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Investigation of negative refractive index in 
reciprocal chiral materials 

 
Monish R. Chatterjee,  Partha P. Banerjee  and  Pradeep R. Anugula 

Department of Electrical & Computer Engineering 
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Email:  monish.chatterjee@notes.udayton.edu 
 

ABSTRACT 
It is well known that there exist both natural materials (such as milk or sugar solution) possessing chiral (or 

handed) properties, as well as an increasing list of man-made materials (such as sodium bromate) that exhibit chirality.  
One of the principal properties of chirality is that light of any arbitrary polarization, when propagating through a chiral 
material, splits up into two circular polarizations propagating in different directions.  In the past decade or longer, 
researchers have investigated electromagnetic transverse (plane) wave propagation across a non-chiral/chiral interface, 
and determined the electromagnetic Fresnel coefficients for such propagation.  Traditionally, such coefficients are 
derived under the assumption that the transmitted circular polarizations in the chiral material have wave numbers that 
are numerically positive, and nominally point in the direction of electromagnetic energy flow.  However, it turns out 
that the actual solution for the wavenumbers obtained from applying Maxwell’s equations to an unbounded, isotropic 
chiral material yields four possible values dependent upon the chirality parameter.  In this paper, we examine the 
emergence of these wavenumbers, and thereafter explore the conditions necessary for the resulting field solutions to 
have counter-propagating energy flow and wave vector.  Such conditions, if feasible, represent an environment leading 
to an effectively negative refractive index being generated within the chiral material.  Accordingly, propagation within a 
chiral medium through the mechanism of negative refractive indices may be studied in order to better understand the 
corresponding optical properties of such materials vis-a-vis transmission of an electromagnetic wave into and out of 
such a region.  The results obtained may be applied to compare negative index chiral materials with the broader 
emerging field of negative index metamaterials, and explore possible applications. 
 
Keywords:  Chirality; handed media; polarization; constitutive relations; chiral admittance; wavenumber; Poynting 
vector; negative index 
 
 

1.  INTRODUCTION 
 
Chiral or gyrotropic media possess handedness (i.e. dominant right- or left-circular polarization).  The word 

chiral is derived from the Greek word, chiro, implying the hand.  A chiral object has a non-superimposable mirror 
image whereas an achiral object has an identical (superimposable) mirror image.  Chirality or handedness is observed 
frequently in nature; sea shells, spirals, bacteria and a host of organic and inorganic materials exhibit varied proportions 
of right- or left-handedness.  An electromagnetic wave propagating through a chiral medium undergoes a change in 
polarization depending upon its initial polarization, direction of propagation, and other properties.  Examples of chiral 
media include quartz, metal helices in epoxy, copper strings in dielectric and ferroelectric ceramics. 

  
More recently, researchers from a variety of disciplines such as biology1 and chemistry2,3 have published 

results which have a strong relevance to electromagnetics and optics applications of chirality.  It is well known now that 
many crystals such as cinnabar, sodium chlorate, sodium bromate and liquids such as sugar solution, corn syrup and 
turpentine exhibit optical activity.  Various groups in the United States4,5, Europe and Russia6-8  have been working on 
chiral media and their applications. 

  
The terminology and notations used in discussions about chiral media vary.  The term chirality was coined by 

Kelvin9, defining this concept as a property of an object that is not superimposable to its mirror image.  In the past, 
electromagnetic chirality was studied primarily by researchers in optics.  Hence, chiral media are commonly called 
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optically active media.  Incidentally, researchers in Russia describe such materials gyrotropic media.  More recently, 
both Russian and English language journals have adopted the name chiral for such a medium.  

  
In general, the analysis of chiral media (which are generally isotropic, but may possess reciprocal or 

nonreciprocal properties- the latter a subject of considerable controversy8,10,11) involves highly complex mathematics, 
including the application of Green’s functions, and a variety of special transforms.  Since the basic constitutive relations 
in the Maxwell’s equations are modified in the chiral media to include terms containing so-called chiral and reciprocity 
parameters (κ  and χ  respectively), a relatively simple method was developed by Banerjee et.al12 , whereby solutions 
for the vector electric field in an unbounded chiral medium are obtained via a dual transform technique.  The technique 
assumes paraxiality and slowly varying envelopes, and proceeds by applying successively a 2-D (transverse) spatial 
Fourier transform and a Laplace transform along the propagational or the longitudinal direction.  A straightforward 
application of the above technique has been shown to confirm that any arbitrary polarized uniform plane wave 
transforms into two circular polarizations upon propagation through the chiral medium.  

 
The focus of this paper is on the question of wave propagation in an isotropic, reciprocal, and unbounded chiral 

medium.  We apply the Maxwell curl equations to such a medium, and use the corresponding constitutive relations to 
obtain a set of field solutions for a given propagation vector.  Using the Poynting vector corresponding to these 
solutions, conditions are then examined that lead to a net Poynting vector or energy flow opposite in direction to the 
propagation vector.  When these conditions are satisfied, it is surmised that the resulting chiral medium constitutes an 
environment of negative refractive index- a subject of considerable current interest.  The investigation of negative index 
materials extends to a variety of media, and the phenomenon is often viewed in terms of dichroic behavior in 
orthorhombic and other materials whose electric permittivity and  magnetic permeability exhibit negative real parts13-15.  
We show further that the net propagating field in the chiral medium consists of an elliptical polarization resulting from 
the superposition of two (left- and right-) circular polarizations of (generally) dissimilar amplitudes.  Finally, we 
speculate that in general a negative index chiral material requires a relatively large magnitude of the chirality  parameter 
(not typical of conventional chiral materials with positive indices).      
  

 
2.  PLANE WAVE PROPAGATION IN AN UNBOUNDED, ISOTROPIC AND  RECIPROCAL 

CHIRAL MEDIUM  
 

2.1   Definition of the problem  
 
We consider arbitrary electromagnetic wave propagation in an unbounded, isotropic and reciprocal ( χ = 0)  

chiral medium.  Maxwell’s equations, along with the modified constitutive relations appropriate for the chiral medium 
are then used to determine the resulting relationships between the field components.    
 
2.2 Solutions using phasor Maxwell equations and constitutive relations  

 
The chiral non-reciprocal medium is described by the constitutive relations (usually in the frequency domain)  

  
     HED ξε +=      , (1) 

    HEB µζ +=      , (2) 
 
where,  

,00εµκξ j−=   
 

,00
* εµκξζ j==
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00 ,εµ   are the permeability and permittivity of free space, and  κ  is the so-called chirality parameter, which is 
dimensionless.  We may note that the chirality parameter described above is related to the so-called chirality admittance 
γ  that appears elsewhere5  through: 
 

µ

εµκ
γ

00
−=    . 

 
and ε  (to appear later) and µ  are the nominal electric permittivity and magnetic permeability parameters associated 
with the chiral material.  The chirality parameter κ  defines the degree of handedness of the material.  In a racemic 
mixture where the chiral materials of both types, i.e., right- and left-handed, are equal, and for non- chiral materials the 
chirality parameter κ  goes to zero.  The j emphasizes the frequency domain nature of these relations, and the harmonic 
convention j te ω  is implied.  
 
 Next, we consider the Maxwell curl equations in the phasor domain written in the form: 
 

,][

,][

0

0

HEHk
HEEk

ξεω

µζω

+=×

+=×
              (3a,b)

   
where  0k  is the wave vector,  ω  is the (monochromatic) wave frequency, and  E  and  H  are the electric and 
magnetic field intensities, respectively. 
 
 The solutions for the above fields are obtained more readily by assuming a wave vector pointed in the Z-
direction (which is arbitrary, and hence general, in an unbounded medium).  This approach simplifies the resulting 
characteristic matrix to a  4 × 4  instead of a 6 × 6.  Using such a wave vector, it is simple to show that the longitudinal 
components of the fields vanish, resulting in a purely transverse propagation in the bulk chiral material.  The following 
set of homogeneous equations for the field components is then obtained from eqs. (3a,b): 
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             (4a-d) 

where  the parameter  α = ω κ 00εµ  , and has the dimension m-1 , and  k0z  is the wavenumber.  

 
 Finding non-trivial solutions for the homogeneous eqs.(4a-d) requires that the determinant of the coefficient 
matrix must vanish.  This leads to the well-known condition for the wavenumber in the chiral medium: 
 

  ,)  ( 000 εµεµκω ±±=zk       (5) 

             
which indicates a set of four possible values of the wavenumber that satisfy the non-trivial field solutions.  We may note 
that the k0z values depend on the chirality parameter  κ . 
 
 We next assume that the field component  Ex  is known.  From the homogeneous equations (4a-c), assuming 
the known  Ex  value, the field solutions are obtained after some algebra as follows: 
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 An important observation may be made here in view of the above solutions.  Note that these solutions are true 
for an unbounded medium (and may be readily shown to satisfy the Maxwell curl equations), and are general in the 
sense that the Z-directed wave vector is essentially arbitrary in an unbounded medium.  We may also observe that the 
transverse electric field components have a phase difference of  ± π / 2 , but are unequal in amplitude.  Such a condition 
arises from the superposition of a left- and a right-circular wave that have unequal amplitudes.  Hence, the total electric 
field in the chiral medium (regardless of positive or negative index) is  elliptically  polarized  with a phase difference of   
± π / 2 , and is made up of two circular polarization (LCP and RCP), as is well known. 
 
 

3.  POYNTING VECTOR AND WAVE VECTOR    
 
 Next, based on the above field solutions, we obtain the corresponding  Poynting vector to determine the nature 
of power flow through the chiral material.  Since the field turns out to be transverse to the Z-direction, it is clear that the 
Poynting vector will be longitudinal.  The intention here is to find the conditions under which the Poynting and the 
wave vector may be counter propagating. 
 
3.1 Complex Poynting vector 
 
 Using the field solutions (eqs. 6a-d), the Poynting vector is obtained after considerable algebra as follows: 
 

.ˆ
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2223 2
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=×  (7) 

             
  

We next make the following observations.  Since the Poynting vector is in the longitudinal direction (as is the 
wave vector), a positive value of  k0z  requires the numerator in eq.(7) to be positive in order for the power to be 
transported in the same direction as the propagation vector (or, equivalently, the phase velocity vector).  Such a scenario 
would then correspond to the usual energy transport in the chiral medium under an equivalent positive refractive index.  
In most cases, such a scenario is shown to be satisfied by the choice of the “+” sign inside the parentheses of eq.(5), 
leading to the two well-known conventional wave numbers.  However, one may mathematically construct various 
scenarios under which the power flow in eq.(7) and the wave vector may be counter-propagating.  One may, for 
example, examine this in terms of possible negative real values of the parameters µ  and/or ε  (as is done for the 
dichroic problem14), or, alternatively, consider possible effects of the chirality parameter  κ  itself.  We pursue one such 
condition in the next section. 
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3.2 Condition for the counterpropagation of power flow and wave vector 
 
 From eq.(7), we consider the case where the numerator is negative for a given negative value of the 
wavenumber  k0z , such that the wave vector of the field and the power transport may be in opposite directions.  
Requiring the numerator of eq.(7) to be negative leads to: 
 

2244
000

242
000

222
0

22
0

2
0

44 2223 εµωεµεµκωεµκωεµωεµκω +++>+ zzz kkk , 
             

               (8) 
 
which, after substituting eq.(5), and some algebra leads to the condition: 
 

εµεµκ −>± 00 .      (9) 

              
 The above condition leads to the two cases, (a)  rr εµκ −<   ,  and  (b)   rr εµκ >   , where  µr  and 

εr  are the relative permeability and permittivity of the chiral material, respectively.  In general, the above result may be 
written as: 
 

rr εµκ >    .                 (10) 
            
 We remark that these conditions are identical to those observed recently in the literature16,17, derived via the 
route of carrying out the dot product between the propagation vector and the complex Poynting vector.   
 

 
4.  CONCLUSIONS 

 
 From eq.(10), we may conclude that in general, one requires a chiral material with a relatively large chirality 
parameter in order to reasonably expect an effective negative refractive index.  Typical chiral materials commonly 
exhibit smaller values of the chirality parameter (described as weak chirality in the literature).  We also note that the 
condition specified by eq.(9) offers a positive and negative regime of  κ  (both of large magnitude) in which a negative 
index condition may be realized18.  Another parallel effort involves the examination of nonlinear propagation in 
negative index materials in general19.  A possible material in the physical world where such behavior may be manifested 
is the DNA helix, where the orientation of the spiral may lead to one or the other condition being satisfied.  The analysis 
carried out here shows the general elliptical nature of wave polarization in a chiral material, characterized by two (LCP 
and RCP) circular polarizations of unequal amplitudes.  In propagating through a non-chiral and chiral interface, these 
two polarizations generally assume two different spatial directions and phase velocities for the case of positive index 
materials.  The corresponding case for negative index materials, and the associated Fresnel coefficients (both amplitude 
and energy) will be explored further.  
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