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Abstract. Generation of chaos from acousto-optic (A-O)Bragg cell mod-
ulators with an electronic feedback has been studied for over 3 decades.
Since an acousto-optic Bragg cell with zeroth- and first-order feedback
exhibits chaotic behavior past the threshold for bistability, such a system
was recently examined for possible chaotic encryption of simple mes-
sages (such as a low-amplitude sinusoidal signal) applied via the bias
input of the sound cell driver. Subsequent recovery of the message signal
was carried out via a heterodyne-type strategy employing a locally gener-
ated chaotic carrier, with threshold parameters matched to the transmitting
Bragg cell. In this paper, we present numerical results and detailed inter-
pretations for signal encryption and recovery under hybrid A-O electronic
feedback using a heterodyne strategy. Important features of this setup,
such as the system robustness in terms of parameter matching (feedback
gain, dc bias, and time delay) are also examined in some detail. C© 2011
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3574106]

Subject terms: acousto-optics; Bragg regime; bistability; chaos; encryption;
decryption; modulation; parameter matching.
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1 Introduction
In an acousto-optic (A-O) modulator, an RF signal applied
to a piezo-electric transducer, bonded to a suitable crystal,
will generate an acoustic wave. It is well known that the
acoustic wave acts like a “phase grating” that diffracts any
incident laser beam into a number of diffracted orders. The
Raman–Nath regime is characterized by multiple scattered
orders while in the Bragg regime there are typically only two
scattered orders (zeroth- and first- orders).1

Around 1978, it was reported that A-O devices with pos-
itive feedback gain exhibit bistability characteristics.2 In an
A-O device, the amplitude of the diffracted fields that operate
in the Bragg regime, i.e., the zeroth- and first-orders, which
appear at the output of the Bragg cell, are related through a
set of coupled differential equations. In Refs. 3 and 4, Chros-
towski and co-workers present experimental results for A-O
bistability and chaos using an equivalent circuit model of the
Bragg cell with feedback. In a standard setup, a Bragg cell is
driven by an ultrasonic sound wave from an RF generator at
40 MHz, and the resulting sound grating diffracts an incident
He–Ne laser beam into the first Bragg order under Bragg
condition. The first-order is then picked up by a linear pho-
todetector, fed to an amplifier, and then returned to the bias
input of the RF generator. The arrangement is shown in Fig. 1.
Nominally, the scattered light beam is intrinsically frequency
or phase modulated (with the acoustic frequency). In typical
waveform sources, the external bias input amplitude modu-
lates the RF waveform. A plot of the first order intensity (I1)
versus the bias input α̂0 yields the well known bistable and
hysteretic behavior.3, 4 The bistability and hysteresis charac-
teristics depend strongly on the feedback gain (β̃), the feed-
back time delay (TD), and the amplitude (Iinc) of the incident

0091-3286/2011/$25.00 C© 2011 SPIE

light. In this paper, we specifically focus on the behavior of
the diffracted first-order light under feedback, operating in
the chaotic regime, with or without (RF) signal modulation.
Accordingly, in Sec. 2, we discuss the basic nonlinear feed-
back system and the associated chaos, as discussed in the
literature. In Sec. 3, the hybrid A-O device and its dynamics
are briefly presented. Details of the time behavior of the first-
order detected light within, near, and off-chaos are discussed
in Sec. 4. Some examples of chaotic encryption for simple,
low bandwidth (BW) signals are presented and discussed in
Sec. 5. Signal recovery via chaotic heterodyne and some re-
sults are discussed in Sec. 6. In Sec. 7, the performance of the
chaotic encryption scheme is presented, specifically in terms
of the robustness and reliability of the encryption scheme.
Section 8 provides concluding remarks and ideas for future
work.

2 Nonlinear Feedback System and Chaos
It is well known that the output scattered intensity in an A-O
Bragg cell in the Bragg regime have the following amplitude
solutions:4

E1 = − j Einc sin

(
α̂0ξ

2

)
, (1a)

E0 = Einc cos

(
α̂0ξ

2

)
, (1b)

which in the time domain correspond to the optical fields:

E1(t) = Einc cos(ω1t − π/2) sin

(
α̂0ξ

2

)
, (2a)

E0(t) = Einc cos

(
α̂0ξ

2

)
cos(ω0t), (2b)
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Fig. 1 An A-O modulator with first-order feedback in Bragg regime.

where the outputs are accessed at ξ = 1 (explained below);
the frequencies ω1 = ωi + �, and ω0 = ωi ; ωi and � are
the incident optical and the RF (ultrasound) frequencies re-
spectively; α̂0 is the peak phase delay of the light through
the acoustic medium; ξ is the normalized distance (= z/L,
where L is the effective interactive length); and ω0, ω1 are
the zeroth- and first- order optical frequencies.4

With feedback plus time delay, the corresponding first-
order detected intensity (via an output photodetector) follows
the nonlinear dynamical equation:

I1(t) = Iinc sin2

{
1

2
[α̂0(t) + β̃ I1(t − TD)]

}
, (3)

where β̃ is the effective feedback gain, Iinc (= E2
inc) is the in-

cident intensity, and TD is the feedback delay time including
photodetector conversion delay. It is the nonlinear dynamics
of Eq. (3) that leads to mono-, bi-, and multistable behavior,
followed by chaos in its various manifestations.3 Several re-
search groups have also investigated aspects and applications
of acousto-optic bistability in the past 10 years or more.5–7

Recently, Ghosh and Verma have conducted an analytical
examination of the conditions for the onset of chaos in the
A–O feedback system using the Lyapunov exponent.8 The
feasibility of operating the hybrid A–O devices in the chaotic

regime, and treating the chaos as an equivalent information
carrier which is then encrypted (modulated) by an informa-
tion signal applied through the RF bias input, and thereafter
recovering the message signal in a receiver using (as a first
approach) a heterodyne detection method, has recently been
explored with some success.9, 10

2.1 Signal Encryption in Chaos
In 1963, Lorenz discovered that in a completely determinis-
tic system of three ordinary differential equations, all non-
periodic solutions underwent irregular fluctuations, and were
bounded but unstable.11 Even though the concept of chaos
as irregular periodic oscillations was originally introduced
by Poincare,12 in the modern context, Li and Yorke seemed
to be the first to introduce the word “chaos” into the mathe-
matical literature to denote the apparently random output of
some mappings.13 The usual approach to encrypt a signal in a
chaotic system is to use a carrier wave of the same frequency
as the chaotic signal, and then embed a signal within that
carrier wave via amplitude modulation (AM). Presumably,
adding this AM-carrier signal to the chaotic signal would
then require decryption with the same chaotic signal for read
out.11 This can be expressed mathematically as follows. As-
sume an AM carrier wave (carrier frequency fc,, and modu-
lation index m) to which we add a chaotic carrier, such that:

sch(t) = [1 + ms(t)]Ac cos(2π fct) + Ach cos(2π fcht), (4)

where Ac and Ach are the amplitudes of the carrier and chaos,
respectively. Assuming fch = fc and by taking Ac + Ach as
a common factor in Eq. (4), we find:

sch(t) = (Ac + Ach)

[
1 +

(
m Ac

Ac + Ach

)
s(t)

]
cos(2π fcht),

(5)

Fig. 2 Hysteresis loop.
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Fig. 3 Multiple/ multistable oscillations at β̃ = 2.41 and TD = 200.67 ms.

or,

sch(t) = Ãc[1 + m̃s(t)] cos(2π fcht). (6)

Ãc and m̃ given in Eq. (6) are the effective chaos carrier
amplitude and modulation index which are given by:

Ãc = Ac + Ach; m̃ = m Ac

Ac + Ach
. (7)

Incidentally, chaos as discussed in this paper manifests
itself in a variety of nonlinear physical systems including
nonlinear optical systems, involving laser light, optical im-
age waveforms, and A-O. Chaos may also be generated in
electronic circuits via nonlinear feedback. An excellent ex-
ample of electronic chaotic behavior is found in the operation
of Chua’s circuit.14, 15

2.2 Signal Encryption in Chaotic Circuit and
Self-Synchronization

In 1993, Newell et al. reported the synchronization of two
separate chaotic circuits.16 These results were confirmed and
the methodology improved on by Mozdy et. al in 1995.17 A
chaotic system is self-synchronizing if it can be decomposed

into at least two subsystems: a drive system (transmitter)
and a stable response subsystem (receiver) that synchronizes
when the chaotic device signal is coupled with the locally
generated (receiver) chaos signal.18–21 As for the coupling,
one has to distinguish between two different situations. When
the evolution of one of the coupled systems is unaltered by
the coupling, the resulting configuration is called unidirec-
tional coupling or drive–response coupling. On the other
hand, bidirectional coupling results when both systems are
connected in such a way that they mutually influence each
other’s behavior.18 Incidentally, the scheme described in this
paper corresponds to a unidirectional coupling between the
transmitter and the receiver, and hence the system possesses
complete synchronization.

2.3 Signal Encryption in Chaotic Optical System
Ikeda (1979) predicted theoretically that bifurcation and
chaos may appear in an optically bistable device using a
ring cavity.22 This effect was first observed in so-called
hybrid bistable devices by Gibbs et al.23 If the first order
light in an A-O Bragg cell is detected, amplified, and fed
back into the acoustic driver, the resulting hybrid device

Fig. 4 Complete chaotic oscillation with value of β̃ = 4.
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Fig. 5 High frequency chaos of 6.3 s.

exhibits optical bistability. The feedback makes the system
inherently nonlinear and complex in terms of its space-time
dynamics.2, 3, 24 As mentioned in Ref. 4, optical bistability,
possible multistability, and chaos may be generated for three
fundamental types of tuning effects, viz., feedback gain, bias
voltage, and input amplitude. In 2008, Chatterjee and
Al-Saedi demonstrated that the chaotic signal in hybrid A-O
feedback can be used for encryption and retrieval of sig-
nals through preliminary simulations.25 The work presented
in this paper expands on the earlier findings by driving the
hybrid A-O system into chaos with a proper choice of the
parameters β̃, α̂0 and TD, and then encrypting the chaotic
waveform with a message wave applied through the acoustic
driver bias input. At the receiver end, a chaotic waveform
is locally generated and multiplied by the modulated chaotic
waveform coming from the transmitter. The resulting product
waveform is passed through a low pass filter and subjected to
a phase shift of 180o to retrieve the original signal. Clearly,
this approach is based on the standard heterodyne detection
technique associated with amplitude modulation, as implied
through Eq. (6).

It must be noted here that the work discussed in this paper
is primarily based on computer simulation experiments using
MATLAB. Note also that the simulations accurately incorpo-
rate the necessary operational parameters (such as feedback
gain, time delay, driver bias, and operations such as signal
multiplication) of the actual physical system. Another im-
portant observation regarding the simulation experiments re-
ported here is that in using Eq. (3) for the nonlinear feedback
in the A-O system, all RF bias inputs become incorporated
through the general phase shift parameter (α̂0), and the pro-
cess of detecting the first order light is incorporated through
the photodetector output current, which is proportional to the
intensity of the diffracted first-order light.

3 Hybrid A-O Device and its Chaotic Dynamics
In 1992, Chatterjee and Huang re-examined hybrid A-O
bistability using a novel technique involving nonlinear de-
pendant sources expressed as convergent power series ex-
pansions of one or more variables representing the output
fields of a Bragg–domain hybrid A-O device with feedback.6

It was shown that optical bistability, possible multistability,

Fig. 6 High frequency chaos.

Optical Engineering May 2011/Vol. 50(5)055002-4

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Chatterjee and Al-Saedi: Examination of chaotic signal encryption and recovery. . .

Fig. 7 The chaos frequency versus 1/TD and linear frequency.

Fig. 8 (a) A bistable and chaotic profile for β̃ = 2.41. (b) Time profile of I1 in the upper monostable region. (c) Time profile of I1 just past the
bistable loop. (d) Time profile of I1 within the bistable loop.
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Fig. 9 (a) The frequency spectrum of a DSB signal with a 10 kHz carrier and 2.5 kHz triangular wave. (b) Modulated chaos waveform with an
encrypted triangular wave. (c) The spectrum of the modulated chaotic signal.
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Fig. 10 (a) A modulated chaos wave a sinc function envelope. (b) Modulated sinc wave with β̃ = 4 and α̂0 = 2.

and chaos may be generated for three fundamental types of
tuning effects, i.e., feedback gain, bias voltage, and input
amplitude, thereby verifying earlier work.2–4 In the simula-
tion, Einc is set to 1 for convenience. To study the bistable
and chaotic behavior of the hybrid device, typically the input
bias is increased from 0 to a maximum and subsequently de-
creased monotonically back to 0. A critical requirement for
the formation of a hysteresis loop for I1 is the presence of a
finite TD in the feedback path of the system; without the de-
lay, the hysteretic behavior does not occur.6 Figure 2 shows
the first-order Bragg intensity I1 versus the bias voltage (α̂0)
which consists of a normal hysteresis loop with a finite TD.
Decreasing the time delay and increasing the value of β̃ up
to a value of 2.41, it is found that the hysteresis loop starts to
move to the left, the area of the hysteresis loop increases and
eventually additional loops begin to appear beyond the hys-
teresis loop. Increasing the time delay further for a relatively

large fixed value of β̃ (at a threshold value of 2.41), clearly
defined multistable loops emerge as can be seen in Fig. 3.
Clearly, for a TD of 200.67 ms and a feedback gain of 2.41,
we observe multistable oscillations beyond the bistable loop.
Thereafter, increasing the value of β̃ to even higher values
(say 4) with an arbitrary TD of 120.32 ms makes the system
go into complete chaotic oscillations, as can be seen in Fig. 4.
It must be emphasized that the chaotic oscillations shown in
Fig. 4 represent variations of I1 versus the bias voltage (α̂0),
and not versus time. In reality, once chaotic oscillations be-
gin, the waveform of I1 versus time is also expected to be
oscillatory, as will be discussed further in Sec. 4.

4 Intensity (I1) in Hybrid A-O Device in the
Neighborhood of Chaos

In this section, we demonstrate the time-domain behavior of
the first-order optical intensity (represented by the photode-

Optical Engineering May 2011/Vol. 50(5)055002-7
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Fig. 11 (a) Schematic of the simulation setup showing components used in the numerical analysis of HAOF at the transmitter end. (b) Schematic
of the simulation setup showing heterodyne components used in the numerical analysis of HAOF at the receiver input. C©(c) Schematic of the
simulation setup showing amplifier, filter, and phase inverter modules at the receiver.

tected output) for the nonlinear A-O feedback system. To
this end, we first develop a hybrid A-O feedback (HAOF)
operation in deep chaos. In general, it is known that the
HAOF device passes through a number of regions of stable
behavior (monostable, bistable, and multistable) en route to
chaos. Thus, any such device must operate above a certain
threshold RF-driver bias (α̂0) and feedback gain (β̃) before
attaining the chaotic regime.

Thus, it is commonly observed that the output I1 of the
HAOF attains chaos only past a threshold gain (β̃) of 2.41.
Likewise, for a high enough gain (β̃>2.41), it exhibits chaos
only past a threshold bias voltage, typically greater than 1
(α̂0 > 1). Hence, to demonstrate the I1(t) versus t character-
istics, we choose a HAOF operation with α̂0 = 2 and β̃ = 4
(both well above the respective thresholds). In this chaotic re-
gion, the intensity I1 begins to show oscillations with time, as

Optical Engineering May 2011/Vol. 50(5)055002-8
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shown in Fig. 5. Clearly, an otherwise sin2{ f [s(t)]} function
with time delay transforms into controlled chaotic oscilla-
tions, as predicted by dynamical theory, in this regime. We
also observe that while the chaos frequency is not entirely
constant, its average value corresponds approximately to the
inverse of the TD in the feedback loop. Thus, as seen from
Table 1, the average chaos frequency varies from around
500 Hz to 102 kHz for TD in the range between 2.1 and
0.01 ms. It turns out that the amplitude of the chaos wave-
form actually has low-level variations, such as seen in the
short snapshot shown in Fig. 6. Thus, the chaos wave even
without any bias signal input exhibits a low-level intrinsic
amplitude modulation (AM). This explains the apparent drift
of the average chaos frequency from 1/TD, as shown by the
plot in Fig. 7. Another important factor we note from Fig. 7 is
that as the TD reduces sufficiently (such that fch ∼ 100 kHz
or higher), the chaos frequency approaches more closely the
value 1/TD (the 45◦ line in Fig. 7). However, even at higher
chaos frequencies, there will continue to be low drifts around
1/TD due to the intrinsic AM effect. At higher values of
TD we observe much higher departures of fch from 1/TD.
This intuitively implies that the corresponding chaos wave
is still not entirely stable and is experiencing a degree of
turbulence.

We next explore the behavior of the HAOF at regions
away from the chaotic regime. Thus, we examine I1 versus
time specifically in three nonchaotic regimes, 1. at the higher
monostable point of the bistable loop; 2. within the bistable
loop; and 3. the lower monostable point at the bistable
loop. The time behavior in regions outside chaos within a
bistable/chaotic regime is shown in Figs. 8(a)–8(d), in which
β̃ is chosen to be 2.41 (the observed threshold for achieving
chaos) and TD is 5.2 ms. From Fig. 8(a), we find that the
system passes from bistability into chaos for α̂0 > 2.0 (ap-
proximately). Obviously, within the strictly chaotic region,
the time profile of I1 would be oscillatory, as was shown in
Figs. 56. However, when we graph the time profiles outside
the chaotic regime, the chaotic oscillations disappear. This
is clearly seen from Figs. 8(b)–8(d), where the profiles are
graphed 1. at α̂0 = 0.9, which is in the upper monostable re-
gion to the right of the bistable loop; 2. at α̂0 = 0.6, which is
in the upper monostable region immediately past the bistable

Table 1 TD and the chaotic frequency (fch).

TD fch kHz

1×10− 5 102.9

1.4×10− 5 100.003

1.8×10− 5 27.3

2.5×10− 5 19.4

3.14×10− 5 15.6

4.2×10− 5 11.04

6.3×10− 5 7.8

1.257×10− 4 4.1

2.1× 10− 3 0.477

loop; and 3. at α̂0 = 0.3, which is within the bistable loop. In
each case, we observe that the time profile is nonoscillatory.

5 Chaotic Encryption Using HAOF Device
Until now, the chaos waveform has been studied for fixed (dc)
acoustic bias voltages. However, in order to utilize chaos as
a means of encrypting and safely transporting a signal wave-
form, one needs to examine further the time (as was presented
in Sec. 4) and frequency behavior of the chaos. To our knowl-
edge, such an examination of chaos versus time has not been
undertaken within the HAOF literature, except for occasional
references in nonlinear analyses. The average chaos frequen-
cies in Table 1 were computed by finding several oscillation
periods from zero crossings, and then taking the inverse of
the average period. As seen earlier in Fig. 5, we find a rel-
atively fast chaos waveform at 10.87 kHz with an average
amplitude of 0.542 (recall that even with no ac bias input, the
amplitude undergoes a low-level intrinsic AM) for α̂0 = 2,
β̃ = 4.0. Note that the chaos waveform in Fig. 5 extends
from 0 to 2π s.

Next, we investigate the effect on the chaotic HAOF out-
put of a low-bandwidth ac input added to the RF driver bias.
As was predicted in Sec. 2.1, [Eq. (6)], the presence of a
low-BW ac signal at the bias input of the RF driver mani-
fests itself approximately as an amplitude modulated chaos
wave in the first-order intensity. To investigate whether the
ac bias-driven chaos indeed turns into a somewhat random
AM wave, we examine the resulting chaos waveform with
a periodic triangular signal waveform of fundamental fre-
quency 2.5 kHz, both temporally and spectrally. To this end,
we first examine the frequency spectrum of a standard dou-
ble sideband (DSB) waveform consisting of a 10 kHz carrier
modulated by a 2.5 kHz periodic triangular wave, both with
unit amplitudes. This spectrum, obtained using a 50 μs Ham-
ming window (to allow a sufficient view of the spectrum in
the frequency domain) and an fast Fourier transform (FFT)
routine, is shown in Fig. 9(a).

In Fig. 9(b), we show the modulated chaos output versus
time corresponding to a 2.5 kHz periodic triangular bias input
of unit amplitude. Note that in this example, the triangular
wave does not manifest itself in the chaos envelope, thus en-
suring a proper encryption process. This will be discussed
further later. The Fourier spectrum of the finite-duration
chaos waveform (using an FFT routine) is shown in Fig. 9(c).
In this spectrum, we find evidence that the modulated chaos
exhibits several characteristics typical of an amplitude mod-
ulated waveform. Note that the central peak in the spec-
trum occurs around 10.5 kHz which is approximately the
average chaos frequency of the given data. Assuming that
the stable chaos is indeed represented as amplitude mod-
ulation (as suggested in Refs. 10–12), we expect spectral
peaks distributed around the “chaotic carrier” in multiples
of the fundamental signal frequency (2.5 kHz). Moreover,
we note that the spectral peaks are slightly shifted from
the expected locations; this behavior can be explained in
terms of the intrinsic AM in stable chaos as was discussed
before.

We next point out some important considerations in the
encryption process. Obviously, if the time behavior of a mod-
ulated chaos wave is close to AM, we expect to see the signal
waveform in the chaos envelope. This, however, is counter-
intuitive to the concept of encryption. To properly encrypt
a signal, we need to “hide” all possible obvious signatures

Optical Engineering May 2011/Vol. 50(5)055002-9
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Fig. 12 Original and recovered sinc signal with matched parameters.

of the signal from the transmitted waveform. It turns out
that for relatively lower feedback gains (within the chaotic
regime), the chaos waveform tends to carry the informa-
tion signal in the envelope. Such a case is illustrated in
Fig. 10(a) for a sinc-function signal used to modulate a
chaos wave with α̂0 = 2 and β̃ = 2.7, albeit with a 180 deg
inversion. Clearly, at this value of β̃, the device is in deep
chaos, yet the information is visible in the chaos envelope.
When the feedback gain is increased to 4.0, as shown in
Fig. 10(b), the sinc-waveform disappears completely from
the envelope. Therefore, for all practical purposes, the in-
formation is now “hidden” or encrypted. Overall, it is

observed in our simulations that information hiding may
generally be accomplished in the chaotic system by choosing
β̃ > 3.0.

6 Signal Recovery Using Chaotic Heterodyne
Strategy

We have seen in Sec. 5 that a stable chaos wave exhibits both
intrinsic and extrinsic AM behavior corresponding to low-
BW ac bias signals. Additionally, the modulated chaos, due
to inherent amplitude and frequency drifts, has the ability to
hide the information within its temporal characteristics. At

Fig. 13 Original and recovered triangular signal with matched parameters.
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Fig. 14 Dependence of chaos amplitude on β̃.

the receiver end, the signal is recovered as follows. First, a
local chaos wave is generated using a second Bragg cell with
matched parameters α̂0 (bias voltage), β̃ (feedback gain), and
TD. The local chaos (which is a photodetected RF current
corresponding to the first-order light) is then multiplied with
the incoming photodetected modulated chaotic signal. The
product waveform is then passed through a low pass filter
(LPF) with cutoff frequency adjusted to accommodate the
signal bandwidth. Nominally, the product spectrum would
yield a response component in the neighborhood of twice
the chaotic carrier which is eliminated by the LPF. Finally,
one needs to carry out a phase shift of 180o along with ap-
propriate dc level shifting to recover the message signal.
This method is essentially a heterodyne scheme. A complete
block diagram of the transmitter-heterodyne receiver scheme
is shown in Fig. 11(a)–11(c). The block diagram shows an
integrated transmitter-receiver system using the heterodyne

concept. Figure 11(a) shows a block schematic of the trans-
mitter representing the HAOF device. The summer at the
front end adds the dc bias voltage to a possible ac signal. The
second summer adds to the first the feedback obtained by
detecting and amplifying the first-order scattered light. The
resulting α̂0,total is then used to generate the first-order in-
tensity with delay (expressed as sin2). The first-order is then
passed through a delay unit (representing the photodetector
output), and an amplifier in the feedback loop. Figure 11(b)
represents the front-end of the receiver in a complete com-
munication system involving the HAOF device. Accordingly,
a local chaos wave matched to the transmitter parameters
is then multiplied with the received modulated chaos wave
from the transmitter (signal A). This process results in an
effective heterodyne phenomenon. The output of the mul-
tiplier is labeled B, and continues into Fig. 11(c). Finally,
Fig. 11(c) shows the heterodyne output (signal B) passing

Fig. 15 Dependence of chaos amplitude on α̂0.
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Fig. 16 Original and recovered triangle wave with β̃ mismatch.

through a low-pass filter and a phase inverter, whose roles
are explained later. In Figs. 12 and 13, we show the input and
final recovered waveforms using this scheme for two differ-
ent signals, viz., a sinc and a triangular wave. Note that the
input and the output message waveforms in Figs. 12 and 13
both exhibit dc level shifts. The input level shifts are caused
by the (deliberate) addition of a dc bias voltage to the driver
ac bias of the RF source in order to ensure chaotic operation
over the entire range of ac variations. On the other hand,
the level shift post-LPF is simply caused by the dc compo-
nent inherent in product demodulation. Final signal restora-
tion would simply involve canceling the dc shift of the LPF
output. The matched parameters used in both the transmit-
ter and receiver are α̂0 = 2, β̃ = 4, and TD = 0.00004 s.
We note in this context that at a TD of 0.00004 s, the ex-

pected (ideal) average chaos frequency ought to be about 25
kHz. However, as was illustrated in Fig. 7, the actual chaos
frequency in this region “drifts” from 1/TD, and therefore
happens to be about 10.78 kHz. Clearly, this region of op-
eration is not ideal (since it involves considerable intrinsic
AM effects). However, it is encouraging that even in this rel-
atively nonideal chaotic region, we are still able to encrypt
and recover simple signal waveforms, thereby validating the
basic operational principles. Obviously, in an ideal system
with sufficient resources, one would reduce the feedback
time delay such that the operating fch would increase to the
10 s of MHz or higher range, where the chaos itself would
also follow the 1/TD line more closely. This will be in fact
necessary in a practical system with arbitrarily large signal
bandwidths.

Fig. 17 Original and recovered triangle wave with TD mismatch.
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Table 2 The tolerance estimates for the three matched parameters.

Parameters Level Thresholds for distortion Percentage tolerance (%)

β̃ (matched value = 4.0) β̃high 4.1 �β̃/β̃ ×100 2.5

β̃low 3.9 2.5

α̂0(matched value = 2.0) α̂0bias(high) 2.2 �α̂0/α̂0 ×100 10

α̂0bias(low) 1.8 10

TD (matched value = 0.04 ms) TDhigh 0.041 ms �TD/TD ×100 2.5

TDlow 0.039 ms 2.5

7 Robustness of Chaotic Encryption and Signal
Recovery

To study the effect of feedback gain β̃ on the (unmodulated)
chaos, the other system parameters (α̂0 and TD) were fixed at
α̂0 = 2 and TD = 0.1 ms. It turns out that the chaos frequency
does not change with β̃. However, β̃ does impact the chaos
amplitude, which monotonically increases in an intermediate
range (3.5 to 4.5); outside this range, it actually decreases
with increasing gain, as shown in Fig. 14. To study the effect
of the bias α̂0, we assume β̃ = 3.0, TD = 0.1 ms. It is found
that α̂0 has no effect on the chaos frequency. However, the
average chaos amplitude appears to decrease monotonically
with α̂0, as can be seen from Fig. 15. We note further that
both α̂0 andβ̃ exhibit individual thresholds (about 1.1 for α̂0
and 2.41 forβ̃) that need to be exceeded in order to drive the
feedback system into chaos.

As shown earlier, the system in Fig. 11 is used to en-
crypt and decrypt/recover message signals with matched pa-
rameters between the transmitter and the receiver, examined
via simulation experiments. In order for this encryption pro-
cess to be reliable and relatively immune from hacking and
piracy, we need to develop a system where the slightest para-

metric mismatch will destroy the signal recovery. Thus, the
“matched parameters” serve as the decoding key in this sys-
tem. Therefore, to evaluate the robustness of this matched-
parameter system, we examine the recovery process under
1.β̃ mismatch; 2. TD mismatch; and 3. α̂0 mismatch. Exam-
ples of the resulting impact on the quality of the recovered
signal are presented below. As shown in Fig. 16, when β̃ is
mismatched from 4.0 in the transmitter to 4.1 in the receiver,
we see significant distortion upon recovery for the triangu-
lar wave with a mismatched β̃. A similar distortion occurs
for about a 2.5% reduction of the matched parameter β̃ in
the receiver. When the time delay in the receiver Bragg cell
was increased to 0.041 ms for a matched value of 0.04 ms,
we once again observe a distorted output, as shown in Fig.
17. Again, a similar distortion occurs when the delay at the
receiver is reduced to 0.039 ms. Finally, when the receiver
Bragg cell α̂0 is increased to 2.2 for a matched value of 2.0,
the recovered output falls apart, as shown in Fig. 18. Simi-
larly, a reduction by 10% of the matched value also severely
distorts the output signal. Table 2 summarizes the tolerance
estimates for the three matched parameters. Overall, it ap-
pears that the feedback gain and the time delay have much

Fig. 18 Original and recovered triangle wave with α̂0 mismatch.
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lower tolerances than the bias voltage. While the tolerance
ranges shown here (between 2.5% and 10%) may not appear
to be sufficiently low, we must keep in mind that an ac-
tual physical recovery of an encrypted chaos would require
all three parameters to be matched simultaneously, which is
probabilistically a prohibitive task.

8 Concluding Remarks
In this paper, a chaotic heterodyne scheme for encrypting and
decrypting/ recovering signals using chaos was examined un-
der first-order A-O feedback. The operation of the system for
relatively low-BW information is based on driving the feed-
back A-O system into chaos using proper choice of system
parameters. At the receiver end, it is essential that the local
Bragg cell have matched parameters in order to recover the
original signal.

The effects of parameters such as bias driver (α̂0), the feed-
back gain (β̃), and the TD on the chaotic amplitude and fre-
quency were studied. The scheme robustness was discussed
in relation to possible mismatch between the transmitter and
the receiver Bragg cell parameters, taken one at a time. The
results show that the recovery falls apart for percentage mis-
match of the feedback gain and the time delay around 2.5%
and for bias driver around 10%. Further and ongoing work
includes analytic examination of the chaotic system, noise
analysis, and developing a new general encryption system
for higher BW and alternative recovery schemes.
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