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Improved performance of analog and digital
acousto-optic modulation with feedback under profiled
beam propagation for secure communication using chaos

Fares S. Almehmadi and Monish R. Chatterjee*
University of Dayton, Department of Electrical and Computer Engineering, 300 College Park, Dayton, Ohio 45469, United States

Abstract. Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled
beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase
in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed
examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mis-
match for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the
impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryp-
tion key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input
beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times
below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for
secure transmission of analog and digital signals using parameter tolerance measures, as well as BER perfor-
mance measures for digital signals. These results hold out the promise for considerably greater information trans-
mission security for such a system. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.12.126102]
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1 Introduction
By manipulating the interaction of light and sound, acousto-
optic (A-O) devices are used to controllably diffract light
beams for a variety of applications. A piezoelectric oscillator
creates acoustic vibrations in a crystal which acts as a dif-
fraction grating and causes the deflection of a light beam
passing through the crystal. This deflection depends upon
the light and sound frequencies, and various properties of
the crystal. These variables are summarized by a unitless
quantity known as the Klein-Cook parameter Q. In the
Bragg mode of operation, in which only one diffracted
order is produced, Q is larger than 8π.1 This mode is utilized
for signal processing applications such as laser beam deflec-
tion, modulation, and filtering. When used with a closed-
loop feedback, a Bragg cell can produce a chaotic response
useful for encryption and decryption of signals.2

In a closed-loop Bragg cell, a photodetector receives the
diffracted light beam and the resulting electrical signal is
amplified, added to a DC offset, and fed back into the acous-
tic driver for the piezoelectric device. Using the DC offset as
an input and taking the output from the photodetector, the
closed-loop system becomes a nonlinear signal processing
device, capable of mono-, bi-, multistable, and chaotic
behavior.3–5 These characteristics can be utilized for signal
processing applications including, in the case of chaos,
encryption and decryption.6

The dynamic behavior for Bragg cells is characterized
with the Lyapunov exponent (LE) or bifurcation maps.
The LE is a function of Q, DC offset, feedback gain, and
input beam intensity, and its value indicates whether or
not the closed-loop behavior will be chaotic. A bifurcation

map plots photodector output as a function of a single param-
eter, such as feedback gain, and it visually illustrates values
of that parameter that lead to chaos.7 Both techniques show
that passbands of chaos appear at unpredictable intervals
over the parameter space. Before chaos can be utilized for
any application, it is necessary to know the locations and
widths of these passbands.8

When the closed-loop Bragg-cell parameters are con-
trolled to produce chaos, the photodetector output can be
viewed as a chaotically modulated and encrypted version
of the input signal. To recover the original input signal, a
second Bragg cell with parameters matched to the first is
used like a standard heterodyne receiver. The modulated sig-
nal is multiplied by the chaotic signal created by the receiver
Bragg cell, and the product waveform is low-pass filtered
and corrected for a 180 deg phase offset.6 Any mismatch
between the transmitter and receiver parameters (bias volt-
age, feedback gain, or time delay) causes demodulation to
fail. In this way, the parameters act as an encryption key
that must be known in order to recover the signal.

Most mathematical characterizations of the nonlinear
properties of a closed-loop Bragg cell assume that the
input beam of light is a uniform plane wave, and weak inter-
action theory is then used to describe the light and sound
interaction within the crystal. This leads to common expres-
sions for the diffracted light and these expressions are used
for modeling chaos and creating simulations of encryption/
decryption with this chaos. In recent work, it is shown that
using a more realistic, nonuniform input light beam has a
significant impact on the location and width of the chaotic
passbands within the parameter space.8 The present work
applies new simulations of chaos using profiled input
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udayton.edu 0091-3286/2014/$25.00 © 2014 SPIE

Optical Engineering 126102-1 December 2014 • Vol. 53(12)

Optical Engineering 53(12), 126102 (December 2014)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



beams to model the encryption and decryption of digital sig-
nals, and it measures the robustness of the encryption process
to additive channel noise and parameter mismatch between
the transmitter and receiver. We note here that alternative
chaotic signal encryption techniques are also available. A
common method involves chaos in optical fiber networks
with encryption embedded using electro-optic delays.
Such methods typically yield realizable bandwidths in the
low-Gbps range.9 In our work, the chaos frequency has
been limited to about 10 MHz so that the affordable bit
rates would be in the low Mbps range. However, technically,
A-O Bragg cells may operate in the GHz range, whereby
higher encryption bit rates may readily be realizable.

Section 2 presents A-O Bragg cell behavior for profiled
input beams and describes the effect of the profile on the
diffracted light. This modeling is necessary for studying
the nonlinear dynamics of closed-loop systems, also pre-
sented in Sec. 2. Further details of the chaotic passbands
in the parameter space and how these are used for encryption
of signals is presented in Sec. 3. Results for encryption
robustness to parameter mismatch are presented in Sec. 4,
along with the effect of additive channel noise on the bit-
error-rate for encrypted digital communication. Section 5
provides an interpretation of the significant results, and
Sec. 6 summarizes the key points and discusses future mod-
eling work.

2 Profiled Beams Through Hybrid A-O Feedback
System

Figure 1 illustrates an A-O Bragg modulator with first-order
feedback, although in this discussion the feedback loop will
initially be ignored. At the left plane of the cell, a profiled
input beam is nominally incident at the Bragg angle. The
zeroth- and first-order scattered beam outputs from the
cell are E0ðrÞ and E1ðr 0Þ, where the coordinates r and r 0
are the transverse radial coordinates with respect to the direc-
tion of the incident field and the diffracted field, respectively.
The parameter δϕB is the angular deviation from the Bragg
angle ϕBð≈K∕2kÞ, and K̄ is the acoustic wave vector.9 With
the plane wave angular decomposition theory, the profiled
beam is decomposed into a spectrum of uniform plane
wave components incident at an arbitrary angle ð1þ δÞϕB

where δ is a dimensionless measure of angular deviation.
For near-Bragg diffraction, expressions for the two scattered
orders Ẽ0 and Ẽ1 are found using a pair of coupled differ-
ential equations. With these equations, a transfer function
formalism is developed by Chatterjee et al. in order to
model the diffracted orders for arbitrary input profiles.10

Using this approach, either output profile is found by apply-
ing the inverse Fourier transform to the product of the inci-
dent spectrum ẼincðδÞ and the transfer function H̃ðδÞ, as
indicated in Ref. 10:

EoutðrÞ ¼
Z

∞

−∞
ẼincðδÞH̃ðδÞe−j2πλ δφBr

�
ϕB

λ

�
dδ: (1)

In this equation, EoutðrÞ is either the first- or zeroth-order
output, depending on which transfer function is used. Both
outputs are functions of the peak phase delay α̂0 and the
Klein-Cook parameter Q.

Using Eq. (1), diffracted outputs for various incident pro-
files EincðrÞ were presented in previous works.11 When the

incident profile is a uniform plane wave, the shape of the
output intensity along the optical phase shift axis is the
well-known sin2 shape. The same is true for Gaussian
input profiles, but only for relatively small Q values in
the range of 20 to 50. For higher values of Q, the shape
of the first-order intensity deviates significantly from the
expected sin2-pattern. In addition, the output profiles for
higher Q’s also deviate from the expected Gaussian shape
along the transverse radial coordinate.11 These unexpected
high-Q deviations from the standard theory for profiled
input beams cause a significant impact in the closed-loop
system (primarily due to the nonuniform output amplitudes)
as discussed in Ref. 8. Since real laser beams are profiled, it
is critical to understand and model these behaviors.11

For the full hybrid closed-loop A-O system, as shown in
Fig. 1, the first-order diffracted light is collected by a photo-
detector whose output is then amplified and fed back into the
acoustic driver. The photodetector current IðtÞ exhibits non-
linear dynamics, including mono-, bi-, multistability, and
chaotic behavior, first observed in 1978.5 For a uniform
plane wave input, the well-known analysis leads to an equa-
tion for IðtÞ.5 A modified version of this equation, shown in
Eq. (2), was developed to simulate and study the system for
arbitrary profiled beams.8

IphðtÞ ¼
����f
�
1

2
fα̂0ðtÞ þ β̃½Iphðt − TDÞ�g

�����
2

: (2)

In this equation, α̂0 is the peak phase delay, β̃ is the feed-
back gain, and TD is the feedback time delay, which is due to
the photodetector, amplifier, and the overall physics of the A-
O cell.5 The function f represents the observed output along
the optical phase shift dimension for a nonuniform input pro-
file.8 Unlike the uniform plane wave case, there is no closed-
form expression for f. For the simulations shown in this
paper, f is determined numerically by assuming a Gaussian
input profile.

3 Signal Encryption and Retrieval for Secure
Communication

The behavior of the closed-loop system depends upon the
four parameters α̂0, β̃, TD, and Q, and for chaotic encryption
applications, it is necessary to understand which combina-
tion of parameters produces chaos in the photodetector

Fig. 1 Acousto-optic (A-O) closed-loop hybrid system with an arbi-
trary incident beam profile.
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current. As previously shown, the threshold value of β̃
between bi stability and chaos is strongly affected by the pro-
filed beam inputs.8 Also, for constant values of β̃ and TD, the
specific pattern of the chaos is a function of α̂0. This pattern
is characterized using two equivalent techniques: the LE and
bifurcation maps. The LE models the incremental changes in
photodetector intensity and the system is only chaotic if the
LE is positive.7 Bifurcation maps are plots of the photodetec-
tor output versus α̂0, with other parameters constant, illustrat-
ing sudden changes in the dynamic behavior. An example of
a bifurcation map plotted alongside the independently gen-
erated LE is shown in Fig. 2, and bands of chaos in the bifur-
cation map clearly coincide with positive LE values. These
data are generated with a Gaussian input profile with param-
eter values as shown in this figure. The locations, amplitude,
and widths of the passbands of chaos are sensitive to the
value of β̃ and the chosen input profile.8 When compared
to a uniform plane wave input, the passbands of chaos for
a Gaussian input profile exhibit greater sensitivity to β̃.
These details are critical to use chaos for encrypting a signal

and they indicate why the analysis of profiled beams is
necessary.

To apply chaos as a means of encrypting a signal wave-
form sðtÞ, we apply this signal to the bias driver such that the
peak phase delay has the form of α̂ ¼ α̂0 þ sðtÞ. The con-
stant offset α̂0 is chosen such that the photodector output
is centered within a chaotic passband, and the range of
sðtÞ must be small enough to not drive the output beyond
the passband. In this case, the chaotic photodetector current
is viewed as a modulated and encrypted version of the input
signal, and this can be securely transmitted through a chan-
nel. The recovery of sðtÞ follows in the manner of a standard
heterodyne receiver. A local chaos wave is generated using a
second Bragg cell with all four parameters matched to the
encryption cell. This local chaos is multiplied with the
incoming modulated signal and the product waveform is
then passed through a low-pass filter with cutoff frequency
adjusted to accommodate the bandwidth of sðtÞ. Note that
this bandwidth should theoretically be less than half
the center frequency of the chaotic carrier to avoid aliasing,
although in reality it is substantially smaller than the chaos
center frequency. This frequency depends on the TD param-
eter through the equation ¼ð1∕2 � TDÞ. For the parameters
used in this work, the chaos center frequency is in the range
of 10 MHz. Figure 3 contains a block diagram of the com-
plete transmitter and heterodyne receiver.

It can be expected that the signal sðtÞ will modulate the
chaotic carrier and behave as amplitude-modulation in some
limit, and that the signal will appear in the carrier’s
envelope.6 However, because of the random nature of the
chaos, the proper choice of the parameter will cause the sig-
nal waveform to be completely hidden within the chaos and
not be apparent in the envelope. In either case, demodulation
requires the same random chaotic pattern used for modula-
tion and this pattern is unique to the four key parame-
ters used.

In recent work, simulations of the encryption system
shown in Fig. 3 were developed in MATLAB and the results
for several types of signals are presented here.12 Profiled
beams are used in the simulation, and this requires storing
the (open-loop) output amplitudes in the first stage of the
simulation, and in the second stage running the time-

Fig. 2 Lyapunov exponent and bifurcation maps versus the optical
phase shift when β̃ ¼ 2.

Fig. 3 Heterodyne scheme for encrypting and decrypting using A-O chaos.
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dynamical quadratic map equation [Eq. (2)] numerically
through iterations involving standard nonlinear dynamics.
For these examples, the channel is assumed to be noiseless,
exactly matched parameters are used, and the transmitter and
receiver use identical input beam profiles. The first type of
input signal sðtÞ examined is a square wave with a frequency
of a few MHz, illustrated in Fig. 4 along with the encrypted
signal and recovered wave. The encrypted signal clearly has
the original square wave in its envelope, illustrating that the
system behaves as an amplitude modulator in this case.6 This
type of behavior, which occurs for relatively low feedback
gains, is undesirable because the signal is apparent in the
envelope and is, therefore, not effectively encrypted. A prop-
erly encrypted signal, in which the original is completely
obscured within the modulated waveform, is achieved by
sufficiently increasing the gain. This is shown with later sim-
ulation results.

Figure 5 shows the results for a second input signal,
which is a 13-s audio clip with a 10-KHz bandwidth. The

amplitudes for the original, encrypted, and reconstructed sig-
nals are plotted in the time domain. In this case, the set of
parameters chosen produces complete encryption and the
encrypted signal has no clear pattern to its envelope. The
decrypted audio clip accurately reproduces the original
sound. Figure 6 illustrates the encryption process in the fre-
quency domain by showing the corresponding spectra for the
original, encrypted, and reconstructed signals. The spectrum
for the original audio signal is not at all apparent in the
encrypted spectrum.

Figure 7 illustrates the third example of modulation and
recovery, using an 8-bit pulse code modulation (PCM) rep-
resentation of a sinc2 waveform. The range of the original
signal is divided into 256 uniform intervals, each interval
corresponding to a unique byte, and samples of the original
analog signal are quantized at a rate of 125 Hz. This creates a
PCM version of the sinc2 signal that is 1200 bits in length.
This digitized version of the signal is shown in Fig. 7 along
with its encrypted and recovered versions in analog form.
The quantized signal is recovered by digitizing the recovered

signal

signal
signal

Fig. 4 Encryption and recovery of a square waveform using chaos.
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Fig. 5 Encryption and recovery of an audio signal using hybrid A-O
feedback with profiled incident beam in the time domain when
Q ¼ 20, Λ ¼ 1e − 4; matched transmitter and receiver keys;
β̃ ¼ 3:4, TD ¼ 0.05 μs, α̂0 ¼ 2.
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Fig. 6 Encryption and recovery using hybrid A-O feedback with pro-
filed incident beam in the frequency domain when Q ¼ 20,
Λ ¼ 1e − 4; matched transmitter and receiver keys; β̃ ¼ 3:4,
TD ¼ 0.05 μs, α̂0 ¼ 2.
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Fig. 7 Encryption and recovery of a PCM signal using hybrid A-O
feedback with profiled incident beam when Q ¼ 20, Λ ¼ 1e − 4;
matched transmitter and receiver keys; β̃ ¼ 3, TD ¼ 0.05 μs, α̂0 ¼ 2.
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signal through a rounding operation and mapping each byte
of the result to the corresponding amplitude level. Figure 8
shows the original analog sinc2 and its recovered quantized
version, which appear identical at an 8-bit quantization.
Since the transmitter and receiver use matched parameters
and the same beam profile, there are no bit errors in this
example.

4 Test of Robustness, Reliability and Parameter
Tolerances

These tolerance thresholds for the parameters are summa-
rized in Table 1. Together, the four parameters form an
encryption key, and as the mismatch tolerances decrease,
the key becomes stronger. To understand the effect of pro-
filed beams on the key strength, the simulation using the
PCM signal is conducted again, but with the uniform
beam assumption and corresponding equations. For this
case, the encrypted signal is independent of Q (assuming
pure Bragg operation), which reduces the key to three param-
eters (also reducing its strength). The mismatched results are
shown in Table 1, and clearly the simulation using profiled
beams leads to a stronger encryption key due to the much
smaller thresholds and the Q dependence in the profiled
beam case. This shows that realistic profiled beams have
the effect of strengthening the encryption. This is intuitive

only in the sense that a profiled beam inherently offers var-
iable amplitudes to the diffraction system, and this likely pro-
vides a higher degree of encryption for the highly amplitude-
sensitive chaos wave.

To quantify the effect of mismatch on bit errors, random
sequences of bits are transmitted through the system at vary-
ing levels of mismatch, and the percentage of bits in error is
then used to estimate bit error rate (BER). As before, only
one parameter mismatch is considered at a time, the same
beam profile is used at both receiver and transmitter, and
there is no channel noise. To keep the simulation manage-
able, the random bit sequences were restricted to a length
of one million. For each level of mismatch, the simulation
is executed for both uniform and nonuniform beams. The
results are summarized in two BER plots (one for each
case) in Fig. 10 as a function of percent mismatch in β̃.
As the mismatch approaches zero, both curves appear to
indicate that BER approaches 10−6, but this is an artifact
caused by the restricted length of the bit sequences tested.
Consistent with the results in Table 1, the BER curves illus-
trate that simulations with nonuniform beams result in a
much greater sensitivity to mismatch. For the nonuniform
case, a mismatch in β̃ of about 0.3% produces a BER of
10−4. To reach this level of BER for the uniform case, a mis-
match of greater than 2% is required.

The next simulation conducted for this work measures the
effect of additive white Gaussian channel noise (AWGN) on
the encryption/decryption process, assuming matched
parameters in this case. Random bit sequences are encrypted
transmitted with AWGN, decrypted, and bit errors are
counted. The BER is measured as a function of the ratio
of energy per bit (Eb) to noise power (with PSD N0∕2),
and the BER curve is plotted on a logarithmic scale. This
type of plot is a standard figure of merit for any digital com-
munication system, and it allows the performance for a cha-
otic communication system to be compared to other
designs.13 For example, one simple digital communication
scheme is binary phase shift keying (BPSK) where a positive
DC voltage (sayþV) represents 1 and a negative DC voltage
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Fig. 8 Original analog and recovered quantized signals from the PCM
transmission with no bit errors in the recovery.

Table 1 Approximate tolerances for the four encryption/decryption
key values, comparing nonuniform beam to uniform beam
simulations.

Key parameters
Encryption

value

Measured
tolerance

for nonuniform
beam (% diff)

Measured
tolerance
for uniform

beam (% diff)

α̂0 2.0 �0.5 �10

β̃ 3.6 �0.28 �2.7

TD 0.05 μs �0.8 �2.5

Q 20 �5.0 N/A
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Fig. 9 Signal recovery with parameter mismatch using hybrid A-O
feedback with profiled incident beam, assuming single-parameter
mismatch, using 0.5% for α̂0, 0.28% for β̃, 0.8% for TD, and 5%
for Q.
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(−V) represents 0, and the detector makes bit decisions by
comparing the received voltage to 0. For comparison, Fig. 11
shows the BER curve for the A-O chaotic system alongside
the curve for a BPSK system. We note here that the BER is
generated in the BPSK system through the AWGN channel
noise; however, this system does not incorporate any chaotic
encryption. Conversely, the encrypted A-O chaotic wave
experiences BER via the presence of AWGN noise in the
transmission channel. As might be expected, the complexity
created by the (chaotic) encryption causes a gap between the
curves indicating that greater energy per bit is required for
the encrypted system in order to reach a given error rate. This

gap can be viewed as the energy cost of encryption relative to
BPSK, a cost inherent in generating the chaos. Overall, the
increased signal energy demand placed by the chaotic
encryption process may still be considered relatively mar-
ginal, especially in view of other modulation systems
(such as ASK and FM) which in any event also do not pro-
vide any signal security.

To explore the effect of parameter mismatch, the simula-
tion with the PCM signal in Fig. 7 is demodulated with a
chaotic signal in the receiver created with mismatched
parameters. The mismatch is studied one parameter at a
time, keeping the other three parameters matched. For exam-
ple, the mismatch in α̂0 is created by transmitting the PCM
signal using α̂0 ¼ 2:0 and demodulating with α̂0 ¼ 2:01.
The other three parameters are matched, using β̃ ¼ 3:6,
TD ¼ 0.05 μs, and Q ¼ 20. The increase of 0.5% in α̂0 cre-
ates bit errors causing the reconstructed sinc2 to appear as
noise, shown in Fig. 9. Bit-errors begin to appear with a
α̂0 mismatch in the range 0.3%, ruining the recovery.
Mismatch for the other three parameters is similarly studied,
and the noise-like reconstructions produced are also shown
in Fig. 9. The level of mismatch for each parameter is
selected to be the smallest that completely obscures the
signal.

5 Interpretations
There is an enormous demand for tools and hardware for
achieving reliable and secure communication, motivating
the efforts for chaotic encryption described in this and
other recent work. As illustrated, the smallest parametric
mismatch (fractions of a percent for nonuniform beams)
between the transmitter and the receiver HAOFs will destroy
the signal recovery. These parameters together serve as a
decoding key, and it is probabilistically unlikely that a hacker
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Fig. 10 Bit error rate (BER) curves for percent mismatch in β̃ for the nonuniform beam simulation (a) and
the uniform beam simulation (b).
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phase shift keying and A-O chaotic encryption system.
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could simultaneously guess all four elements of this key,
especially with an infinitesimally small compound tolerance.
Furthermore, the efforts to better model the physics of real-
istic laser beams used in the HAOF have naturally led to a
stronger encryption key relative to simpler models that
assume uniform plane wave beams. This is because real
lasers have a nonuniform intensity profile which affects
the shape of the diffracted beam profile and leads to dramatic
changes in chaotic behavior. This suggests that the specific
profile shape will also be an element of the encryption key,
although the current work does not explore this idea.
Generally, it is expected that modification to the model
that more accurately represents the true physics will only
serve to strengthen the encryption.

With the current model, Table 1 summarizes how the
encryption key is made stronger by implementing profiled
beams relative to uniform beams. This (generally significant)
improvement to the model causes the encryption to be sen-
sitive to Q and it decreases the thresholds for the other three
parameters. The measured tolerance threshold for Q may
appear weaker than the other parameters, but it still serves
to significantly strengthen the key. Overall, the addition of
Q to the key and the decreased thresholds lowers the prob-
ability of randomly guessing the encryption key by approx-
imately three orders of magnitude.

To determine the thresholds presented in Table 1, the mis-
match for each parameter is gradually increased, one at a
time, and the reconstructed sinc2 begins to deteriorate.
The threshold for each parameter is determined by the
amount of mismatch that qualitatively reduces the
reconstruction to a noise-like signal. These noisy reconstruc-
tions are exhibited in Fig. 9. These thresholds will naturally
be signal dependent, and the analyses here are intended to
only show how the encryption is strengthened for one par-
ticular signal.

To explore the effect of mismatch on digital signals more
quantitatively, Fig. 10 illustrates BER versus percent mis-
match in β̃ for random bit sequences. BER estimates for
both nonuniform and uniform beam simulations are
shown, and sensitivity to mismatch is much greater for
the nonuniform beam case. The curves indicate that for
the uniform beam simulation, about a seven times greater
mismatch in β̃ is required to produce the same BER obtained
in the nonuniform simulation. This is consistent with the
qualitative results summarized in Table 1. The greater sen-
sitivity of BER to mismatch for the nonuniform beam sim-
ulation is also observed for the other three parameters.

As with any digital communication system, additive chan-
nel noise will reduce reliability, and this is commonly mea-
sured with BER plots as a function of the ratio energy per bit
to noise power. Figure 11 compares the performance of the
A-O encrypted system (assuming matched parameters) to a
simple BPSK system. The curves have a similar shape, but
the A-O encrypted system curve is shifted to the right of the
BPSK curve, showing a loss of performance. This is
expected due to the greater complexity of the encryption,
and the gap between the curves can be interpreted as the
cost of the encryption. Any given application for the system
will have some BER requirement and fixed noise level, and a
plot such as Fig. 10 shows how much the energy per bit
would have to be increased to meet the requirement relative
to BPSK system. Increasing the energy per bit is achieved by

slowing the bit rate or by increasing the amplitude of the
transmitted signal. Noise may also be introduced into the
simulation via the photodetector or the feedback amplifier.
Results for such tests are not reported in this paper.
However, it may be noted that the feedback system is
found to be relatively robust for low detector noise variances;
beyond a threshold noise power, it is found that the BER
increases sharply.

6 Conclusion
The propagation of a profiled optical beam through an A-O
Bragg cell was previously examined using a transfer function
formalism. The results showed dependence of the first-order
scattered light on the effective Q, the acoustic wavelength
and the profile shape. It is observed that for a largeQ (greater
than 50), the output profile begins to deviate from the uni-
form beam response, which strongly affects the closed-loop
behavior of the device. In this work, the implications of these
changes for encryption are explored in some detail by com-
paring simulations with nonuniform beams to simulations
with uniform plane waves. The simulations transmit
encrypted digital signals, using chaotic modulation and
demodulation in the manner of heterodyne system. The
robustness of the recovered signal to parameter mismatch
is explored, and it is found that simulations with nonuniform
beams produce a stronger encryption that simulations with
uniform beams. This is because in order to accurately recover
the encrypted signal, the parameters used in the encryption
must each be known to within a fraction of a percent, and this
threshold decreases significantly for nonuniform beams.
Reliability in the presence of channel noise is also studied
relative to a simple BPSK system, indicating the increased
energy cost for encrypting a digital signal. Future work
will consider practical signals with specifications for appli-
cations, further performance analysis of the current model,
and other modifications to the model.
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