are considering two segmentation engines and 4 types of
consensus truth, we train a total of 8 RNNs.

In our approach, we make use of Multi-Layer Perceptron (MLP)
RNNs to produce an EOS for each candidate (Rogers, 1991; Kosko,
1992; Girosi et al., 1995; Ham and Kostanic, 2000; Wang et al.,
2000; Tuinstra, 2008). We have chosen an MLP-RNN with one hid-
den layer, one bias node at each level, and initially 40 hidden
nodes. The output layer consists of a single node plus a bias term,
since the EOS is the only output. The network’s input neurons are
fed by the computed features that are scaled to lie between �1 and
1 prior to training and are associated with input bias nodes. We
make use of hyperbolic tangent sigmoidal functions in the hidden
layer, and a logarithmic sigmoidal function in the output layer to
constrain the output to lie between 0 and 1 (Rogers, 1991;
Kosko, 1992; Girosi et al., 1995; Ham and Kostanic, 2000; Wang
et al., 2000; Tuinstra, 2008). The weights and biases are deter-
mined during network training. Initially, weights and bias values
are adjusted using the training data until the error reaches a pla-
teau. At that stage, the validation data are employed. If the val-
idation performance fails to decrease for six successive epochs,
the training is terminated (Rogers, 1991; Kosko, 1992; Girosi
et al., 1995; Ham and Kostanic, 2000; Wang et al., 2000). The entire
process described above (including the validation checks) is
repeated for different numbers of neurons and different numbers
of features. The idea is to create an RNN that is able to generalize
well, while maintaining a good overall performance. All eight
RNNs are trained separably using the training and validation
data-sets (300 and 66 nodules, respectively). The final architec-
tures for each system are provided in Table 3.

4.2. Features

We now turn our attention to the features used by the RNNs. A
proper choice of features is important to obtain good performance
and generalizability (Rogers, 1991; Kosko, 1992; Girosi et al., 1995;
Ham and Kostanic, 2000; van Ginneken, 2006; Tuinstra, 2008). We
have experimented with various feature selection methods, includ-
ing the reaction based approach described in Verikas and
Bacauskiene (2002). Here, our features are selected using a
combination of methods. First, we include intuitively justifiable
geometric and segmentation parameters. The remaining features
are selected from the large pool of intensity and gradient features
described in Hardie et al. (2008), Tuinstra (2008), Messay et al.
(2010) using a correlation analysis. Table 4 shows the final list of
selected features for the four TR RNNs. In that table,
TR25; TR50; TR75 and TR100 denote RNNs optimized for
25%;50%;75% and 100% consensus truth, respectively. Table 5

shows a similar list of selected features for the four eTRE RNNs.
The only difference between the list of possible features in Tables

4 and 5, is the segmentation parameter based features at the bot-
tom of these table.

Let us briefly describe the key features, starting with those in
Table 4 for the TR segmentation engine. The hand-picked features
include 2D and 3D geometric features that are described in Giger
et al. (1988, 1990, 1994), Armato et al. (1999, 2001), Hardie et al.
(2008), Messay et al. (2010). We also include the segmentation
engine parameters used to generate the candidate mask in ques-
tion. For the TR engine, this includes T;R, and the bounding sphere
radius. In the case where the sphere is not employed, we set the
sphere radius feature to 80 mm (the max dimension of the VOI).
The feature denoted as Mask Centroid Error, is the Euclidean dis-
tance between the coordinates of the supplied seed point and the
computed centroid of the segmentation candidate. The feature T
at cue point, refers to the density in HU at the supplied cue point.
The remaining selected features in Table 4 come from the pool of
features described in Hardie et al. (2008), Tuinstra (2008),
Messay et al. (2010). The bulk of this feature pool is made up of fea-
tures that have been found to be useful for nodule detection in our

Table 3
MLP-RNN architectures used for segmentation parameter selection.

System Truth (%) Features Hidden nodes

TR25 25 29 20
TR50 50 28 30
TR75 75 28 30
TR100 100 28 30
eTRE25 25 31 30

eTRE50 50 31 30

eTRE75 75 31 30

eTRE100 100 30 10

Table 4
List of selected features for the four TR segmentation systems (each optimized with
respect to a unique type of consensus truth). The features are computed using the
boundary defined by the segmentation mask and the CT data in HU. 2-D features are
computed at the maximum area slice.

Systems

TR25 TR50 TR75 TR100

2-D geometric features
Size (Major Axis Length) � � � �
Circularity � � � �

3-D geometric features
Volume � � � �
Sphericity � � � �
Elongation � � � �
Juxtapleural � � � �
Fraction Touching Lung � � � �

2-D intensity features
Contrast �

3-D intensity features
Contrast � � �
Standard Deviation Separation � � � �

2-D gradient features
Radial-Deviation Mean Outside � � �
Radial-Deviation Mean Separation � � � �
Radial-Deviation Standard Deviation Inside � � � �
Radial-Deviation Standard Deviation Outside � � � �
Radial-Gradient Mean Outside � � � �
Radial-Gradient Mean Contrast �
Radial-Gradient Standard Deviation Inside � � � �
Radial-Gradient Standard Deviation

Separation
� � � �

3-D gradient features
Radial-Deviation Mean Inside � � �
Radial-Deviation Mean Outside � � �
Radial-Deviation Mean Contrast � �
Radial-Deviation Standard Deviation Inside �
Radial-Deviation Standard Deviation Outside � � � �
Radial-Deviation Standard Deviation

Separation
� � �

Radial-Gradient Mean Inside � � � �
Radial-Gradient Standard Deviation Inside � � � �
Radial-Gradient Standard Deviation Outside �
Radial-Gradient Standard Deviation

Separation
� � � �

Segmentation parameter based features
Sphere radius � � � �
Mask centroid error � � � �
T � � � �
R � � � �
T at cue point � � � �
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CAD system (Messay et al., 2010), but most have not previously
been used for nodule segmentation.

To determine the most salient intensity and gradient features
from the feature pool, we first compute the correlation coefficient
(Papoulis and Pillai, 2002; Lay, 2003) between the features and the
computed overlap scores for the corresponding nodules. Note that
we first slightly erode the segmentation candidate mask before
computing those features. Fig. 8 illustrates the magnitude of the
gradient field for one of the training nodules. As it can be seen in
that figure, the overlaid multiple consensus truth are slightly larger
relative to the boundary of the nodule that is highlighted by the
maximum strength of the gradient field. This erosion process helps
align the maximum overlap score with the peak in most gradient
based features. Since our segmentation engines perform the

modified opening, which expands our final segmentation mask,
we believe such erosion. during feature computation is appropri-
ate. The correlation based feature selection procedure continues
as follows. The feature from the pool with the highest correlation
coefficient is appended to the list of potential salient features.
Remaining features in the pool, with a correlation coefficient mag-
nitude P0.8 with respect to the currently selected feature, are dis-
carded from future consideration. We repeat this process until we
get to 65 features. At this point, any highly linearly dependent fea-
tures are discarded (Papoulis and Pillai, 2002; Lay, 2003). The final
phase of feature selection is based on maximizing system perfor-
mance on the validation data.

The same process is used to obtain the eTRE features shown in
Table 5. The only difference here is that we have computed and
include additional features that make use of the extra user-sup-
plied control points. These extra features include the mean and
variance of the Euclidean distances between the supplied control
points and the nearest corresponding points on the surface/
perimeter of the candidate segmentation. The feature in Table 5
named 3-D Number of Slices Fractional Error is the ratio of the num-
ber of slices between the top and bottom user cue points and the
number of slices in the candidate segmentation. These extra fea-
tures are powerful and allow us to evaluate how well a candidate
segmentation conforms to the user provided shape information.

5. Experimental results and discussion

In this section, we present several results to demonstrate the
efficacy of the proposed systems. First, we present quantitative

performance results for TR; eTRE, and the hybrid system using our
LIDC–IDRI(-) testing data. Next, we present results using LIDC data,
so that we may directly compare the performance of the proposed
systems to several other reported segmentation systems using the
same data. This section concludes with a discussion of the systems
and results.

5.1. Performance on LIDC–IDRI(-)

A performance analysis summary for the segmentation systems
proposed here, using the LIDC–IDRI(-) dataset, is provided in
Table 6. Results are reported for the FA system (TR engine), the

SA system (eTRE engine), and the automated hybrid system. We
have trained the systems using the training and validation data
with 25%;50%;75%, and 100% consensus truths. The overlap
scores presented are relative to the type of truth used for training.
These overlap scores are reported for all three LIDC–IDRI(-) data
subsets (training, validation and testing). The cue point used for
the TR system is set as voxel that lies within the specified truth
mask that is closest to the centroid of the truth mask. For the
eTRE, the 8 control points are obtained as described in Section 3.2
from the truth mask.

The results on the testing data are the primary results. The
results on training and validation are for diagnostic purposes only.
The columns in Table 6 labeled ‘‘sphere cases’’ refer to the number
of nodules where the TR engine deploys the limiting sphere in pro-
ducing its output segmentation, as described in Section 3.1. The
column labeled ‘‘TRE cases’’ refers to the number of cases where
the automated hybrid system determined that the TR engine seg-

mentation was inadequate, and deployed the eTRE engine, with
its extra cue points. We have highlighted the 50% consensus truth
portion of the table, because this is the most common method used
in the literature (Tachibana and Kido, 2006; Way et al., 2006; van
Ginneken, 2006; Wang et al., 2007; Tuinstra, 2008; Wang et al.,
2009; Messay et al., 2010; Kubota et al., 2011). Note that the TR

Table 5
List of selected features for the four eT RE segmentation systems.

Systems

eT RE25 eTRE50 eTRE75 eTRE100

2-D geometric features
Size (Major Axis Length) � � � �
Circularity � � � �

3-D geometric features
Volume � � � �
Sphericity � � � �
Elongation � � � �
Juxtapleural � � � �
Fraction Touching Lung � � � �

2-D Intensity features
Standard Deviation Separation � �

3-D Intensity features
Contrast � � � �
Standard Deviation Separation � �

2-D gradient features
Radial-Deviation Mean Inside � � � �
Radial-Deviation Mean Outside � � �
Radial-Deviation Standard Deviation

Inside
� � �

Radial-Deviation Standard Deviation
Outside

� �

Radial-Deviation Standard Deviation
Separation

�

Radial-Gradient Mean Inside � � �
Radial-Gradient Standard Deviation

Inside
�

3-D gradient features
Radial-Deviation Mean Inside � � �
Radial-Deviation Mean Outside � � �
Radial-Deviation Mean Contrast � �
Radial-Deviation Standard Deviation

Inside
� �

Radial-Deviation Standard Deviation
Outside

� �

Radial-Gradient Mean Inside � � �
Radial-Gradient Mean Outside � � �
Radial-Gradient Mean Contrast �
Radial-Gradient Standard Deviation

Inside
� � �

Radial-Gradient Standard Deviation
Outside

Radial-Gradient Standard Deviation
Separation

� � � �

Segmentation parameter based features
eT � � � �
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system, operating on 50% consensus truth, yields an overlap of
73.85% on the testing data. The limiting sphere is deployed in 25/

66 cases. Using the eTRE, the performance rises to 81.06% on the

same testing data. The automated hybrid deploys the eTRE engine
in 30/66 cases and uses the TR engine in the remaining cases.
The overlap score for this hybrid is 77.84%. It is interesting to note
that the overlap performances for all of the segmentation systems
is very similar across the training, validation, and testing subsets.
This gives us confidence that the systems are not overtrained.

We also analyzed how well the segmentation engines perform if
the parameter selection was ideal. This lets us evaluate how much
performance loss is due to the limitations of the segmentation
engines, and how much can be attributed to the imperfect RNN
parameter selection process. The ideal/optimum parameter selec-
tion for the segmentation engines can be done by conducting an
exhaustive search over a fine grid of parameters while making
use of (relative to) the provided consensus truth (i.e., a ‘‘truth dri-
ven’’ search as opposed to ‘‘RNN driven’’ search). This analysis
shows that using the optimum TR parameters for each nodule in
the testing set would yield an overlap score of 81.43% for 50% con-
sensus truth. Thus, the TR engine is capable of exceptional perfor-
mance. The loss of performance due to the imperfect RNN

parameter selection is 7.58%. In the case of eTRE, the engine with
ideal parameters would produce an overlap score on the testing
data of 86.30% for 50% consensus truth. The loss due to imperfect

RNN parameter selection is 5.24%. While the RNNs do not provide
perfect parameter select, we believe that their performance is very
good. We attribute this largely to the rich set of salient features
used here.

5.2. Performance on LIDC

To compare the performance of the proposed systems to pre-
viously published methods, we test on the original LIDC dataset,
as described in Section 2.2. This set is comprised of 77 nodules that
have been segmented by 3 or more radiologists. Since previous
methods used only the 50% consensus truth, these are the results

we present here for our systems as well. The TR and eTRE systems
are trained on LIDC–IDRI(-) using the training and validation sets
with 50% consensus truth. The results are summarized in Table 7.
Our proposed methods are compared to several other published
results using the same LIDC data. This comprehensive comparison
is made possible thanks to the results published in Wang et al.
(2007, 2009), Kubota et al. (2011). In addition to results for their
own algorithms, they report results for four other algorithms
(Zhao et al., 1999b; Okada and Akdemir, 2005; Okada et al.,
2005; Kuhnigk et al., 2006; Li et al., 2008). As shown in Table 7,
the proposed TR system provides the highest overlap scores on
LIDC data to date at 69.23%. Like the comparison methods, this
method uses only a single centralized cue point. Results for our

25% consensus truth 50% consensus truth
75% consensus truth 100% consensus truth

Fig. 8. Shown to the left is a nodule from our training data. On the right is the magnitude gradient field overlaid with the various types of consensus truth.

Table 6
Performance analysis summary for all type consensus truth using LIDC–IDRI(-) data.

Consensus criterion Data sets (number of cases) TR TRE Automated-Hybrid

Overlap (%) Sphere cases Overlap (%) Overlap (%) TR cases Sphere cases TRE cases

25% Training (300) 66.39 ± 13.03 64/300 75.15 ± 6.91 72.33 ± 9.05 156/300 27/156 144/300
Validation (66) 66.80 ± 10.86 21/66 73.93 ± 8.72 70.89 ± 9.50 33/66 4/33 33/66
Testing (66) 69.90 ± 15.71 17/66 77.26 ± 6.78 75.83 ± 7.30 35/66 5/35 31/66

50% Training (300) 72.52 ± 13.13 68/300 80.84 ± 6.36 78.36 ± 7.71 170/300 33/170 130/300
Validation (66) 72.59 ± 9.33 21/66 80.07 ± 6.61 76.71 ± 7.75 36/66 8/36 30/66
Testing (66) 73.85 ± 11.32 25/66 81.06 ± 7.30 77.84 ± 8.25 36/66 9/36 30/66

75% Training (300) 73.76 ± 14.06 73/300 82.12 ± 6.87 78.52 ± 9.18 208/300 42/208 92/300
Validation (66) 74.41 ± 14.62 17/66 81.54 ± 7.60 78.75 ± 9.47 45/66 3/45 21/66
Testing (66) 71.70 ± 19.89 25/66 81.60 ± 8.33 77.93 ± 10.05 45/66 12/45 21/66

100% Training (300) 70.19 ± 16.15 48/300 79.35 ± 7.73 77.87 ± 8.39 161/300 8/161 139/300
Validation (66) 69.19 ± 14.41 13/66 79.21 ± 7.97 76.33 ± 9.07 34/66 1/34 32/66
Testing (66) 68.44 ± 19.71 21/66 80.12 ± 8.07 78.54 ± 8.70 34/66 6/34 32/66
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eTRE and hybrid systems are also listed in Table 7. However, these
systems should be considered to be part of a new class of algo-
rithms, as they make use of additional control points. It is clear that
the SA systems provide a considerable boost in performance here,
on par with what we see for LIDC–IDRI(-). This demonstrates what
is possible when an expert user provides more than just a single
cue point. We believe this is an important area to explore as a
means of balancing performance with user workflow considera-
tions for challenging segmentation cases.

Fig. 9 presents a number of output segmentations for individual
LIDC nodules, along with the overlap scores. The segmentations are

shown at the maximum area slice. As expected, eTRE outperforms
TR in most cases. The main limitations of the TR system are inade-
quate lung masks for some invasive juxtapleural nodules, and
‘‘missing slices’’ due to partial volume effects and noise. In some
cases, there is a great intensity discrepancy between the extreme

slices (i.e, the ‘‘end caps’’) and the inner slices due to partial vol-
ume effects. Those extreme slices are sometimes missed with our
TR system. Those two problems are effectively resolved by the
eTRE approach, since it makes use of the revised lung mask and
the bounding slices are supplied by the expert user. In a few cases,
such as the three nodules shown in Fig. 9, the TR system can actu-

ally outperform eTRE. Other notable results are the two cases shown
in Fig. 9, which show our capability of delineating exclusion
regions.

5.3. Discussion

We have computed the overlap score among the various types
of consensus truth in LIDC–IDRI(-) and we report a confusion of
these scores in Table 8. This table illustrates the levels of dissent
among the multiple types of consensus truth. It reads as follows.
Each value in the table represents the overlap score (reported in
percentage) between the two consensus truths indicated by the
corresponding row and column headings. Note that the average
overlap between the two extremes of consensus truth shown in
the table is only 49.55%. In addition to the confusion matrix, we
have computed additional related statistics. For example, the mini-
mum and maximum overlap pairs of segmentations among the
four board-certified radiologists, averaged over nodules, is
58:45� 12:16% and 79:57� 8:47%, respectively. The average over-
lap between any two different radiologists is 68:23� 8:86%. We
draw two important conclusions from all of these findings. First,
by analyzing the relationship between these different types of
truth, we are able to better understand the levels of agreement
and disagreement among board certified radiologists. Second, the
overlap of some of the different consensus truths, and individual
radiologist segmentations, is similar to that of segmentations from
top performing automated systems relative to a defined truth.

In a final experiment with the LIDC–IDRI(-) data, we have

attempted to compare overlap scores of the TR and eTRE seg-
mentation systems to that of a human radiologist. Note that the
truth provided with LIDC–IDRI(-) does not allow us to track a single
radiologist across different nodules. In addition, a consensus truth
is generally considered to be superior to that of using a single

Table 7
Nodule segmentation performance comparison on LIDC nodules segmented by three
or more radiologists. Overlap scores are relative to the 50% consensus truth.

Systems Performance (average
overlap)

Zhao et al. (1999b), Wang et al. (2009)⁄⁄ 43%
Okada and Akdemir (2005), Okada et al. (2005),

Kubota et al. (2011)
45 ± 21%

Kuhnigk et al. (2006), Kubota et al., 2011 56 ± 18%
Wang et al. (2007)⁄⁄ 64%
Tuinstra (2008)⁄ 67 ± 16%
Li et al. (2008), Wang et al. (2009)⁄⁄ 45%
Wang et al. (2009)⁄⁄ 58%
Messay et al. (2010) 63 ± 16%
Kubota et al. (2011) 59 ± 19%

Proposed Fully Automated Approach (2014)
TR50 69.23 ± 13.82%

Proposed Semi-Automated Approaches (2014)
TRE50 77.58 ± 8.63%
Automated-Hybrid50 74.14 ± 9.88%

⁄ The system assumes a lung mask has been supplied and has limitation on the
dimensions of the cropped VOI. Hence, it was only tested on 69 nodules (out of 77).
⁄⁄ For those systems a distribution of the overlap scores can be found in the cited
documents.

Fig. 9. Segmentation examples for the LIDC nodules generated using the proposed methods.
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radiologist as the ‘‘gold’’ standard truth for a performance analysis.
Thus, to create the comparison we desire, we have generated a 2
out of 3 radiologist consensus truth for each nodule in the testing
set and we score the remaining radiologist against that truth. We
repeat this process, scoring each of the four radiologist’s seg-
mentations in this way. By averaging these overlap scores we get
a performance benchmark for the ‘‘average’’ radiologist, against a
2/3 consensus truth, of 73:49� 11:13%. Scoring with the same
testing data against the same 2/3 consensus truth, the TR and
eTRE segmentation systems trained with 50% consensus truth, pro-
vide overlap scores of 72:01� 14:60% and 78:85� 8:30%, respec-
tively. Thus, one may conclude that the TR segmentation system
performance is close to, but somewhat below, that of the ‘‘average’’

human radiologist. However, the eTRE system outperforms a single
independent human radiologist in this metric. We attribute this to

the fact that eTRE engine is guided by the 8 control points that are
specifically tailored to the desired truth.

One way to exploit the ability of the proposed systems to adapt
to different truth is train an array of systems with different truth,
as we have done here. Then for a given nodule, a user could be
shown all of the system outputs, and could select from among
these. Such a system could learn from the preferences of the user,
and progressively narrow in on the favored system. Furthermore, it
may be possible to retrain the RNN system after a suitable number
of nodule segmentations have been ‘‘approved’’ by the user. Thus,
radiologist approved segmentation outputs could be used to con-
stitute a new training set to better capture their preferences.
Note that we can simulate a hybrid system that is guided by an
expert user, as opposed to our automated hybrid system. In this

case, we select the best of the TR and eTRE outputs based on truth,
rather than using the automated decision rule described in
Section 3.3. In this case we are able to achieve a 79:01� 8:56%

on LIDC, which is a boost of 4.87% over the automated hybrid,

and a boost of 1.43% over using the eTRE for all nodules. This sug-
gests that there could be benefits to presenting the user with mul-
tiple outputs to select from.

A valuable area of future work would be to focus on imple-
mentation, and investigate software and hardware acceleration
methods to make this method suitable for clinical practice. As men-
tioned in Section 4.1, our focus here is not on processing speed, but
rather segmentation performance. However, the reader may be
interested to know what the processing speed is for the current pro-
totype MATLAB implementation using no hardware acceleration of
nay kind. Generating 8 outputs, for all 8 systems listed in Table 3,
takes approximately 4 min per nodule on an HP Personal
Computer (PC) with processor speed of 3.22 GHz. This time excludes
the automated lung segmentation algorithm described in Messay
et al. (2010) that consumes approximately 27–35 s per CT scan.
The main computational burden comes in calculating the features
for each candidate segmentation when searching the discrete seg-
mentation engine parameter space. To reduce the number of candi-
dates to evaluate, efficient search strategies may be employed
(Tuinstra, 2008). However, one can expect a slight reduction in per-
formance using fast searches as the globally optimum solution may
not be found. Even with a simple grid search, processing can be

accelerated using parallel processing (Messay et al., 2011). This is
because the features for each segmentation candidate can be com-
puted independently of one another. Another potentially fruitful
area of future research might be a study on the sensitivity of the sub-
systems to the supplied cue points. These are matters we intend to
examine in future work.

6. Conclusions

In this paper, we have presented new pulmonary nodule seg-
mentation algorithms. These include the FA system that uses our

TR segmentation engine, the SA system employing the eTRE seg-
mentation engine, and a hybrid system that uses both. The TR seg-
mentation engine is a traditional automated system that requires

only a single user supplied cue point. The eTRE engine is semi-auto-
mated in the sense that 8 user supplied control points are required.

While the burden on the user is certainly greater with the eTRE
engine, the resulting system is highly robust and can handle a vari-
ety of challenging cases. The hybrid system attempts to balance the
ease of use of the TR segmentation engine with the performance

boost of the eTRE engine. This hybrid system initially only requires
a single cue point. Only if the resulting segmentation is determined
to be inadequate is the user prompted to enter the 8 control points

for the eTRE engine.
To the best of our knowledge, the results summarized in Table 6

represent one of the first performance benchmarks using the new
LIDC-IDLI dataset. Note that both testing data subsets used here to
evaluate our FA, SA and hybrid systems are publicly available via
the links provided in Section 2. It is our hope that this benchmark
will spark future research efforts. We also compare the perfor-
mance of the proposed methods with several previously reported
results using the same LIDC data and performance metric. These
results, summarized in Table 7, show that the TR system provides
the highest overlap scores of those systems considered. In particu-
lar, the TR system generates overlap scores that are 5.34% above
the next best results (excluding results from one of the current

authors). The results also show that the eTRE engine provides a
boost of 8.35% over the TR engine on LIDC, and a similar boost on
LIDC–IDRI(-). Thus, the 8 user provided cue points are clearly an
effective way to boost nodule segmentation system performance.
We believe that such semi-automated systems represent a new
class of nodule segmentation algorithms capable of performing at
new levels, and they should continue to be explored.
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Table 8
Confusion table (generated using LIDC–IDRI(-)) illustrating levels of dissent among the multiple types of consensus truth.

Consensus 25% 50% 75% 100%

25% 100:00� 0:00% 77:16� 8:59% 63:73� 10:47% 49:55� 12:01%

50% 77:16� 8:59% 100:00� 0:00% 82:24� 7:65% 63:75� 11:89%

75% 63:73� 10:47% 82:24� 7:65% 100:00� 0:00% 77:13� 10:18%

100% 49:55� 12:01% 63:75� 11:89% 77:13� 10:18% 100:00� 0:00%
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