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Examination of the nonlinear dynamics of a chaotic
acousto-optic Bragg modulator with feedback under
signal encryption and decryption

Mohammed Al-Saedi
Monish R. Chatterjee
University of Dayton
Department of Electrical and Computer

Engineering
300 College Park
Dayton, Ohio 45469
E-mail: monish.chatterjee@notes.udayton.edu.

Abstract. An acousto-optic Bragg cell with first-order feedback, which
exhibits chaotic behavior past the threshold for bistability, was recently
examined for possible chaotic encryption and recovery of simple mes-
sages (such as low-amplitude periodic signals) applied via the bias
input of the sound cell driver. We carry out a thorough examination of
the nonlinear dynamics of the Bragg cell under intensity feedback for
(i) dc variations of the feedback gain (β̃) and the phase shift parameter
(α̂0) and (ii) ac variations of α̂0;total under signal encryption, investigating
both from two different perspectives: (i) examining chaos in view of the
so-called Lyapunov exponent derived recently by Ghosh and Verma
and (ii) examining chaos in terms of the familiar bifurcation maps of inten-
sity plotted against the feedback gain and the effective bias. It is shown
that overall, the nonlinear dynamical results using the two approaches
broadly agree, both for dc (fixed-parameter) analyses and, more impor-
tantly, when applied to the case of ac signal encryption cases. This affirms
the effectiveness of the nonlinear dynamical theory in predicting and track-
ing the actual physical behavior of this system for message signal trans-
mission and recovery under complex chaotic encryption. © 2012 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.018003]

Subject terms: Acousto-optics; hybrid A-O feedback; Bragg regime; chaotic encryp-
tion; modulation; Lyapunov exponent; bifurcation maps; chaotic bandgaps.
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1 Introduction
Acousto-optic (A-O) bistability and chaos were first reported
in the late 1970s and early 1980s by Albert et al.,1 when it
was shown that A-O devices with positive feedback gain
exhibited bistability characteristics.2 In a standard hybrid
A-O feedback (HAOF) setup, a Bragg cell is driven by an
ultrasonic sound wave from an RF generator (typically at
40 MHz or higher), and the resulting sound grating diffracts
an incident laser beam into the first order under the Bragg
condition. The first order is then picked up by a linear photo-
detector, fed to an amplifier, and returned to the bias input of
the RF generator. The arrangement is shown in Fig. 1. Nom-
inally, the scattered light beam is intrinsically frequency or
phase modulated (with the acoustic frequency). In typical
waveform sources, the external bias input amplitude modu-
lates the RF waveform. A plot of the first-order intensity (I1)
versus the bias input α̂0 yields the well-known bistable and
hysteretic behavior.2,3 It is well known that when the feed-
back gain or a combination of parameters is increased or
adjusted sufficiently, the feedback system enters into
chaos. The bistability, hysteresis, and chaotic characteristics
depend strongly on the feedback gain ( ~β), the feedback time
delay (TD), the amplitude (I inc) of the incident light, the
initial value of the intensity (I1ð0Þ), and the effective bias
voltage (α̂0). Using the chaotic properties of the HAOF
device, it was recently reported that it is possible to encrypt
relatively low-bandwidth signals within the chaos wave and
subsequently transmit, receive, heterodyne, filter, and

recover the message signal from this chaotically encrypted
carrier.4,5 This earlier work showed a reliable and relatively
robust means of secure information communication for a few
simple test signals applied through the acoustic bias input.
While the transmitted chaotic waves appeared to have
been reasonably recovered in the test simulations, the choice
of input amplitudes, frequencies, and the values of the impor-
tant system parameters was based in that work primarily on
studying multiple simulations and conducting tests for con-
ditions in which chaos would appear to be fairly assured. In
this paper, we examine the chaos and encryption problem
from an analytic perspective in order to be able to better
understand and predict the system behavior relative to the
critical parameter thresholds inherent in the HAOF device.
Our emphasis is on the examination of actual encryption
and decryption operations seen against the predictions of
two different analytic models. In Sec. 2, we present a
brief background of an analytic theory based on Lyapunov
exponents (LE) that lays out certain conditions under which
the system either dynamically enters chaos or remains non-
chaotic. This theory was developed recently by Ghosh and
Verma, specifically with emphasis on the A-O system.6 It
turns out that such a dynamical system is expected to be
chaotic as long as the LE is positive; it is nonchaotic other-
wise. Additionally, a necessary but not sufficient condition
for chaos is found to be based on a feedback gain-input opti-
cal amplitude product. A few cases are studied in Sec. 3 for
the LE characteristics (with fixed values of the other para-
meters) involving (i) the feedback gain ~β and (ii) the total
RF driver bias voltage α̂0. In Sec. 3.1, the dynamical beha-
vior of the HAOF is investigated by means of so-called0091-3286/2012/$25.00 © 2012 SPIE
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bifurcation maps—i.e., plots of the first-order intensity I1
versus ~β or α̂0 with the values of the other parameters
held constant. The results for these two approaches are
shown to be generally consistent. At this stage, we need
to emphasize that the results pertinent to the LE and the
bifurcation maps that we present here are essentially dc char-
acteristics along the lines of Ref. 6. We report these charac-
teristics in order to investigate the ac encryption results
against these graphs taken as templates. The aim of this
paper is therefore similar to examining the ac small-signal
behavior of a system on the basis of its dc bias characteris-
tics, as is common in much of circuit theory and electronics.
Since our recent work involved signal encryption and recov-
ery using chaotic Bragg cells, it is important to examine the
systems used in such chaotic modulation studies against the
analytical and numerical dynamical theory developed in
Secs. 3 and 3.1. Section 4 of the paper presents details of
such comparisons. Overall, it is found that most of the
encryption problems reported earlier generally satisfied
operation of the HAOF in a stable chaotic environment,
except for narrow time windows when the system was not
chaotic, and hence there could not have been any signal mod-
ulation. We offer plausible explanations for such discrepan-
cies and argue that absence of chaos over narrow windows
does not affect to any large extent the overall performance of
the encryption system. Section 5 concludes this paper.

2 Brief Background of Lyapunov Exponents
Relative to the A-O Feedback System

In a recent paper, Ghosh and Verma developed an elegant
analytic theory that examines the nonlinear dynamical beha-
vior of the HAOF device (adapted for A-O) in light of the so-
called Lyapunov exponent (LE) prevalent in chaos theory.6,7

The appearance of this theory provided the impetus for the
current authors to utilize it, along with standard bifurcation
maps, in order to substantiate or find the behavioral limits of
the ac signal encryption problem that we have studied and
reported earlier.5

To briefly summarize the LE theory developed in Ref. 6,
we first introduce the well-known intensity equation for an
HAOF under feedback and delay:6,3

I1ðnτÞ ¼ I incsin2
�
1

2

�
½α̂0 þ β̃I1ðn − 1Þτ�; (1)

where ~β is the net feedback gain, I inc is the intensity of the
incident light beam, τ is the time delay in the feedback loop,

and n ¼ 1; 2; 3; : : : and represents the number of iterations
in the feedback loop. We note next that in Eq. (1), nτ and
ðn − 1Þτ are representative of the current time and the (pre-
vious) delayed time respectively, with time (as well as the
iterative cycles) being discretely repeated every τ seconds
in the loop. In this respect, the integer n becomes a counter
for time increments (assumed in multiples of τ). Hence, in
what follows, the analysis is based on the integer n alone
(instead of nτ).

Using an iterative approach, Ghosh and Verma6 show that
after n iterations in the loop, the incremental change in the
feedback intensity may be expressed as an exponential
function, i.e.,

ΔI1
ε

→ enλ; (2)

in the limit that n → ∞, and ε → 0. Thus, it is clear that if the
LE is positive and real (λ > 0), the iterations will arbitrarily
diverge, and hence the resulting orbits will exhibit chaotic
behavior (and correspondingly, chaotic time-domain oscilla-
tions, as will be shown later), whereas if λ < 0, we expect that
the orbits will converge eventually to a fixed point in the tra-
jectory plane.3,8 Note that when the output intensity dynami-
cally moves out of chaos, the corresponding “fixed-point”
convergence implies a nonoscillating behavior in the time
domain. Additionally, Ghosh and Verma derive a necessary
but not-sufficient condition for the onset of chaos in the
HAOF system, given by:

jβ̃I incj > 1; (3)

where I inc is the incident optical amplitude. We note that in
our work, we consistently assume this amplitude to be nor-
malized to 1. Please note that the definition of the LE (λ) as a
convergent limit of a logarithmic function of the first-order
intensity under feedback is derived in Ref. 6. This definition
has been used in our graphical analysis.

We observe that the condition in Eq. (3), though neces-
sary, may not be sufficient in order to ensure chaos, as has
been observed by Ghosh and Verma.6 This will be further
seen from some of the results that follow.

In what follows, we examine the A-O feedback problem
in terms of its dynamical behavior, specifically by looking at
the LE versus appropriate system parameters (with the other
parameters held constant). This will be followed by a study
of the bifurcation graphs of the problem (first-order intensity
versus feedback gain with other parameters held constant)
and rigorously verifying the resulting chaotic and nonchaotic
regimes against the aforementioned Lyapunov theory. These
results are discussed in Sec. 3. We emphasize once again that
the “operating point” graphs discussed in Sec. 3 (via both the
LE and the bifurcation maps) are meant for use as templates
for analyzing ac behavior of the HAOF system (under nar-
row-band small signal applications). The ac analysis results
are presented in detail in Sec. 4 and constitute the primary
and original work in this paper. To summarize, in the final
analysis, we look further at the graphical dc “operating
point” results and test the outcomes against the cases for
low-frequency and low-amplitude (ac) chaotic modulation
simulations that have been recently reported in the context
of chaotic encryption and decryption of narrowband signals.5

Fig. 1 Hybrid A-O modulator with first-order feedback in the Bragg
regime.
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3 Examination of Dynamical Behavior in Light of
the Lyapunov Exponent

As mentioned, in this section we investigate the Lyapunov
exponent (LE) as defined in Ref. 6 via 2-D plots of LE versus
~β and α̂0. For our eventual analysis for the HAOF ac encryp-
tion behavior, we remark that the LE plots versus α̂0 are more
relevant because application of ac signal occurs via the RF
driver port in the HAOF device, and hence it is the α̂0 that
effectively varies under ac operation, and not the feedback
gain ~β. While investigating a series of LE graphs (not
shown here) versus ~β, we have found that the LE exhibits
very high sensitivity with respect to several of the system
dc parameters, primarily α̂0, I inc, and I1ð0Þ. This fact indi-
cates that one needs to exercise great caution in selecting
parameters (both dc and ac) such that a given message
encryption/decryption system will operate in the chaotic
regime over the entire range of the ac signal. We limit
our discussion here, however, to the case of one such ~β
plot, with a fixed set of parameters that match similar para-
meters used in our ac encryption experiments. This plot is
shown in Fig. 2, where I inc ¼ 1, I1ð0Þ ¼ 0, and α̂0 ¼ 2.
From the plot, we observe two relatively broad regions of
chaos, namely a band extending from about 1.9 to 2.7,
and a second one from 3.2 to 4. Within these “passbands,”
we see occasional negative indentations in the LE. For
nomenclature purposes, we define regions of λ where the
LE is positive as passbands of chaos, while those regions
where the LE is negative will be classified as stopbands.
Likewise, the range of the abscissa over which the stopband
extends will be defined as chaotic bandgap. In Fig. 3, we
show the corresponding Lyapunov plot for the same I inc
and α̂0, but with a different initial condition, I1ð0Þ ¼ 0.25.
We observe that for the same values of the bias voltage
and the incident intensity, the chaos characteristics have
undergone a notable shift. Thus, the passbands now extend
from about β̃ ¼ 2.5 up to β̃ ¼ 4.0, with three stopband
notches around 2.8, 3.2, and 3.45. These bands are different
from those in Fig. 2. These results illustrate the well-known
sensitivity of chaos relative to initial conditions. We shall see
later that similar sensitivity to initial conditions is also exhib-
ited by the bifurcation maps.

As mentioned, in studying the feedback characteristics
due to the LE, it turns out that examining the exponent

relative to the acoustic driver bias (α̂0) is more crucial to
the implementation of signal modulation and encryption
operations than LE versus ~β This is because the ac signal
input for the encryption operations invariably goes through
the acoustic driver, and hence influences the α̂0 behavior. We
next illustrate our LE versus α̂0 characteristics, indicating
some differences vis-à-vis the corresponding dependence
on ~β. The parameters corresponding to Fig. 4 showing the
LE versus α̂0 are I inc ¼ 1, I1ð0Þ ¼ 0, and ~β ¼ 2. In this
case, the values correspond to the typical parameters chosen
for the signal modulation/encryption simulations that we
have reported elsewhere,4,5 except to some extent that the
feedback gain here is exactly one-half of that used in
most of the encryption experiments. We note that with I inc ¼
1 and I1ð0Þ ¼ 0, there are only very limited passbands in the
α̂0 space where chaos happens when ~β ¼ 2. This finding is in
complete agreement with our reported modulation results,
where it was seen that with I inc ¼ 1 and I1ð0Þ ¼ 0, chaos
occurs only when ~β exceeds 2.41.4,5 When ~β is increased
to 4, while keeping I inc ¼ 1 and I1ð0Þ ¼ 0, we find in
Fig. 5 that the chaotic bands have now increased noticeably.
Thus, the LE is now positive over the bands of α̂0 around the
ranges listed in Table 1. Note that Table 1 provides a com-
plete summary of the chaotic passbands, stopbands, and

Lyapunov exponent of the A-O logistic map versus β under dc bias 
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Fig. 2 LE versus β̃ for I inc ¼ 1, I1ð0Þ ¼ 0, and α̂0 ¼ 2.

Fig. 3 LE versus β̃ for I inc ¼ 1, I1ð0Þ ¼ 0.25, and α̂0 ¼ 2.
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Fig. 4 LE versus α̂0 for I inc ¼ 1, I1ð0Þ ¼ 0, and β̃ ¼ 2.
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bandgaps derived from the α̂0 plots. It is important to note
that within the chaotic passbands, however, there are narrow
regions where the LE becomes negative, implying nonchao-
tic behavior. We will further discuss the implications of these
nonchaotic departures later on. We need to point out here that
in the chaotic modulation work that we have reported,4,5 a
typical set of parameter values happens to be I inc ¼ 1,
I1ð0Þ ¼ 0, and β̃ ¼ 4. The LE characteristics illustrated by
Figs. 4 and 5 clearly indicate that with β̃ > 3, we expect
a relatively large range of chaotic α̂0 values. This is important
for our signal processing applications, since we need to
ensure chaotic operation throughout the range of (acþ dc)
α̂0 values. Overall, we observe that the sign of the LE
depends critically on specific combinations of the four para-
meters, α̂0, ~β, I1ð0Þ, and I inc. Therefore, there exists a great
deal of sensitivity in terms of chaotic behavior over the pass-
bands and stopbands of these parameters, especially α̂0 and
~β. These issues will be examined in greater detail later on,
when we discuss the application of the LE to the signal
encryption problem.

The nature of the Lyapunov plots presented above shows
clearly that the emergence of passbands and stopbands in this
complex closed-loop system is highly sensitive to both para-
meter values as well as initial conditions. This somewhat
unstable dynamical behavior accounts for the regions of
smooth transitions of I1 versus ~β in the Lyapunov plots.
The results are further corroborated by the corresponding
bifurcation map studies discussed next.

3.1 Examination of Dynamical Behavior based on
Bifurcation Maps

In this section, we examine the dynamical behavior based on
bifurcation maps of the A-O cell with feedback in the Bragg
regime, with the intent to compare the resulting dynamics
with those predicted by the Lyapunov theory, and to test
the validity of our reported encryption/decryption results
against both analyses. We first examine the first-order output
intensity I1 versus ~β for fixed values of I inc and I1ð0Þ with α̂0
held constant at 2.0. One such result is shown in Fig. 6,
where the value of I inc is set to 1, the initial condition
I1ð0Þ is set to 0 (this corresponds, incidentally, to the chaotic
encryption results reported elsewhere5), and α̂0 ¼ 2. The
resulting bifurcation map shows considerable differences
from the case reported in Ref. 6, where α̂0 was 2, but I inc
and I1ð0Þ were both held at 0.55. One notable change for

this case is that the initial bifurcation (1.0 versus 1.8), the
second-order bifurcation (1.75 versus 3.2), and the chaotic
thresholds (2.1 versus 3.8) are all lower than the previous
case; in other words, the map shifts to the left. In other
words, bifurcation now starts at ~β ¼ 1; second-order at
1.75, and steady-state chaotic behavior at about 2.1. Addi-
tionally, we observe another important dynamical feature
in Fig. 6. We find that within a broad chaotic “band,” say
from 2 to 2.75, there emerges a narrow “forbidden band”
or bandgap where the output does not exhibit chaotic oscilla-
tions. The chaotic band between 3.4 and 4, on the other hand,
shows steady-state chaos. However, between 2.75 and 3.4,
there is no chaos (even though there might be higher-
order multistability in this range). Hence, we observe that
the bifurcation maps clearly predict chaotic passbands and
stopbands separated by bandgaps in the ~β space. In compar-
ing this finding with the LE plots discussed before, we recall
that in the regions of ~β where the LE became positive (indi-
cating chaos), we have seen earlier how the LE undergoes
negative transitions, indicating departure from chaos.
Hence, both analyses predict very similar features. Examin-
ing Figs. 2 and 6, we note that we can predict non-chaotic
and chaotic behavior from each diagram via different inter-
pretations. Thus, from Fig. 2, we find that chaos happens in
those windows where the LE becomes positive. We predict
chaotic outputs for the case of α̂0 ¼ 2, I inc ¼ 1.0, and
I1ð0Þ ¼ 0 over the ~β windows (or passbands) 1.9 to 2.3,
2.4 to 2.75, and 3.2 to 4.0. Likewise, Fig. 2 indicates non-
chaos over the stopbands in the ~β range 0 to 1.9, 2.3 to 2.4,
and 2.75 to 3.2. From Fig. 6, on the other hand, we define
chaos as the regions of the I1 versus ~β graph where we see
dense, steady oscillations of the intensity in the ~β space. By
this definition, we find chaotic passbands in exactly the same
regions as predicted by Fig. 2. We note further that a stop-
band in Fig. 6 is indicated by white bandgaps in the middle
of an oscillatory waveform (the ~β. range 2.3 to 2.4, which
matches the values in Fig. 2). One final note regarding
the passbands has to do with the comparison of the last pass-
bands in Figs. 2 and 6, those in the range 3.2 to 4.0. In Fig. 6,
we find that the oscillations within this band do not uni-
formly sweep the vertical frame. Returning to the same
range in Fig. 2, we find that the LE is actually positive in
the entire range (thereby indicating chaos); however, in
the region 3.2 to 3.3, there is a dip in the LE (i.e., the LE
becomes smaller), thereby accounting for the nonuniformity
in the oscillations in Fig. 6 within the same band. As was
seen in Figs. 2 and 3, we also find that if the bias voltage
and incident intensity are kept fixed, the chaos exhibits siz-
able sensitivities to small changes in the initial condition.
Thus, as seen in the bifurcation map of Fig. 7, there is no
unambiguous passband in the ~β.range 2.5 to 3.5 (as opposed
to the clearly discernible passbands from 1.8 to 2.75 in
Fig. 6), while a passband does exist from 3.6 to 4.

In contrast with Fig. 6, the dynamics of Fig. 8 (with
I inc ¼ 1, I1ð0Þ ¼ 0.5, and α̂0 ¼ 1) in the ~β range (0 to 4)
indicate a single chaotic passband, extending approximately
from 3.1 through 3.6. In the region from 2.4 to 2.6, there
appear to be some spurious, discontinuous oscillations,
which we emphasize do not represent steady-state chaos.

Figures 9 through 11 show bifurcation maps versus
the bias parameter α̂0. In these figures, we note certain
fundamental differences from the bifurcations shown earlier
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Fig. 5 LE versus α̂0 for I inc ¼ 1, I1ð0Þ ¼ 0, and β̃ ¼ 4.

Al-Saedi and Chatterjee: Examination of the nonlinear dynamics of a chaotic acousto-optic Bragg modulator : : :

Optical Engineering 018003-4 January 2012/Vol. 51(1)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



versus ~β. From the figures, we once again see mono-, bi-, and
multistable regions created via the serial bifurcation effect.
However, in this case, we observe a tendency (perhaps
more pronounced) for the “bifurcation” to proceed both
ways—i.e., a single branch undergoing doubling, as well
as two branches combining into one. In addition, we find

that the number of chaotic passbands in the α̂0 space (for
most typical fixed values of ~β) is consistently higher than
was the case in the ~β space. Thus, in Fig. 9, with
I inc ¼ 2, I1ð0Þ ¼ 2, and ~β ¼ 2, we see five passbands sepa-
rated by four stopbands. Details of these bands are summar-
ized in Table 1. We note that we have listed chaotic

Table 1 Chaotic passbands and stopbands from bifurcation maps.

Fixed Parameters

β̃ I inc I1ð0Þ α̂0 Passbands α̂0 Stopbands Bandgaps Δα

2 2 2 0.1 to 0.65 0.65 to 1.2 0.55

1.2 to 1.55 1.55 to 1.65 0.1

1.65 to 2.15 2.15 to 2.25 0.1

2.25 to 2.7 2.7 to 3.2 0.5

3.2 to 3.8 3.8 to 4.0 0.2

3 1 0 — 0 to 0.1 0.1

0.1 to 0.65 0.65 to 0.7 0.05

0.7 to 0.9 0.9 to 1 0.1

1 to 1.6 1.6 to 3.25 1.65

3.25 to 3.75 3.75 to 3.85 0.1

3.85 to 4 — —

3.5 1 0 — 0 to 0.1 0.1

0.1 to 0.3 0.3 to 0.35 0.05

0.35 to 0.85 0.85 to 0.9 0.65

0.9 to 1.2 1.2 to 1.85 0.65

1.85 to 2.55 2.55 to 3.25 0.7

3.25 to 3.45 3.45 to 3.5 0.05

3.5 to 4 — —

4 1 0 — 0 to 0.1 0.1

0.1 to 0.65 0.65 to 1.2 0.55

1.2 to 1.55 1.55 to 1.65 0.1

1.65 to 2.15 2.15 to 2.25 0.1

2.25 to 2.7 2.7 to 3.2 0.5

3.2 to 3.8 3.8 to 4.0 0.2

5 1 0 — 0 to 0.15 0.15

0.15 to 0.85 0.85 to 0.95 0.1

0.95 to 1.3 1.3 to 1.55 0.25

1.55 to 1.9 1.9 to 2 0.1

2 to 2.7 2.7 to 3.35 0.65

3.35 to 4 — —
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passbands and stopbands in the α̂0 space and not in the ~β
space, because for our signal encryption purposes, where
α̂0 varies with an ac input, the α̂0 bands are of special interest.
In Fig. 10, with I inc ¼ 1, I1ð0Þ ¼ 0, and ~β ¼ 3, we find that
the overall number of passbands is essentially two in this
case, one running roughly from 0.1 to 1.6 and the other
from 3.25 to 4. Within these two passbands, there are
very narrow stopbands (of bandgaps within 0.1), where
we expect the system to be nonchaotic. The two broad pass-
bands are also separated by a wide bandgap from 1.6 to 3.25
(bandgap ¼ 1.65), where there is no chaos. We note also that
within the large stopband, there is an area with discontinuous
oscillations in the intensity (around 2.35 to 2.65) where the
chaos is not steady state. Finally, in Fig. 11, with I inc ¼ 1,
I1ð0Þ ¼ 0, and ~β ¼ 4, we observe five very distinct and well-
defined chaotic passbands (see Table 1), separated by two
broad stopbands and two minor/narrow stopbands.

We next make an important observation regarding the
dependence of chaotic behavior upon two parameters in par-
ticular: ~β and I inc. Figures 9 and 11 show that even though
they correspond to entirely different choices of ~β, I inc,
and I1ð0Þ, the overall passband and stopband behavior for

Fig. 7 The bifurcation map of I1 versus β̃ for fixed values of I inc ¼ 1,
I1ð0Þ ¼ 0.25, and α̂0 ¼ 2.

Fig. 8 The bifurcation map of I1 versus β̃ for fixed values of I inc ¼ 1,
I1ð0Þ ¼ 0.5, and α̂0 ¼ 1.

Fig. 9 The bifurcation map of I1 versus α̂0 for fixed values of I inc ¼ 2,
I1ð0Þ ¼ 2, and β̃ ¼ 2.

Fig. 10 The bifurcation map of I1 versus α̂0 for fixed values of I inc ¼ 1,
I1ð0Þ ¼ 0, and β̃ ¼ 3.

Fig. 6 The bifurcation map of I1 versus β̃ for fixed values of I inc ¼ 1,
I1ð0Þ ¼ 0, and α̂0 ¼ 2.
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the two cases appear to be identical for all practical purposes.
This was an intriguing finding, since in general we
expect stable passbands to occur at relatively higher gains.
The result from Fig. 9 would tend to contradict this. We
then observed that the two graphs had one feature in com-
mon: Both had the same gain-amplitude product of
jβ̃I incj ¼ 4.0. This would tend to indicate that the occurrence
of chaotic bands depends on the gain-amplitude product, and
not necessarily on the individual values of each parameter
taken separately. We have subsequently verified this hypoth-
esis by choosing other combinations of ~β and I inc such that
jβ̃I incj was held constant at 4.0. The results (not shown here)
showed conclusively that the chaotic band picture is invariant
relative to the gain-amplitude product. Note that these results
are consistent with the condition in Eq. 3. We have also
found concurrently that the chaotic band picture is indepen-
dent of the initial condition of the first-order light. We also
note that the maximum amplitude in the bifurcation plots is
determined by the value of I inc; as a result, we find that the
only distinction between Fig. 9 and Fig. 11 is in terms of the
amplitude scale of I1. Hence, I1;max is 2 in Fig. 9 and 1 in
Fig. 11. More details of these findings will be presented
elsewhere.

Incidentally, some of the chaotic modulation work that we
have recently reported5 consisted of the same fixed para-
meter values as in Fig. 11. From Table 1, we further remark
that as the value of ~β is increased above 3.0 (Fig. 10), with
I inc ¼ 1 and I1ð0Þ ¼ 0, the chaotic bands become progres-
sively regular, continuous, and broader. Therefore, operating
an A-O feedback modulator within this range of parameters
would offer greater leverage in terms of allowing larger ac
amplitude variations, as well as ensuring reliable chaotic
encryption within the entire passband. However, we have
also seen that when ~β ¼ 2 and I inc ¼ 2 (keeping the gain-
amplitude product constant at 4; see Fig. 9), we have the
same chaotic bands as in Fig. 11. This would potentially
raise the question as to whether stable and wide-passband
chaos may also be generated at lower gains by increasing
the incident optical amplitude. The conclusion would appear
to be in the affirmative; however, from an overall perspective,
we believe that a higher feedback gain is likely to ensure that
the necessary condition for chaos (Eq. 3) will be more readily
satisfied. We next make one other observation regarding the
“stable” chaotic passbands. Figure 11 indicates that there are

five distinct chaotic passbands where the closed-loop
system is undergoing stable chaotic oscillations. From a
signal modulation perspective, this would require that a
time-varying α̂0 (with bias and ac inputs to the RF driver)
should fall well within one of the passbands. However,
we may visualize the three middle passbands in Fig. 11
as essentially one broad passband with two narrow stopbands
(the white bars) in the middle. Clearly, if an effective α̂0 is
allowed to have a dynamic range corresponding to the
width of this passband, then chaotic modulation will no
longer occur when the α̂0 amplitude passes over the stop-
bands. One would need to investigate any signal distortion
or other harmful consequences of this in the encryption-
decryption process. We will discuss the effect of discontin-
uous chaos and the resulting distortion on signal encryption
in the next section.

4 Comparison of Lyapunov and Bifurcation Map
Analyses with Chaotic Encryption and
Decryption Operations

We recently reported ac signal encryption and decryption in
which a number of low-bandwidth (a few kilohertz or less)
ac inputs were applied to the acoustic driver bias along with a
dc level shift.5 In one such case, a 2.5-KHz sinc-function
waveform was applied to the driver constrained to operate
in the chaotic regime. The parameters chosen were β̃ ¼ 4,
α̂0;bias ¼ 2, TD ¼ 0.00004 sec:, I inc ¼ 1, and I1ð0Þ ¼ 0.
The resulting chaotic waveform is shown in Fig. 12. Note
that this waveform was generated by proper parameter tailor-
ing that scrambled the time signature of the input wave from
the envelope of the modulated waveform. Specifically, a per-
iodic sinc-function waveform of unit amplitude was added to
a 2 V dc bias (α̂0) applied from the external bias/modulation
input of the RF acoustic source. The ac waveform is shown
in Fig. 13. Note that each cycle of the sinc function is 0.4 ms
long, implying thereby a fundamental frequency of 2.5 KHz.
The effective α̂0;total extends from 1.8 to 3.0 Vover the time
range shown. The bifurcation map corresponding to β̃ ¼ 4,
α̂0 ¼ 2, TD ¼ 0.00004 sec:, I inc ¼ 1, and I1ð0Þ ¼ 0 versus
α̂0 is the one in Fig. 11. From this figure, it is clear that the
applied bias voltage falls within the stopbands (2.15 to 2.25,
and 2.65 to 3.0 for the acþ dc α̂0;total in Figs. 11 and 13) of
the bifurcation map. Therefore, it would appear that when the
total applied bias varies in amplitude between 1.8 and 3.0
(Fig. 13), there should be no chaos in the window 2.15 to

Fig. 11 The bifurcation map of I1 versus α̂0 for fixed values of I inc ¼ 1,
I1ð0Þ ¼ 0, and β̃ ¼ 4.

Fig. 12 Encrypted chaotic carrier with sinc-function input for β̃ ¼ 4
and α̂0 ¼ 2 (see Ref. 5).
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2.25 and weak chaos in the window 2.65 to 3.0. Next, we
examine the same problem in light of the Lyapunov theory
as applied to the corresponding dc-chaos case of Fig. 5. We
observe from Fig. 5 that there are two nonchaotic windows
within the α̂0;total range of 1.8 to 3.0. From the Lyapunov ana-
lysis, these twowindows are 2.15 to 2.25 and 2.7 to 3, match-
ing those found from the bifurcation map. Another interesting
observation regarding the two dynamical analyses is as fol-
lows: From the Lyapunov graph of Fig. 5, we find that the
stopband around 2.7 to 3 appears to be generally comparable
to that for the stopband around 2.15 to 2.25—i.e., they both
have similar negative LEs. This would nominally imply non-
chaotic behavior in both bands, but slightly less in the one
around 2.7 to 3.0 (since the LE transitions from less to
more negative). The bifurcation map of Fig. 11 shows clearly
nonchaotic behavior around 2.15 to 2.25, while there is evi-
dence of very weak chaos around 2.7 to 3.0. Interestingly,
despite these two nonchaotic and weakly chaotic windows,
the overall encryption and signal recovery, as reported,
seem to have worked out reasonably well, as will be dis-
cussed later. Figure 14 shows the applied sinc-function wave-
form and the final waveform recovered from the encrypted
chaotic wave following heterodyne detection and filtering.5

Next, note that in the weakly chaotic window (2.65 to
3.0), the sinc waveform of Fig. 13 crosses over the time
range 0.176 to 0.218 ms. Intuitively, we expect that since

the bifurcation nonlinear dynamics (Fig. 11) predicts at
best a weak chaos in this time window, no significant chaotic
oscillations should occur in the time-waveform of the first-
order diffracted light from the feedback system. We have
investigated the chaotic waveform for I1 in the neighborhood
of this time frame (0.16 to 0.24 ms) to see if this intuition is
correct or not. As seen from Fig. 15, chaotic oscillations are
indeed virtually absent in the modulated output waveform
within the prescribed time window. This result corroborates
the findings from nonlinear dynamics against the simulation
results from chaotic modulation. We next remark that accord-
ing to the bifurcation map of Fig. 11, there is also a second,
albeit narrow stopband (2.15 to 2.25) within the α̂0;total range
of 1.8 to 3.0. Transferring this information to the sinc-func-
tion waveform of Fig. 13, we find that the non-chaotic pas-
sage of the signal occurs over very narrow slices of time (on
the order of less than 20 μs on each side of the symmetrical
waveform). The extent of this nonchaos/nonmoldulation over
the entire sinc-function period is about (20∕400) or 5% in
each window. As a result, as seen from the recovered wave-
form, its effect is minimal. We also note that the time-oscilla-
tion patterns under signal encryption will likely be
significantly different from the corresponding chaotic oscil-
lations without any ac signal present. A spectral analysis of
the chaotic waveform under signal modulation will usually
reveal these fundamental differences directly. Accordingly,
when we carry out a fast Fourier transform of the chaotic
waveform in Fig. 12 (which is a dense version of Fig. 15)
under a periodic sinc-function (ac) drive applied to the
acoustic source, we obtain the spectrum shown in Fig. 16.
This spectrum reveals strong peaks at around 15 KHz,
12.5 KHz, 10 KHz, 7.5 KHz, 5 KHz, and others dispersed
every 2.5 KHz around the center. This spectrum of the wave-
form8 is clear evidence of several features of our physical sys-
tem: (i) the chaos waveform under dc bias (with average
chaos frequency 10.7 KHz) has been modulated by the
2.5 KHz sinc-function wave applied through the bias
input; this modulation is similar to a double sideband
(DSB) type amplitude modulation, with the carrier corre-
sponding to the average chaos frequency; (ii) the slight
drop or left shift in the chaotic modulated spectrum is
explained by the fact that the chaotic carrier is not a deter-
ministic sinusoidal carrier, but instead possesses small
amounts of amplitude fluctuations even without any ac signal
applied to the bias source, thereby resulting in a spectral

Fig. 13 Sinc-function input wave showing nonchaotic window in time.

Fig. 14 Original and recovered sinc functions under chaotic encryp-
tion and decryption (see Ref. 5).

Fig. 15 Zoomed snapshot of chaotic modulation of Fig. 14 showing
absence of chaos around 0.176 to 0.218 ms.
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shift5,9; and (iii) a chaotic modulation phenomenon has
occurred in the feedback system, even when the overall sys-
tem behavior passes through narrow nonchaotic windows
in time.

An additional feature of the chaotically encrypted signal
transmission example being discussed here is the relative
integrity of the recovered signal wave that was obtained
from the modulated/encrypted chaotic carrier by means of
an equivalent heterodyne detection and low-pass filtering
at the receiver. This is illustrated in Fig. 14. As seen in
Fig. 14, the final recovered waveform bears a reasonable
resemblance (in both periodicity and amplitude profile) to
the original signal wave. This result to some degree attests
to the robustness of this chaotic scheme, since we have
already shown that the physical system through which the
input sinc-function wave passes (the top waveform in
Fig. 14) possesses at least two weak-chaotic to nonchaotic
windows. Consequently, as we have also shown, there is
no modulation in the time windows of the sinc waveform

that overlap the nonchaotic windows of the LE and bifurca-
tion maps. Normally, one would expect this unmodulated
portion of the transmitted waveform to create distortion in
the recovered output. However, we find the extent of such
distortion in the actual recovery to be relatively small. Intui-
tively, the absence of modulation over narrow time windows
of the input waveform can be viewed as a form of signal clip-
ping/clamping, as happens in electronic circuits. Therefore,
upon detection/demodulation, we expect the “clamped” pla-
teaus of the original signal to ideally emerge as flat tops;
however, due to the propagation and filtering process, we
find that the flat tops have actually been somewhat rounded
off, thereby making the final output more closely resemble
the original input. Finally, in Fig. 17 we show a 3-D view of
the modulated chaotic first-order intensity versus the effec-
tive α̂0;total and ~β, corresponding to the periodic sinc-function
input discussed earlier. The 3-D graph (for which we have
also developed video clips [not illustrated here] for evolving
values of α̂0;total) shows the interdependence of both α̂0;total
and ~β in their combined effect on the complex process of
chaos generation and modulation. 2-D cross-sections of
Fig. 17 (say along α̂0;total for fixed values of ~β) will yield
graphs similar to the LE graphs presented earlier. Thus,
we find that the LE in Fig. 17 undergoes both positive
and negative excursions, with the amplitudes of the negative
being much higher than those of the positive excursions.
These results agree with our earlier 2-D plots. In examining
the 3-D plot of Fig. 17 and a similar plot for a periodic tri-
angular input, we find that there exists a narrow ridge around
~β ¼ 3.0 where the LE remains largely negative, implying
nonchaos in this neighborhood.

5 Concluding Remarks
The problem of acousto-optic chaos and its application to sig-
nal modulation and recovery has been examined in terms of
the nonlinear dynamical characteristics of an A-O Bragg cell
with first-order feedback. Specifically, the dynamics of the
system are examined in terms of (i) the Lyapunov exponent

Fig. 16 Frequency spectrum of the chaotic modulation of Fig. 14 indi-
cating DSB-type behavior.

Fig. 17 The 3-D map of Lyapunov exponents for sinc function bias input versus parameters β̃ and α̂0 subject to initial conditions I inc ¼ 1 and
I1ð0Þ ¼ 0.
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and (ii) the bifurcation maps. The results and conclusions are
compared mutually as well as against recently reported simu-
lation work based on low-bandwidth ac signals applied via
the acoustic driver. The different approaches are shown to
be generally in agreement. We remark here that our represen-
tative implementation and analysis of A-O chaos was
severely limited in bandwidth (both carrier and message).
Future work will involve studies with higher bandwidth
and amplitude signals applied preferably to dynamical
regimes where the chaotic passbands are sufficiently wide.
There exists a large body of work dealing with alternative
means of secure communication via chaotic encryption, sev-
eral of which achieve impressively high bandwidth and data
rates.10–15 Our purpose here is not to hold up the HAOF sys-
tem as a better alternative, but merely to conclusively demon-
strate the feasibility of this system. It is hoped that this
approach might find more practical applications (such as
in medical research) in the foreseeable future.
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