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Numerical analysis of first-order acousto-optic Bragg
diffraction of profiled optical beams using open-loop
transfer functions

Monish R. Chatterjee* and Fares S. Almehmadi
University of Dayton, Department of Electrical and Computer Engineering, 300 College Park, Dayton, Ohio 45469

Abstract. In standard acousto-optic Bragg analysis, the incident light and sound beams are assumed to be
uniform plane waves (with constant profiles) leading to the results based on standard weak interaction theory.
As a follow-up to earlier work dealing with nonuniform incident optical beams, we revisit the problem of Bragg
diffraction under nonuniform profiles, and include Gaussian, third-order Hermite–Gaussian, and zeroth-order
Bessel profiles in our investigation, along with a few others. The first-order diffracted beam is examined
(using a transfer function formalism based on angular spectra) under several parametric limits [such as the
Klein–Cook parameter Q, the effective profile width, and the optical phase-shift parameter (α̂0) in the sound
cell]. Wherever feasible, the numerical results are compared with analytic theory. The scattered first-order profile
output versus the optical phase-shift appears to maintain behavior similar to the known first-order characteristics
(sin2 in intensity) encountered for the uniform incident beam case. It is observed, however, that such conformity
exists seemingly only at relatively small values of Q (typically about 20 to 50). At higher Qs, on the other hand
(where one would otherwise expect behavior closer to standard Bragg theory based on largeQs), it is found that
the first-order intensity deviates substantially from the expected sin2- (or related) pattern. This deviation actually
becomes more severe at even higher Qs. Additionally, the output profiles at higher Qs are also found to be
distorted relative to the incident profiles. These results, though anomalous, are nevertheless generally compat-
ible with earlier studies. Based on the transfer function theory, it is also known that for very large optical phase
shifts (i.e., when α̂0 goes to infinity), the scattered first-order output for a Gaussian profile undergoes an axial
(spatial) shift past the output plane of the sound cell. This predicted result is corroborated in our numerical sim-
ulation for both the Gaussian and third-order Hermite–Gaussian profiles, but not the zeroth-order Bessel or Airy
profiles. These results provide both confirmation of some expected behavior for profiled beam scattering (includ-
ing likely affirmation of the well known and unique diffractionless properties of certain Bessel beams), but also
some insight into unexpected and anomalous photon-phonon interaction behavior. © 2014 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.3.036108]

Keywords: acousto-optics; Bragg regime; photon; phonon; profiled beams; Gaussian; Hermite–Gaussian; Bessel; Klein–Cook
parameter; optical phase shift; angular spectra; transfer function; scattered profiles; diffractionless beams.
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1 Introduction
The phenomenon of acousto-optic (A-O) diffraction, first
studied extensively in the late 1920s and 1930s,1,2 is used
in many areas of signal processing. Although this behavior
is complex and despite extensive generalized analyses, com-
prehension of the phenomenon in its entirety is still incom-
plete.3 A-O diffraction refers to the interaction of light and
sound waves, and it is used to controllably diffract light
beams. The behavior of an A-O cell depends on several sys-
tem parameters, and in particular, the thickness of the crystal
L and the wave numbers of both sound (K) and light (k).
These quantities are summarized as a figure-of-merit by
the Klein–Cook parameter (Q) which is used to characterize
the regimes of A-O operation.4 For strict Bragg operation,
which finds the most applications for these devices in prac-
tice, Chen and Chatterjee showed that Q should be larger
than 8π.5 In this regime, under perfect Bragg-matching,
there is only one diffracted order. If Q is much smaller than
one, the mode of operation is called the Raman–Nath regime,

which is characterized by multiple diffracted orders with the
intensities given by Bessel functions.6,7

Weak interaction theory is used in the analyses of AO dif-
fraction, and this theory rests upon the assumption of uni-
form plane waves of sound and light. These assumptions,
though not physically realistic, allow for tractable analyses
and lead to observable results. In 1979, a plane wave theory
of A-O interaction was developed by Korpel and Poon, in
which the light and sound waves are represented by plane
wave decomposition.7 This theory (for uniform light and pro-
filed sound) leads to well-known expressions for Bragg and
Raman–Nath diffraction. However, there is much that is
unknown about A-O diffraction with profiled beams, which
are physically more realistic. Extensive research has been
conducted to analyze special cases such as two-dimensional
(2-D) and three-dimensional (3-D) sound profiles, and
higher-order or strong interactions.8,9 Nevertheless, examin-
ing A-O scattering under arbitrary beam profiles remains
a complex problem. Beginning with the multiple plane wave
theory due to Korpel and Poon,7 Chatterjee et al. obtained
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a transfer function formalism for evaluating scattered output
profiles for arbitrary input profiles.10 The results of that
approach under the current series of examinations have
been found to be occasionally counter-intuitive, as will be
shown.

The transfer function approach utilizes a plane wave angu-
lar spectrum of the field distribution (valid for small deviations
from the exact Bragg angle), which allows the scattered fields
to be represented by Fourier integrals in the angular domain.
This makes it possible to apply the Fast Fourier Transform
(FFT) to numerically generate the scattered fields of arbitrary
inputs. Transfer function expressions for both Bragg orders
are developed and may be readily applied in the Fourier trans-
form domain. These expressions are convenient for modeling
the effects of various parameters (such as phase shift and Q),
as well as arbitrary input profiles. It was shown earlier that
under the asymptotic limit of high (peak) phase shift, there
should occur an axial shift of the output scattered profile
for Gaussian input optical profiles.10

The current work was motivated by recent investigations
involving AC signal modulation and encryption using chaos
in hybrid A-O feedback systems.11,12 Although these inves-
tigations clearly demonstrated the feasibility of encrypting,
transmitting, and recovering relatively low-bandwidth AC
signals (up to about 1 MHz), they were essentially based
on the assumption of uniform optical and acoustic beams.
Since practical optical beams are more likely to be nonuni-
form in profile, and chaos is extremely sensitive to ampli-
tudes, it becomes necessary to examine the consequences
of specific profiled light beams upon the feedback system
under examination. To acquire a closer insight into the
scattering properties of the Bragg cell under profiled beam
propagation, the system has been initially studied strictly in
open-loop. The current paper is primarily a report on the
findings relative to this open-loop problem. To this end,
the transfer function formalism is applied to evaluate the
first-order scattered outputs using a variety of input profiles,
including Gaussian, third-order Hermite–Gaussian, and
zeroth-order Bessel beams. In examining the asymptotic
axial behavior due to the zeroth-order Bessel beam, it was
discovered that such a beam produces relatively negligible
axial shifts. This has prompted further investigations of Airy-
type and non-Airy-type beams in order to ascertain if there is
any underlying common physical property inherent to such
observations. These findings are also reported here.

With each of these profiles, the behavior of the scattered
light is thoroughly explored as a function of various param-
eters. We examine the first-order output profiles under three
different values of the Klein–Cook parameter, different
widths of the input beam profiles, and several values of
the sound pressure (i.e., the peak optical phase shift through
the sound cell). The first-order scattered output is examined
along both the (normalized) transverse radial coordinate and
as a function of the optical phase shift. Nominally, one would
expect the scattered output profiles to be very different
from that predicted by standard uniform profile theory.
Additionally, the scattered profiles will likely depend on
the system parameters such as Q and α̂0. Such a behavior,
if present, will impact the closed-loop characteristics of
the hybrid feedback system mentioned earlier.13,14

The transfer function formalism for arbitrary input beams
is first introduced in Sec. 2, along the lines of the original

development by Chatterjee et al.10 The numerical simulation
of the transfer function formalism begins with a Gaussian
incident profile, as described in Sec. 3.1. Third-order
Hermite–Gaussian and zeroth-order Bessel profiles are pre-
sented in Secs. 3.2 and 3.3, respectively. In Sec. 3.4, the
asymptotic limit of the first-order beam profile as α̂0 → ∞
is discussed for five different optical beams, wherein we
have also included the Airy disk profile and the J2ðxÞ∕x
beam. The numerical results generated by these five cases
are analyzed and interpreted in Sec. 4. Section 5 provides
concluding remarks along with future work involving the
closed-loop system and its various nonlinear dynamical
domains. Some results from the latter work are in process
for publication elsewhere.

2 Transfer Function Formalism (TFF) for Arbitrary
Input Optical Profiles

Figure 1 illustrates the standard geometry of an A-O Bragg
cell, showing two scattered orders created by an arbitrary
input profile, assuming upshifted operation at the (exact)
Bragg incidence. We assume that the profiled beam is nomi-
nally incident at the Bragg angle [i.e., the “ray” (or wave
vector) corresponding to the center of the profiled beam is
incident at the Bragg angle]. In this figure, r and r 0 represent
the transverse radial coordinates with respect to the direction
of the incident field and the diffracted field, respectively.
E0ðrÞ and E1ðr 0Þ represent the zeroth-order and first-order
scattered outputs, δ is a dimensionless measure of the angular
deviation from the nominal Bragg angle ϕBð≈K∕2kÞ, and K̄
is the acoustic wave vector.10

Both diffracted orders can be described by a set of
coupled differential equations given by7

dẼn

dξ
¼ −j

�
α̂

2

��
e
�
−jð12Þ

�
ϕinc
ϕB

þð2n−1Þ
�
Qξ
�
Ẽn−1

þ e
�
jð12Þ

�
ϕinc
ϕB

þð2nþ1Þ
�
Qξ
�
Ẽnþ1

�
: (1)

In this equation, α̂ð¼ kCjAjL∕2Þ is the peak phase delay,
ξð¼ z∕LÞ is the normalized propagation distance in the
sound cell, ϕinc is the incident angle corresponding to a uniform
plane wave input, ϕB is the Bragg angle of the sound cell, and
Q is the Klein–Cook parameter.10 This general equation leads
to the two scattered orders Ẽ0 and Ẽ1 for near-Bragg diffraction
by setting ϕinc½¼ −ð1þ δÞϕB�. With this substitution for

Fig. 1 Bragg diffraction with an arbitrary incident beam profile.
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near-Bragg incidence with an angular deviation factor δ, the
coupled equations reduce to the following:

dẼ0

dξ
¼ −j

�
α̂

2

�
e−jQξδ∕2Ẽ1; (2)

dẼ1

dξ
¼ −j

�
α̂

2

�
ejQξδ∕2Ẽ0: (3)

The transfer function formalism due to Chatterjee et al.10

is a direct consequence of the solutions of the above coupled
equations. As may be shown, the solutions for the zeroth-
and first-orders under arbitrary angular deviations from
the Bragg angle, when normalized relative to the incident
beam angular spectrum, yield the following two transfer
functions for the fields in the δ domain. Thus we have10

H̃0ðδÞ ¼
Ẽ0ðζÞξ¼1

Ẽinc

¼ −
e−j

δQ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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4
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2

	
2
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4
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2
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2

�
2

s

× cos
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δQ
4

sin
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; (4)

H̃1ðδÞ¼
Ẽ1ðζÞξ¼1

Ẽinc

¼−j
�
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2

�
ej

δQ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

δQ
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(
sin
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2
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:

(5)

Incidentally, we note here that in the late 1970s Magdich
and Molchanov analyzed the problem of the diffraction of
a general optical beam by strong acoustic waves at length
in a series of papers (see, for instance, Refs. 15–17). It
turns out that the input beams considered by them included
both profiled plane waves as well as curved wavefronts. The
formalism developed by Chatterjee et al., on the other hand,
considers primarily profiled plane waves of light subjected to
sound waves of variable intensity. The emphasis in the above
formalism is the development of an equivalent transfer func-
tion for the zeroth- and first-orders, whereby the spatial out-
put profiles may be evaluated through Fourier inversion of
the output spectrum. Incidentally, these transfer functions,
with minor modifications, have been used in interesting
applications such as one-dimensional and 2-D edge detection
of images using multiple Bragg cells.18,19 However, the der-
ivation in Ref. 16 indicates that the diffracted (first-order)
light distribution expressed as a product of the far-field inci-
dent light profile and a distribution due to the light-sound
interaction in the Bragg cell (via the a and b parameters in
Ref. 16) is similar to Ẽ0ðζÞ and Ẽ1ðζÞ in Eqs. (4) and (5)
above. Hence, the transfer functions defined above may

be considered equivalent to the distribution functions
described in Ref. 16.

Both scattered beams may now be found by applying an
inverse Fourier transform to the product of the incident spec-
trum and the corresponding transfer function, ẼincðδÞHðδÞ.10
This process is shown in the following equation, where
EoutðrÞ is either first-order or zeroth-order output, depending
on the transfer function used, and ẼincðδÞ is the angular spec-
trum of the incident profiled beam

EoutðrÞ ¼
Z

∞

−∞
ẼincðδÞHðδÞe−j2πλ δϕBr

�
ϕB

λ

�
dδ: (6)

In the results reported below, the angular spectrum of the
incident light is inserted into this equation, and the output
fields are computed by numerically solving the same.
These fields are functions of the peak phase delay α̂0 and
the Klein–Cook parameter Q. Three different incident pro-
files EincðrÞ are tested for determining the output profile
characteristics: viz., the Gaussian, third-order Hermite–
Gaussian, and zeroth-order Bessel profiles.

3 Numerical Results
In this section, numerical results for the first-order scattered
output for each of three incident optical beams are illustrated
graphically. Low and high values of the Klein–Cook param-
eter are tested in each case. Additionally, a uniform input is
approximated using a wide Gaussian beam in order to verify
that the spectral simulation will produce the well-known
results for uniform plane wave inputs. Also, high sound pres-
sure is applied to simulate the asymptotic spatial shift of the
output. The following three sections present the simulation
results separately for the three input profiles, and the fourth
section presents the asymptotic shift results for all profiles.

3.1 Output Profiles for a Gaussian Incident Beam
Using TFF

The absolute value of the scattered first-order output beam
jE1ðr 0; α̂Þj with a Gaussian incident profile is shown in
Fig. 2 for Q ¼ 20. The 3-D plot shown in Fig. 2 indicates

Fig. 2 Scattered first-order beam output with a Gaussian incident
beam profile for Q ¼ 20.
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that the plot appears to maintain behavior similar to that for
uniform plane wave in the α̂0 direction, even though it appears
to have a Gaussian profile. The cross section through Fig. 2
along the peak phase shift dimension α̂0 has the appearance of
a sinusoid, which is reminiscent of uniform plane wave behav-
ior. Along the normalized transverse radial coordinate for
α̂0 ¼ π, the cross section is approximately Gaussian, thereby
verifying the expected result for relatively low Qs.

When Q is increased to 177 (note that doing this requires
an adjustment of the sound wavelength), we obtain the result
shown in Fig. 3, which illustrates the first-order beam output
jE1ðr 0; α̂Þj along both the peak phase shift dimension α̂0 and
the normalized transverse radial coordinate. The 3-D plot
shown in Fig. 3, however, shows behavior different from
the low-Q case. Thus, as evident from the cross section
through Fig. 3, the first-order along the peak phase shift
dimension α̂0 is no longer sinusoidal, thereby diverging from
the uniform result. Likewise, the cross section along the nor-
malized transverse radial coordinate for α̂0 ¼ π no longer
exhibits Gaussian profile, with small sidelobes clearly visible.

As a special note, we observe the following relative to the
choice of the high value (533) of Q chosen here. First, this
choice (as well as those of Q ¼ 20 and 177) is prompted by
the desire to draw direct comparisons with results previously
presented in Ref. 10. However, it turns out that requiring a
very highQ, especially in an experimental setup, may lead to
reduced diffraction efficiency and device bandwidth. Our
purpose in pursuing this high Q value, however, is very
different. Our ultimate aim is to study the effect of profiled
optical beams propagating through A-O Bragg cells with
different Qs under positive electronic feedback of the first-
order output. The generation and application of resulting
chaos in such a device have been studied recently at some
length for uniform plane waves of light. From this perspec-
tive, any reduction in the device efficiency or BW, while
a drawback, is relatively unimportant for the purpose of
this paper. Hence, when Q is increased to 533, additional
deviations are observed, as shown in Figs. 4–6. These plots

Fig. 3 Scattered first-order beam output with a Gaussian incident
beam profile for Q ¼ 177.

Fig. 4 Scattered first-order beam output with a Gaussian incident
beam profile for Q ¼ 533.

Fig. 5 First-order Bragg diffraction versus the optical phase shift
(cross section from Fig. 4).

Fig. 6 First-order Bragg diffraction versus the normalized transverse
radial coordinate (cross section from Fig. 4).
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illustrate the absolute value of the scattered first-order beam
output jE1ðr 0; α̂Þj from the same three perspectives. Figure 4
shows the 3-D behavior and Fig. 5 illustrates the output cross
section along the peak phase shift dimension α̂0 , as may be
seen from Fig. 7, shows the expected. We find that the output
is further distorted relative to the usual sinusoidal α̂0 profile
for the uniform case. Similarly, Fig. 6 shows further
deviation from the Gaussian shape of the cross section
along the normalized transverse radial coordinate for α̂0 ¼ π.

In order to compare the above results with those for a uni-
form plane wave input profile, a very wide Gaussian input
was simulated for Q ¼ 20. This result, with the Gaussian
10 times wider, is shown in 3-D in Fig. 7 and is consistent
with well-known results. The output cross section along the
peak phase shift dimension α̂0 is showing the expected sinus-
oidal behavior. The cross section along the normalized trans-
verse radial coordinate for α̂0 ¼ π, as shown in Fig. 8, is
nearly uniform. This result affirms the validity of the integral
formalism.

3.2 Output Profiles for a Third-Order
Hermite–Gaussian Incident Beam Using TFF

The scattered first-order output beam jE1ðr 0; α̂Þj with a third-
order Hermite–Gaussian incident profile is shown in Fig. 9
for Q ¼ 20. The 3-D plot is shown in Fig. 9, and for this
relatively low Q, this plot maintains the expected behavior
to the extent that the output maintains its profile shape.
The cross section through Fig. 9 along the peak phase
shift dimension α̂0 again has the appearance of a sinusoid.
Figure 10 shows the cross section along the normalized
transverse radial coordinate for α̂0 ¼ π, and it approximates
the shape of a third-order Hermite–Gaussian. The simulation
results for higher Qs (not shown here), are distorted along
both dimensions, as was seen with the Gaussian inputs.

3.3 Output Profiles for a Zeroth-Order Bessel
Incident Beam Using TFF

The scattered first-order output beam jE1ðr 0; α̂Þj with a
zeroth-order Bessel incident profile is shown in Fig. 11 for

Fig. 7 Scattered first-order beam output with a very wide Gaussian
incident beam.

Fig. 8 First-order Bragg diffraction versus the normalized transverse
radial coordinate (cross section from Fig. 7).

Fig. 9 Scattered first-order beam output with a third-order Hermite–
Gaussian incident beam profile for Q ¼ 20.

Fig. 10 First-order Bragg diffraction versus the transverse radial coor-
dinate (cross section from Fig. 9).
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Q ¼ 20. The 3-D plot shown in Fig. 11 for this low Q
appears to follow the expected behavior with the output
maintaining its profile shape. The cross section through
Fig. 11 along the peak phase shift dimension α̂0 has the
appearance of a sinusoid. Figure 12 shows the cross
section along the normalized transverse radial coordinate for
α̂0 ¼ π, and it approximates the shape of a zeroth-order
Bessel function. The simulation results for higher Qs, which
are not shown here, are only slightly distorted along both
dimensions, unlike the other two previous cases.

3.4 Asymptotic Limit of the First-Order
Diffracted Profile

For high sound pressure (i.e., large α̂0), a spatial shift in
the output profile for Gaussian input profiles is predicted
by the spectral theory in Ref. 10. As α̂0 goes to infinity,
this theory predicts an asymptotic shift off center spatially

to −QΛ∕4π. The shift to a negative r 0 is somewhat puzzling,
and may be resolved by studying the numerical plot. The
previous simulations (at low sound pressures) show negli-
gible shift. The simulation results for high sound pressure
are shown in Figs. 13–15 for the Gaussian, third-order
Hermite–Gaussian, and zeroth-order Bessel profiles, respec-
tively. The contour lines in Fig. 13 clearly illustrate the
shifted center for a Gaussian beam, using α̂0 ¼ 40π.
Similarly, the contour lines in Fig. 14 illustrate a discernible
shift for a third-order Hermite–Gaussian. The shift off-center
for both cases occurs only to one side of the radial axis.
However, it is observed that there is negligible shift off-
center for a Bessel profile, as shown by the contour lines
in Fig. 15. This result, though analytically unanticipated,
appears to affirm the diffractionless property of certain
Bessel beams.20,21

Fig. 11 Scattered first-order beam output with a Bessel incident beam
profile for Q ¼ 20.

Fig. 12 First-order Bragg diffraction versus the transverse radial coor-
dinate (cross section from Fig. 11).

Fig. 13 Asymptotic axial shift of the Gaussian beam center as pre-
dicted by the transfer function formalism.

Fig. 14 Asymptotic axial shift of the third-order Hermite–Gaussian
beam center as predicted by the TFF.
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4 Interpretation and Analysis of Profiled Beam
Numerical Results

To compare the simulations of diffracted outputs via inverse
angular spectra to known results for diffraction of uniform
profile, a uniform plane wave input was visualized as the
limit of a very broad Gaussian. We note that this result
may also be derived by directly incorporating a uniform
plane wave profile into the diffraction formalism. This result
is presented in Appendix A. As seen from Fig. 7, the simu-
lation results match known plane wave output behavior, viz.,
sinusoidal dependence on α̂0, and approximately uniform in
profile along r 0. Another observation for a variety of input
profiles is that the scattered output versus α̂0 continues to
maintain a sinusoidal shape at relatively low values of Q
(about 20 to 50 or 6π to 16π). At higher Q values (such
as 177 and 533 as presented here), however, the shape of
the first-order versus α̂0 begins to distort somewhat in ampli-
tude, even if maintaining a rectified sinusoidal shape. These
results are counter-intuitive since at higher Q values, an A-O
cell is expected to behave closer to ideal Bragg diffraction than
for lower Qs. Clearly, at higher Qs, a profiled, nonuniform
input beam does not emerge as sinðα̂0∕2Þ unlike the case
for a uniform profile; for lower Qs (higher than 2π), however,
it maintains a sinusoidal shape. The case for a zeroth-order
Bessel beam (J0ðxÞ∕x) profile presents an interesting obser-
vation. We remark here that the asymptotic radial profiles for
Gaussian and Hermite–Gaussian inputs show an axial shift of
the center of the scattered beam, as predicted by theory for
large α̂0 (shown in Figs. 13 and 14). On the other hand,
that for a zeroth-order Bessel beam shows virtually no shift
at all. This result appears to affirm the diffractionless property
of a zeroth-order or certain other Bessel beams.20,21 To verify
this feature further, we also tested the integral formalism for an
Airy beam (of the kind J1ðxÞ∕x in amplitude) and a second-
order Bessel beam, J2ðxÞ∕x. The results show that the Airy
beam tends to remain undiffracted at large α̂0, while the
J2ðxÞ∕x beam exhibits axial shifts like the Gaussian. These
results are shown in Figs. 16(a) and 16(b). Overall, the
axial shift investigations indicate that beam profiles with a
central maximum accompanied by progressively decaying

positive and negative excursions [such as J0ðxÞ and
J1ðxÞ∕x] will likely not undergo much axial diffraction or
scattering, while all other beam profiles will. Overall, we
observe that while these results are corroborated by the sim-
ulation results discussed here, and are in general conformity
with known Bessel-beam (and other nondiffracting beams)
properties, the mathematical formalism developed and dis-
cussed here does not provide any intuitive insight into this
phenomenon per se. Suffice it to say that in the earlier treat-
ment,10 this was mathematically shown to be so for the case of
the Gaussian beam (which, while having a central maximum,
nevertheless lacks positive and negative decaying sidelobes)
as α̂0 → ∞, whereby it does suffer axial shifts in the asymp-
totic limit. The behavior of the simulated outputs is found to
depend upon the range of the Klein–Cook parameter Q used
in the simulation. For Q between 20 and 50, the shape of the
output profile along the normalized radial coordinate is similar
to the input profile for all profiles tested in the present work.
Likewise, along the peak phase delay dimension, the output is

Fig. 15 Negligible axial shift of the Bessel beam center confirming its
unique diffractionless property.

Fig. 16 (a) Negligible axial shift of the Airy beam center confirming its
unique diffractionless property. (b) The axial shift of the J2ðxÞ∕x beam
center due to the high sound pressure.
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sinusoidal for all profiles tested. For higher values ofQ (closer
to exact Bragg behavior), one would expect the scattered out-
put to more closely adhere to uniform plane wave input behav-
ior. However, as seen in Figs. 3 and 4, the simulation generates
unexpected results for a Gaussian input profile along both α̂0
and r 0, including amplitude distortions and secondary (side)
lobes. In follow-up work (some of which is ongoing), the
effects of such deviations on a hybrid feedback system ana-
lyzed in recent research with uniform plane waves for chaotic
encryption applications,11,12 will be investigated in some
detail.

5 Concluding Remarks
The standard analysis of Bragg cells begins with the
assumption of uniform plane waves of sound and light
input. This work, based on Bragg analysis of profiled optical
beams and uniform sound waves, shows that the diffracted
output exhibits extensive deviations from uniform plane
wave behavior, thereby making it crucial to the analysis
of closed-loop feedback systems that depend critically on
the diffracted amplitudes for their nonlinear dynamics. To
better understand the Bragg behavior for nonuniform inputs,
this work applies a transfer function approach in order to
simulate various profiled outputs. The first-order scattered
output is generated by multiplying the input spectrum by
a transfer function and numerically computing the inverse
Fourier transform of the product. This process was tested
by duplicating known results for uniform plane wave inputs,
and by numerically producing the spatial shift that is pre-
dicted for infinitely high sound pressures. Interestingly,
the shift off-center occurs only on one side of the radial
axis (toward the third quadrant in the transverse plane),
and explanation of such a phenomenon (using wave inter-
ference or photon-phonon interaction models) is pending.
Unexpected deviations from the standard theory are
observed for high Q values, effects likely to impact the per-
formance of the A-O hybrid feedback system. The fact that
these deviations are due to specific profiled incident beams is
confirmed by the results for a zeroth-order and Airy Bessel
beams, which are not significantly shifted or diffracted
off-axis during diffraction at high α̂0 values. These results
indicate that beams with central peaks followed by decaying
positive and negative excursions exhibit diffraction immun-
ity. The results from this simulation will be applied next to
study the impact of nonuniform profiled input beams on the
closed-loop feedback behavior en route to bistability and
chaos. The current work establishes the open-loop character-
istics of the scattered first-order output and this will be
numerically incorporated into a closed-loop system in order
to examine the nonlinear dynamics of profiled beam propa-
gation under feedback and thereby realize and derive new
insights into encrypted signal transmission and recovery.

Appendix A

i. First-order output corresponding to a uniform plane
wave input

EincðrÞ ¼ A ⇒ ẼincðδÞ ¼
λ

ϕB

Z
∞

−∞
EðrÞe−j2πλ δϕBrdr

¼ A

�
λ

ϕB

�
δIðδÞ; (7)

where δI is the unit impulse function. Hence, since

E1ðr 0Þ ¼
Z

∞

−∞
ẼincðδÞH1ðδÞe−j2πλ δϕBr

�
ϕB

λ

�
dδ; (8)

and

H̃1ðδÞ ¼ −j
�
α̂

2

�
ej

δQ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


δQ
4

�
2 þ



α̂
2

�
2

r

×

(
sin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δQ
4

�
2

þ
�
α̂

2

�
2

s #)
; (9)

Using Eqs. (7) and (9) in Eq. (8), it is readily seen that

E1ðr 0Þ ¼ A

�
−j sin

�
α̂

2

�
; (10)

as expected, and indicating a uniform output profile.
ii. Zeroth-order output corresponding to a uniform plane

wave input
Let EincðrÞ ¼ A so that once again ẼincðδÞ ¼
Aðλ∕ϕBÞδkðδÞ:
Hence, using

E0ðrÞ ¼
Z

∞

−∞
ẼincðδÞH0ðδÞe−j2πλ δϕBr

�
ϕB

λ

�
dδ (11)

and

H̃0ðδÞ ¼ −
e−j

δQ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

δQ
4

	
2 þ �

α̂
2

	
2

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δQ
4

�
2

þ
�
α̂

2

�
2

s

× cos

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δQ
4

�
2

þ
�
α̂

2

�
2

s #

þ j
δQ
4

sin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δQ
4

�
2

þ
�
α̂

2

�
2

s #)
; (12)

one obtains straightforwardly,

E0ðrÞ ¼ A
ϕB

λ

λ

ϕB

�
1�
α̂
2
Þ

�
α̂

2
cos

�
α̂

2

�
¼ A cos

α̂

2
;

(13)

as expected, and uniform in r.
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