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      ABSTRACT 

Signal encryption and recovery using chaotic optical waves has been a subject of active research in the past 10 years. 
Since an acousto-optic Bragg cell with zeroth- and first-order feedback exhibits chaotic behavior past the threshold for 
bistability, such a system was recently examined for possible chaotic encryption using a low-amplitude sinusoidal signal 
applied via the bias input of the sound cell driver 1, 2.  Subsequent recovery of the message signal was carried out via a 
heterodyne strategy employing a locally generated chaotic carrier, with threshold parameters matched to the transmitting 
Bragg cell. The simulation results, though encouraging, were limited to relatively low chaos frequencies and sinusoidal 
message signals only.  In this paper, we extend the previous work by (i) increasing the chaos frequency using appropriate 
parameter control; (ii) carefully examining the system sensitivity to three system parameters, viz., feedback delay, 
feedback gain, and dc bias level; (iii) examine signal recoverability relative to shifts in the three parameters mentioned 
above relative to the transmitter; and (iv) determining the robustness of such a system relative to the primary transmitter 
parameters. Additionally, we consider also the effect of the additive bandpass noise (obtained from white Gaussian noise 
in the simulator) on signal recovery in such a system from a performance standpoint.  It is also conjectured that signal 
recovery can be effected by passing the modulated light through a second sound cell in a matched chaotic regime.  This 
aspect is also under investigation. 

Keywords:  Acousto-optics, chaos, feedback, modulation, encryption, heterodyne, recovery, nonlinear dynamics 

  

1. INTRODUCTION AND BACKGROUND 

In 1979, Ikeda predicted theoretically that bifurcation and chaos may appear in an optically bistable device using a ring 
cavity3.  This effect was first observed in a so-called hybrid bistable device by Gibbs et. al4 .  Hybrid implies that part of 
the optical output is detected and delayed by an electronic circuit, or held for a while by a microprocessor and then fed 
back to the input (driver) signal.  During the past 30 years, all optically bistable devices have also been designed to 
demonstrate optical chaos5-9. Since 1979, there has been sustained interest in nonlinear optical devices involving hybrid 
acousto-optic feedback that exhibit hysteresis, differential gain, and hard limits of optical output versus input power 
characteristics, as well as chaotic regimes.  It is well-known that if the first- (or zeroth-) order light in an acousto-optic 
device operating in the Bragg domain is detected and amplified, and then fed back into the acoustic driver, the 
amplitudes of the diffracted fields, i.e., the resulting first- and the zeroth-orders exhibits optical bistability.  The feedback 
makes the system inherently nonlinear and complex in terms of its space-time dynamics6,7,10.  In ref. [11], optical 
bistability, possible multistability and chaos may be generated for three fundamental types of tuning effects, i.e., 
feedback gain, bias voltage and input amplitude.  In 2008, early simulation work was undertaken to demonstrate the 
possibility of encrypting information signals within acousto-optic chaotic waves based on the hybrid device1.  
Subsequently, the idea was extended to examine the process of signal encryption and recovery using the equivalent of a 
heterodyne technique in which the chaotic local oscillator in the receiver is exactly matched parametrically to the 
chaotic wave in the transmitting Bragg cell prior to signal insertion2.  In the present work, we study carefully the 
properties of the system in terms of its robustness.  To this end, we first obtain a complete encryption and decryption 
operation using heterodyne simulation for a simple sinusoidal input.  Thereafter, the effects of changes in the receiver 
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parameters (feedback gain, d.c. bias, and time delay), thereby causing mismatch from the transmitter keys are examined 
for distortions in the recovered signal.  The expectation is that even small changes in the receiver keys distort the 
recovered signal beyond recognition.  Some of these results are presented here.  Finally, the problem of electronic noise 
incorporated via the system instrumentation is considered. For this purpose, we begin with a white, Gaussian noise 
model, which is thereafter converted in the simulator to band pass noise (of variable bandwidth), and propagate it 
through the acoustic input along with the feedback signal and the information signal.  The basic strategy is to measure 
the characteristics of the recovered signal without noise (within a selected noise bandwidth), and thereafter, examine the 
signal past the output filter when band limited noise is present.  The resulting mean-squared signal error is examined vis-
à-vis  changes in the noise bandwidth, the output low-pass cutoff, and the input SNR. 

1.1        Acousto-optic feedback- hybrid devices: 

 Since 1979, there has been much interest in nonlinear optical devices that exhibit hysteresis, differential gain, 
and hard limits of optical output versus input power characteristics.  Acousto-optic devices with positive feedback gain 
also exhibit bistability characteristics.  In an acousto-optic device, the amplitude of the diffracted fields that the operate 
in the Bragg regime, .i.e., the first and zero order, which appear at the output of the Bragg cell, are related through a set 
of coupled differential equations as given by Eqs. (1) and (2)11 .  In a standard experiment, a Bragg cell is driven by an 
ultrasonic sound wave from an RF generator (typically at 40 MHz), with the laser beam incident at the Bragg angle.  The 
diffracted first order is picked up by a photodetector, amplified and fed back to the RF generator bias input.  Fig. 1 shows 
a schematic of the above.  The resulting plot of the first order detected intensity versus the dc bias input ( 0α̂ ) indicates 
bistable behavior for appropriate drive parameters.  The width of the hysteresis loop increases with the feedback delay 
time, and also widens plus shifts to the left with increasing feedback gain.  In this paper, we examine the first order 
diffraction characteristics under feedback beyond the bistable regime, by forcing the system to operate strictly in chaos. 
The diffraction (before feedback) is given by: 

                              =
ξd
1dE

- 02
0

^

Ej
α

,       (1) 

                                =
ξd
0dE

- 1E
2

^
0αj ,                                  (2) 

 

                  Fig. 1.  The acousto-optic modulator with feedback. 
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where Bragg regime is assumed.  In the above, 0α̂  is the peak phase delay through the medium (before feedback), and ξ 
is the normalized propagation distance (= z/L, where L is the effective interaction length). 

                                                                 =1E  - ),
2
ξ0

^
α

sin(incjE                                                     (3) 

                                                                  =0E   ),
2

ξ
^
0αcos(incE                                                                              (4) 

With feedback plus time delay, the corresponding first-order detected intensity follows the nonlinear dynamical 
equation: 

                                           ( ) ,TDt1I
2
β~

2

)t(0α̂2sinincI)t(1I -+=                          (5) 

where β~  is the effective feedback gain, incI  is the incident intensity, and TD is the feedback delay time.  It is the 
nonlinear dynamics of Eq.(5) that leads to mono-, bi- and multistable behavior, followed by chaos in its various 
manifestations12 .  The feasibility of operating in the chaotic regime, and treating the chaos as an equivalent information 
carrier which is then encrypted (modulated) by an information signal applied through the RF bias input, and thereafter 
recovering the message signal in a receiver using a heterodyne approach, has been explored with some success 
recently1,2.    

 

                 Fig. 2.  Heterodyne scheme for encrypting and decrypting the input signal 
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In earlier work, it was shown that multiple oscillations beyond the bistable regime begin to occur for a time 
delay fraction of 0.02 and a feedback gain ( β~ ) of 2.41.  By increasing the value of β~ tot 4.2, and with normalized TD 
of 0.0125, the system becomes completely chaotic.  The parameter thresholds corresponding to the onset of chaos (i.e., 
threshold values of 0α̂ , β~  and TD) are taken into consideration in order to examine the message encryption and 
recovery properties of the system.   The proposed heterodyne encryption and recovery scheme is shown in Fig. 2.   In 
this scheme, on the transmitter side, by setting up the system on Bragg regime and the input (message) signal used as a 
third component of the summer at the RF bias point (along with 0α̂  and the feedback) for the Bragg cell driver, and by 

choosing high enough value of β~ (greater than the threshold value of 2.41) to ensure total chaos, the signal is encrypted. 

Note that 0α̂  in this setup serves as the appropriate dc level shift for the total totα̂ to remain above the necessary chaotic 
threshold when a signal  (with negative excursions)  is imposed.  Further, we note that since the information is carried by 
the chaos wave, we need the (average) chaos frequency ( fch ) to be substantially higher than the frequency of the 
baseband message.  To achieve a high average chaos frequency (shown in section 2), we simply reduce the time delay in 
the feedback loop.  In our simulations, the highest average chaos frequency achieved was 100 KHz, even though in 
principle, it may be made arbitrarily higher.  On the receiver end, a locally generated chaos (from a matched Bragg cell 
with system parameters identical to those of the transmitter) is used to multiply the incoming (encrypted) signal from the 
transmitter (following photodetection), and the resulting product is then fed to a low pass filter with a cutoff frequency in 
the neighborhood of the highest signal frequency.  The output signal of the filter suffers a 180-degree phase shift; this 
justifies the use of a phase shifter to properly retrieve the signal at the receiver.   

     2.  SIMULATION RESULTS 

2.1 Onset of bistability in hybrid devices 

At lower values of β~  (less than 2.41) and time delay at 5.24 milliseconds, by plotting 0α̂  versus the intensity 

I1, the hysteresis loop shown in Fig. 3(a) is obtained.  When the value of β~  is increased to a value near 2.41, we see 
from Fig. 3(b) that the system enters well-defined chaotic oscillations. 

 

 

 

 

 

 

 

        Fig. 3(a).  Plot of bistable characteristics.                                  Fig. 3(b).  Onset of chaos at β~ = 2.41. 
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2.2. Onset of chaos 

Upon increasing β~ to 3.0, and decreasing the time delay to 0.0001s, a chaotic signal appears with an (average) 
frequency of 10.714 KHz as shown in the time versus intensity plot of Fig. 4(a).  Fig. 4(b) shows the corresponding 

chaos waveform for β~ = 3.0, 0α̂ = 2.0and TD = 0.00001s respectively.  The (average) chaos frequency for the latter 

case is about 102.912 KHz. 

 

 

 

 

 

 

 

Fig. 4(a). Chaotic signal at frequency = 10.714 KHz.                    Fig.  4(b). Chaotic signal at frequency = 102.912 KHz. 

The envelope of the chaotic signal is not constant as can be seen from Fig. 4(b).  The total chaotic signal for a long 
period of time is shown in Fig. 5 for the av. chaos frequency of 10.714 KHz.  Note that due to the time scale on the 
graph, the chaos envelope appears to be uniform. 

 

 

 

 

 

 

 

 

  Fig. 5.  Chaotic signal at av. frequency 10.714 KHz for a period of 6.28 seconds. 
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2.3.  Effect of system parameters on chaos 

The effects of time delay, 0α̂ and β~  on the chaos frequency and amplitude are studied in this section.  

2.3.1 Effect of time delay (TD) 

To study the effect of time delay TD on chaos, the other system parameters ( 0α̂ and β~ ) were fixed at 0α̂ =2, 

and β~ = 3.  The time delay was varied and the chaos frequency was calculated using the zero crossing method for the 
average line.  Also, the average amplitude is calculated by taking the difference between the maximum and minimum 
amplitudes and dividing by 2.  The time delay is plotted versus the av. chaos frequency as shown in Fig. 6.  It can be 
seen that upon decreasing the time delay, the av. chaos frequency increases.  However, it is found that the average 
amplitude for different time delays (based on the max and min differential) is constant and the average value is 0.68.  

 

 

 

 

                                                                        

 

 

 

 

 

                                                      Fig. 6.  Dependence of chaos frequency on time delay. 

2.3.2 Effect of feedback gain ( β~ )  

To study the effect of feedback gain β~ on chaos, the other system parameters ( 0α̂ and TD) were fixed at 

0α̂ =2, and TD = 0.1 ms.  As seen in Fig. 7, the chaos frequency does not change with β~ .  However, β~  does impact the 

chaos amplitude, which  approximately increases linearly, as shown in Fig. 8.  

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10-4

0

2

4

6

8

10

12
x 104

Time delay (seconds)

C
ha

ot
ic

 fr
eq

ue
nc

y 
f ch

(H
z)

Chaotic frequency versus time delay

Beta=3
Alpha0=2
Iinc=1

Proc. of SPIE Vol. 7814  78140D-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

2.5 3 3.5 4 4.5 5
1.0713

1.0713

1.0713

1.0714

1.0714

1.0714

1.0714

1.0714

1.0715

1.0715

1.0715
x 104

Value of Beta

C
ha

ot
ic

 fr
eq

ue
nc

y 
f ch

(H
z)

Chaotic frequency versus the value of Beta

TD=0.0001
Alpha0=2
Iinc=1

 

 

 

 

 

 

 

 

 

                                       Fig. 7.  Dependence of chaos frequency on β~ . 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Dependence of chaos amplitude on β~ . 

2.3.3  Effect of increasing the bias ( 0α̂ ) 

The system parameters to study the effect of increasing the bias 0α̂ are studied using the value of 3 for the 

feedback gain and a value of 0.1 ms for the time delay.  As seen in Fig. 9, 0α̂  has no effect on the chaos frequency.  

However, the average chaos amplitude appears to decrease monotonically with 0α̂ , as can be seen from Fig. 10. 
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Fig. 9.  Dependence of chaos frequency on 0α̂ . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Dependence of chaos amplitude on 0α̂ . 

 

3. SYSTEM ROBUSTNESS 

The scheme in Fig.2 is used to encrypt and decrypt/recover message signals via simulation. Fig. 11(a) and (b) 
are examples of encrypting two signals, one sinusoidal and the other triangular.  Both signals were encrypted at a chaos 

frequency of 10.714 KHz for same time delay with different feedback gains ( β~ ) of 4 and 3.5, respectively.  When the 
parameters are matched between the transmitter and the receiver, the corresponding original and recovered signals (after 
appropriate low pass filtering) are shown in Fig. 12(a) and (b).  Both chaos frequencies were at 10.714 KHz.  However, 
to verify the system robustness, mismatching one of the parameters between transmitter and receiver was carried out in a 
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series of simulation experiments.  Examples of the resulting impact on the quality of the recovered signal are presented 
below. 

 

 

 

  

 

 

 
 

 
             

  Fig. 11(a).  Encryption of sine wave.                                  Fig. 11(b).  Encryption of triangular wave. 
 
 

 

 

 

 

 

 

   Fig. 12(a). Original and recovered sine wave.                            Fig. 12(b). Original and recovered triangular wave. 
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 As shown in Fig. 13(a), when the β~  in the receiver is changed from 4.0 to 4.1, the recovered signal is 

significantly distorted.  We see similar distortion upon recovery for the triangular case with a mismatched  β~  of 3.6, as 
shown in Fig. 13(b). 
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Fig. 13(a). Recovered sine wave with beta mismatch.               Fig.13(b). Recovered triangular wave with beta mismatch. 

 

3.2 Time delay mismatch 

Here, the time delay (TD) between transmitter and receiver is varied. The delay at the transmitter side was 0.1 
ms, while at the receiver side it was 0.115 ms for both sinusoidal and triangular waves. However, the other parameters 

( 0α̂ and β~ ) were kept the same in the transmitter and the receiver side.  Fig. 14(a) and (b) show the results for the 

recovered signals for both sinusoidal and triangular waves. 

 

 

 

 

 

 

 

 

 

 

 

Fig.14(a).  Recovered sine wave with TD mismatch.            Fig. 14(b). Recovered triangle wave with TD mismatch. 
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Here, the parameters β~  and TD are kept the same in the transmitter and receiver, while 0α̂  is mismatched (1 

and 1.17),  with a chaos frequency of 10.714 KHz.  The resulting signal distortion is shown in Fig. 15(a) and (b). 

 

 

 

 

 

 

 

 

Fig. 15(a).  Recovered sine wave with 0α̂ mismatch.           Fig. 15(b).  Recovered triangle wave with 0α̂ mismatch. 

 

4. EFFECT OF ELECTRONIC AND INSTRUMENTAL NOISE ON SYSTEM PERFORMANCE 

 In this section, we examine the effect of (band pass) electronic/instrumental noise on the propagation of the 
encrypted message and its final recovery.  To achieve a band pass noise process, we begin with a standard, white 
Gaussian noise process which is then suitably filtered.  The cutoff frequency of the filter is set up at the 1 KHz signal 
frequency or higher.  This limits the input noise bandwidth to about 1 KHz.  At the receiver end, we have a low pass 
filter (LPF) whose cutoff is typically set at approximately the signal frequency, in order to eliminate content at the chaos 
frequency or its harmonics.  In all cases, the chaos frequency is much higher than the cutoff frequency of the noise filter 
or the signal frequency.  However, when we increase the noise bandwidth above the signal frequency, we need to 
correspondingly reset the receiver LPF cutoff in the neighborhood of the noise bandwidth in order to be able to study the 
effect of the noise during transmission and recovery.   

4.1 Encryption and decryption of signal in presence of band pass noise 

In the following example, a band pass noise, obtained via passage of a white Gaussian noise through a LPF  
with cutoff frequency 1.5KHz, was added to a triangular wave, and fed to the Bragg cell driver bias input.  The noise 
amplitude (or, equivalently, noise powe)r, is kept considerably lower than the signal amplitude.  Also, the (matched) 
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parameters between transmitter and receiver are chosen to be:  0α̂ = 2.0, β~ = 3.5, and TD = 0.0001 s.  The cutoff 

frequency at the receiver side is 1.5 KHz.  In Fig. 16, we show the noisy input and recovered signals for this case. 

 

 

 

 

 

 

 

    

 

 

 

 

  Fig.16.  The input signal with additive white Gaussian noise and the recovered signal. 

 

4.2 Comparison of mean-squared error for noise-free output and noisy outputs 

For the problem with band pass noise, we evaluate the effect of the noise propagated through the chaotic system 
through a measure of the mean-squared error (MSE) between the noise-free output and the noisy output.  The mean-
squared error is defined simply as the square of the difference between the noise-free and the noisy outputs for the same 
output LPF, time-averaged over a cycle.  The MSE of the proposed scheme is computed for different chosen values of 
the noise bandwidth for comparison purposes.  The chosen noise bandwidth is used to select the cutoff of the output LPF 
(kept at the signal or noise bandwidth, whichever is higher)  

4.3  Calculating the MSE of recovered signals with fixed cutoff frequency of LPF at the receiver end 

 In this case, the generated additive white Gaussian noise was passed through a low pass filter with variable 
cutoff frequency. The cutoff frequency varies from 100 Hz till 1.5 KHz.  
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            Fig.17.   MSE versus input noise bandwidth with fixed output LPF cutoff. 

 

The cutoff frequency of the low pass filter at the receiver is kept fixed at 1.5 KHz. (which is the signal frequency).   

Fig. 17 shows that the MSE decreases with increasing the input noise bandwidth.  

 

4.4  Effect of noise bandwidth higher than that of signal with adjusted out LPF cutoff 

 The cutoff frequency of the low pass filter for the white Gaussian noise was varied at the transmitter in the 
range 1.5 KHz up to 20 KHz, and the output LPF cutoff was adjusted to match the noise BW (kept lower than the chaos 

frequency).  The parameters like 0α̂ , β~ and TD were kept fixed and the average chaos frequency was selected to be 

50.8 KHz.  
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Fig.18.  MSE versus noise bandwidth exceeding signal bandwidth. 

 

The chaos frequency is chosen to be higher than the LPF cutoff frequency to avoid detecting the chaos.  The simulation 
results show that MSE increases when the noise bandwidth increases..  This is shown in Fig. 18. 

 

5.  CONCLUDING REMARKS 

 A new heterodyning scheme for encrypting and decrypting/recovering message signals is proposed using 

acousto-optic Bragg diffraction in the chaotic regime.  Appropriate values of the parameters 0α̂ , β~  or  TD  or a 

combination of the same may lead to chaos which is then encrypted using the message signal.  At the receiver end, using 
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matched parameters in a second Bragg feedback setup that generates a matched chaotic waveform, the signal can be 
recovered using heterodyne demodulation.  The robustness of the scheme is examined vis-a-vis system performance for 
variations in the feedback gain, time delay and DC bias.  The system is found to be reasonably robust w.r.t. the feedback 
gain (significant output distortion for less than 2% mismatch).  Robustness w.r.t. TD or 0α̂  shows greater mismatch 

tolerance, with distorted outputs occurring only for mismatch greater than about 10%.  The noise analysis involved 
different amounts of band pass noise at the transmitter (electronic or instrumental) added to the bias input of the RF 
source.  The cutoff of the output LPF is adjusted to allow passage of any waveform content up to the signal or noise 
bandwidth (whichever is higher).  The results obtained are not definitive in terms of noise-induced distortions.  The 
output waveforms recovered for most cases exhibit additive effects due to noise, but not any significant waveform 
distortion.  Channel noise, including frequency or phase interference have not been considered.      
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