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      ABSTRACT 

The nonlinear dynamics of a hybrid acousto-optic device was examined from the perspective of the Lyapunov exponent 

(LE) and bifurcation maps.  The plots for LE versus system parameters and bifurcation maps have recently been 

examined against known simulation results including chaotic encryption experiments [1].  It is verified that the "loop 

gain" (feedback gain (β) times incident light amplitude (Iin) needs to be greater than one as a necessary, but not sufficient 

condition for the onset of chaos.  It is found that for certain combinations of β, I in, net bias voltage (αtot), and the initial 

value of the first-order scattered light (I1(0)), there are pronounced regions of chaos in the parameter field, while for 

others, chaos is minimal.   It is also observed that in some cases, the negative “spikes” in the LE are far larger than its 

positive amplitudes, hence indicating a greater tendency to become non-chaotic.  Additionally, we have examined the 

bifurcation plots versus the two most salient system parameters, αtot and β.   These maps have revealed behavior that is 

by no means uniformly chaotic.  It is found that the system moves in and out of chaos within distinct bands along the αtot 

and  β axes.  These results imply strong sensitivity vis-à-vis these parameters around the passbands and stopbands, and 

may indicate control of chaos by appropriate parameter adjustment.  Such control may have applications in biological 

chaos, such as arresting malignant, chaotic cell multiplication.  Overall, the dynamical results compare favorably with 

time-domain characteristics of encrypted chaotic waveforms in signal modulation and transmission applications. 

Keywords:  Acousto-optics, chaos, feedback, encryption, Lyapunov exponent, bifurcation maps,  nonlinear dynamics, 

passbands, stopbands 

 

1. INTRODUCTION AND BACKGROUND 

 Acousto-optic (A-O) bistability and chaos were first reported around the late 1970s by Albert et. al [1], when it 

was shown that A-O devices with positive feedback gain exhibited bistability characteristics [2].  In a standard setup, a 

Bragg cell is driven by an ultrasonic sound wave from an RF generator (typically at 40 MHz or higher), and the resulting 

sound grating diffracts an incident laser beam into the first-order under Bragg condition.  The first-order is then picked 

up by a linear photodetector, fed to an amplifier, and then returned to the bias input of the RF generator.  The 

arrangement is shown in Fig.1.  Nominally, the scattered light beam is intrinsically frequency or phase modulated (with 

the acoustic frequency).  In typical waveform sources, the external bias input amplitude modulates the RF waveform.  A 

plot of the first order intensity (I1) vs. the bias input 0α̂  yields the well known bistable and hysteretic behavior [2,3].  It 

is well known that when the feedback gain, or a combination of parameters is increased or adjusted sufficiently, the 

feedback system enters into chaos.  The bistability, hysteresis and chaotic characteristics depend strongly on the 

feedback gain ( β
~

), the feedback time delay (TD), the amplitude (Iinc) of the incident light, the initial value of the 

intensity (I1(0)) and the effective bias voltage ( 0̂ ).  Using the chaotic properties of the hybrid acousto-optic feedback 

device (HAOF), it was recently reported that it is possible to encrypt relatively low bandwidth signals within the chaos 
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wave, and subsequently transmit, receive, heterodyne, filter and recover the message signal from this chaotically 

encrypted carrier [4,5].  This earlier work showed a reliable and relatively robust means of secure information 

communication for a few simple test signals applied through the acoustic bias input.  While the transmitted chaotic 

waves appeared to have been reasonably recovered in the test simulations, the choice of input amplitudes, frequencies, 

and the values of the important system parameters was based in that work primarily on studying multiple simulations, 

and conducting the tests for conditions where chaos would appear to be fairly assured.  In this paper, we examine the 

chaos and encryption problem from an analytic perspective, in order to be able to better understand and predict the 

system behavior relative to the critical parameter thresholds that are inherent in the HAOF device.  In the process, we 

show how chaos depends critically on the combination of the four principal parameters of the closed-loop system, viz., 

feedback gain ( β
~

), the feedback time delay (TD), the amplitude (Iinc) of the incident light, the initial value of the 

intensity (I1(0)) and the effective bias voltage ( 0̂ ).  Moreover, we find that the emergence of chaos even with the right 

choice of parameters is not uniformly ensured over variations of one of the free parameters, i.e., β
~

 
and  0̂ .  Within 

observed parameter ranges that generally ensure chaos within the nonlinear dynamics, it is found that the system is 

chaotic only over specific windows, herein termed chaotic passbands, and non-chaotic over other windows, termed 

chaotic stopbands.  We present here examples of such passbands and stopbands, and their implications for signal 

encryption and recovery in the domain of secure communications. 

 

Fig. 1.  The acousto-optic modulator with feedback showing Bragg cell, photodetector, amplifier and acoustic driver 

with composite bias input. 

1.1 Analysis of chaotic behavior via the theory of Lyapunov exponents  

Assuming that the sound pressure remains constant during the interaction (this enables the formation of a 

periodic grating within the interaction region), and the interaction time is much smaller than the feedback delay time,  the 

intensity I1(n) of the first-order diffracted beam at the time t = nτ in a HAOF system may be described as a nonlinear 

one-dimensional iterative process [3,6]: 

 )1(
~

ˆsin)( 10

2

1  nIInI inc   ,                             (1) 

where 
~

 is the net feedback gain, Iinc is the intensity of the incident light beam, τ is the time delay in the feedback loop, 

and n = 1, 2, 3, … represents the number of iterations in the feedback loop.  Note that Eq.(1) is the fundamental equation 

used in our analytical as well as simulation/numerical studies.  We assume that the parameters 0̂  and 
~

 are real, 
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nonnegative numbers.  Using standard arguments based on the development of the Lyapunov exponent, it can be shown 

that a necessary, though not sufficient condition in order to ensure chaos is given by [6]: 

                                                                         
1

~
incI  ,                                                                              (2) 

i.e., the product of the feedback gain and the incident optical amplitude must exceed 1 in magnitude.  Our numerical and 

analytic studies will reveal further details on this requirement. 

 In what follows, we examine the AO feedback problem in terms of its dynamical behavior, specifically by 

looking at the LE versus appropriate system parameters (with the other parameters held constant).  This will be followed 

by a study of the bifurcation graphs of the problem (first-order intensity versus feedback gain with other parameters held 

constant), and rigorously verifying the resulting chaotic and non-chaotic regimes against the aforementioned Lyapunov 

theory.  In the final analysis, we look further at the graphical results and test the outcomes against the cases for low-

frequency and low-amplitude (ac) chaotic modulation simulations that have been recently reported in the context of 

chaotic encryption and decryption of narrowband signals [5]. 

1.2 Examination of dynamical behavior in light of the Lyapunov exponent                      

As mentioned, in this section we investigate the Lyapunov exponent (LE) defined by eq. (6.10) via 2-D plots of 

LE versus 
~

 and 0̂  .  As seen from Fig.2, in this case, Iinc = I1(0) = 0.55, and 0̂  = 2.  We find in this case that the 

system is non-chaotic until the value of 
~

 = 3.5 is reached. Thereafter, there are “bands” of 
~

 over which the LE is 

positive, implying chaos.  We observe further that even past 
~

 = 3.5, there are isolated indentations in the LE values 

where the exponent becomes negative, implying that the system comes out of chaos.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.  LE versus β
~

 for Iinc = I1 (0) = 0.55 and 0̂  = 2. 
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In Fig.3, the chosen values were Iinc = 1, I1(0) = 0, and 0̂  = 1.  In this case, we find that the LE begins to go 

positive at lower values of 
~

 (three distinct areas around 2.4), followed by larger positive values around 3.1 and upto 

about 3.7, with one notable indentation.  These positive areas clearly represent chaotic behavior.  In the plot shown in 

Fig.4, we find that for Iinc = 1, I1(0) = 1 and 0̂ = 2, there are two relatively broad regions of chaos, viz., a band 

extending from about 1.9 – 2.7, and a second one from 3.2 – 4.  Within these “passbands”, we again see occasional 

negative indentations in the LE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.  LE versus β
~

 for Iinc = 1.0, I1 (0) = 0.0 and 0̂  = 1. 

 

In studying the feedback characteristics due to the LE, it turns out that examining the exponent relative to the 

acoustic driver bias ( 0̂ ) is more crucial to the implementation of signal modulation and encryption operations than LE 

versus 
~

 
.  This is because the (ac) signal input for the encryption operations invariably goes through the acoustic 

driver, and hence influences the 0̂
 
behavior.  We next illustrate our LE versus 0̂  characteristics indicating some 

differences vis-a-vis the corresponding dependence on 
~

.   In Fig.5, the chosen parameters are:  Iinc = 1, I1(0) = 2, and 


~

 
= 2.  From the figure, we find that for the chosen values, LE becomes positive over relatively small “bands” of 0̂ , 

while over much wider swaths of 0̂ , LE assumes negative values (including regions where it is highly negative).  

Overall, this would indicate that for these parameters, the system is chaotic only over a rather limited choice of 0̂
 

values (such as around 0.7 and 1.85).   
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Fig.4.  LE versus β
~

 for Iinc = 1, I1 (0) = 0, and 0̂  = 2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Fig.5.  LE versus 0̂   for Iinc = 1, I1 (0) = 2, and β
~

 = 2. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

-4

-3

-2

-1

0

1



L
y
a
p
u
n
o
v
 e

x
p
o
n
e
n
ts

  
( 

(x
0
))

Lyapunov exponent of the A-O logistic map versus  under dc bias

=2.0
I
inc

=1.0

I
1
(0)=0.0

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

0

0.5



L
y
a
p
u
n
o
v
 e

x
p
o
n
e
n
ts

  
( 

(x
0
))

Lyapunov exponent of the A-O logistic map versus   under dc bias

 =2.0
I
inc

=1.0

I
1
(0)=2.0

Proc. of SPIE Vol. 8162  81620J-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



The parameters corresponding to Fig.6, on the other hand, are:  Iinc = 1, I1(0) = 0 and 
~

 
= 2.  We note here that 

with Iinc = 1 and I1(0) = 0, there are only very limited bands in the 0̂  space where chaos happens when 
~

= 2.  This 

finding is in complete agreement with our reported modulation results where it was seen that with Iinc = 1 and I1(0) = 0, 

chaos occurs only when 
~

 
exceeds 2.41 [5,7].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.   LE versus 0̂   for Iinc = 1, I1 (0) = 0, and β
~

 = 2. 

 

 

 

When 
~

 
is increased to 4, as shown in Fig.7, while keeping Iinc = 1 and I1(0) = 0, we find that the chaotic bands 

have now increased noticeably.  Thus, the LE is now positive over the bands of 0̂
 
around the ranges listed in Table 1.  

Within these bands, however, there are narrow regions where the LE becomes negative, implying non-chaotic behavior.  

We will discuss the implications of these non-chaotic departures further later on.  We need to point out here that in the 

chaotic modulation work that we have reported [5], a typical set of parameter values happens to be: Iinc = 1, I1(0) = 0  and 


~

 
= 4.  The LE characteristics illustrated by Figs.(2-4) clearly indicate that with 

~
 > 3, we expect a relatively large 

range of chaotic 0̂  values.  This is important for our signal processing applications, since we need to ensure chaotic 

operation throughout the range of (ac + dc) 0̂  values.    
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Fig.7:  LE versus 0̂   for Iinc = 1, I1 (0) = 0, and β
~

 = 4. 

 

Overall, we observe that the sign of the LE depends critically on specific combinations of the four parameters, 

viz., 0̂ , 
~

 , I1(0), and Iinc.  Therefore, there exists a great deal of sensitivity in terms of chaotic behavior over “pass” 

and “stop” bands of these parameters, especially 0̂  and 
~

.  These issues will be examined in more detail later on, 

when we discuss the application of the LE to the signal encryption problem. 

 

Table 1.  Chaotic passbands and stopbands from numerical examination of LEs 

Fixed Parameters 
0α̂  

Passbands 

0α̂  

Stopbands 

Bangaps 

 β
~

 
Iinc I1(0) 

2 2 2 0.1 -  0.65 0.65 – 1.2 0.55 

1.2 – 1.55 1.55 – 1.65 0.1 

1.65 – 2.15 2.15 – 2.25 0.1 

2.25 – 2.7 2.7 – 3.2 0.5 

3.2 – 3.8 3.8 – 4.0 0.2 

3 1 0               - 0   -  0.1 0.1 

0.1 – 0.65 0.65 – 0.7 0.05 

0.7 – 0.9 0.9 - 1 0.1 

1 – 1.6 1.6 – 3.25 1.65 
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3.25 – 3.75 3.75 – 3.85 0.1 

3.85 - 4       - - 

3.5 1 0        - 0 -0.1 0.1 

0.1  - 0.3 0.3 – 0.35 0.05 

0.35 – 0.85 0.85 – 0.9 0.65 

0.9 – 1.2 1.2 – 1.85 0.65 

1.85 – 2.55 2.55 – 3.25 0.7 

3.25 – 3.45 3.45 – 3.5 0.05 

3.5 -  4          -       - 

4 1 0             - 0 – 0.1 0.1 

0.1 – 0.65 0.65 – 1.3 0.65 

1.3 – 1.65 1.6 5– 1.85 0.2 

1.85 – 2.15 2.15 – 2.25 0.1 

2.25 – 2.6 2.6 – 3.25 0.65 

3.25 – 3.8 3.8 - 4 0.2 

5 1 0             - 0 – 0.15 0.15 

0.15 – 0.85 0.85 – 0.95 0.1 

0.95 – 1.3 1.3 – 1.55 0.25 

1.55 – 1.9 1.9 - 2 0.1 

2 -  2.7 2.7 – 3.35 0.65 

3.35 - 4       -     - 

 

 

2. EXAMINATION OF DYNAMICAL BEHAVIOR BASED ON BIFURCATION MAPS 

In this section, we examine the dynamical behavior based on bifurcation maps of the AO cell with feedback in the 

Bragg regime, with the intent to compare the resulting dynamics with that predicted by the preceding  Lyapunov theory.  

We first examine the second-order output intensity I1 versus 
~

 for fixed values of  Iinc and I1(0) with 0̂
 
held constant 

at 2.0.  Two such results are shown in Figs.8 and 9.  In Fig.8, Iinc = I1(0) = 0.55,  and 0̂
 
= 2, we find that the first 

bifurcation starts at the value of 
~

 
= 1.8, followed by a second-order bifurcation at 

~
 = 3.2, and chaotic behavior 

which starts to appear at 
~

 = 3.5.  Furthermore, uniform or steady state chaos occurs only for 
~

 > 3.7.  However, 

when the value of Iinc is set to 1, the initial condition I1(0) is set to 0, (this corresponds, incidentally, to the chaotic 
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encryption results reported elsewhere [5]), and 0̂
 
= 2, the resulting bifurcation map shows considerable differences.  

This is shown in Fig.9.  One notable change for this case is that the initial bifurcation, the second-order bifurcation, and 

the chaotic thresholds are all lower than the previous case (in other words, the map shifts to the left).  Specifically, 

bifurcation now starts at 
~

 
= 1; second-order at 1.7 and steady-state chaotic behavior at about 2.  Additionally, we 

observe another important dynamical feature in Fig.9.  We find that within a broad chaotic “band”, say from 2 to 2.75, 

there emerges a narrow “forbidden band” or “bandgap”, where the output does not exhibit chaotic oscillations.  

Likewise, between 3.4 and 4, we find steady-state chaos.  However, between 2.75 and 3.4, there is no chaos (even 

though there might be higher order multistability in this range).  Note that these results are in complete agreement with 

those predicted by Lyapunov theory, as seen in Fig.4 previously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.  The bifurcation map of I1 versus β
~

 for fixed values of  Iinc = 0.55, I1 (0) = 0.55 and 0̂ = 2. 

  

 From a closer examination of Figs. 4 and 9 corresponding to the LE parameter and the bifurcation map, we 

obsrve the following.  The bifurcation map clearly predicts chaotic passbands and stopbands separated by bandgaps in 

the 
~

 space.  In comparing this finding with the LE plots discussed before, we recall that in the regions of 
~

 where the 

LE became negative (indicating chaos), we have seen earlier how the LE undergoes negative transitions, indicating 

departure from chaos.  Hence, both analyses predict very similar features.  Examining Figs.4 and 9, we note that we can 

predict non-chaotic and chaotic behavior from each diagram via different interpretations.  Thus, from Fig.4, we find that 

chaos happens in those windows where the LE becomes positive.  Thus, we predict chaotic outputs for the case of  0̂
 
= 

2, Iinc = 1.0, and I1(0) = 0 over the 
~

 windows (or passbands) 1.9-2.3, 2.4-2.75, and 3.2-4.0.  Likewise, Fig.4 indicates 

non-chaos over the stopbands over 0-1.9, 2.3-2.4, and 2.75-3.2.  From Fig.9, on the other hand, we define chaos as the 

regions of the I1 vs. 
~

 
graph where we see dense, steady oscillations of the intensity in the 

~
 space.  By this 

definition, we find chaotic passbands in exactly the same regions as predicted by Fig.4.  We note further that a stopband 

in Fig.9 is indicated by white bandgaps in the middle of an oscillatory waveform.  One final note regarding the 

passbands has to do with the comparison of the last passbands in Figs.4 and 9, viz., in the range 3.2-4.0.  In Fig.9, we 

find that the oscillations within this band do not uniformly sweep the vertical frame.   
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Fig.9.  The bifurcation map of I1 versus β
~

 for fixed values of  Iinc = 1, I1 (0) = 0 and 0̂ = 2. 

Returning to the same range in Fig.4, we find that the LE is actually positive in the entire range (thereby 

indicating chaos); however, in the region 3.2-3.3, there is a dip in the LE (i.e., the LE becomes smaller), thereby   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10.  The bifurcation map of I1 versus β
~

 for fixed values of  Iinc = 1, I1 (0) = 0.5 and 0̂ = 1. 
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accounting for the non-uniformity in the oscillations in Fig.9 within the same band.  In contrast, the dynamics of Fig.10 

(with Iinc = 1, I1(0) = 0.5, and 0̂  = 1), in the 
~

 range (0-4), indicate a single chaotic passband, extending 

approximately from 3.1 through 3.6.  In the region from 2.4-2.6, there appears to be some spurious, discontinuous 

oscillations, which we emphasize do not represent steady state chaos. 

 

Figs.11-13 show bifurcation maps versus the bias parameter 0̂ .  In these figures, we note certain fundamental 

differences from the bifurcations shown earlier versus 
~

.  From the figures, we once again see mono-, bi- and 

multistable regions created via the serial bifurcation effect.  However, in this case, we observe a tendency (perhaps more 

pronounced) for the “bifurcation” to proceed both ways, i.e., a single branch undergoing doubling, as well as two 

branches combining into one.  In addition, we find that the number of chaotic passbands in the 0̂
 
space (for most 

typical fixed values of 
~

) is consistently higher than was the case in the 
~

 
space.  Thus, in Fig.11, with Iinc = 2, I1(0) = 

2 , and 
~

= 2, we see five passbands separated by four stopbands.  Details of these bands are summarized in Table 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11.  The bifurcation map of I1 versus 0̂  for fixed values of  Iinc = 2, I1 (0) = 2 and β
~

= 2. 

 

In Fig.12, with Iinc = 1, I1(0) = 0 , and 
~

= 3, we find that the overall number of passbands is essentially two in this 

case, one running roughly from 0.1-1.6, and the other from 3.25-4.  Within these two passbands, there are very narrow 

stopbands (of bandgaps within 0.1), where we expect the system to be non-chaotic.  The two broad passbands are also 

separated by a wide bandgap from 1.6-3.25 (bandgap = 1.65), where there is no chaos.  We note also that within the large 

stopband, there is an area with discontinuous oscillations in the intesnity (around 2.35-2.65), where the chaos is not 

steady-state. 

Proc. of SPIE Vol. 8162  81620J-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



First order intensity versus for HAUF

2 4

Ir,c=1 .0

H J)=O.O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. The bifurcation map of I1 versus 0̂  for fixed values of  Iinc = 1, I1 (0) = 0 and β
~

= 3. 

 

  Finally, in Fig.13, with Iinc = 1, I1(0) = 0 , and 
~

= 4, we observe 5 very distinct and well-defined chaotic 

passbands (see Table 6.1), separated by two broad stopbands and two minor/narrow stopbands.  Incidentally, some of the 

chaotic modulation work that we have recently reported [69] consisted of the same fixed parameter values as shown in 

Fig.13.   From Table 1, we further remark that as the value of 
~

 
is increased above 3.0 (Fig.12), with Iinc = 1, I1(0) = 0, 

the chaotic bands become progressively regular, continuous, and broader.  Therefore, operating an AO feedback 

modulator within this range of parameters would offer greater leverage in terms of allowing larger ac amplitude 

variations, as well as ensuring reliable chaotic encryption within the entire passband.  We will discuss the effect of 

discontinuous chaos and the resulting distortion on signal encryption elsewhere.   

 

One particularly significant finding that we arrived at almost by serendipity was the following.  Upon examining 

the bifurcation graphs of Figs.11 and 13, we find that they look virtually identical, even though the chosen values of the 

fixed parameters are quite different.  In Fig.11, the parameters of interest are Iinc = 2, I1(0) = 2 , and 
~

= 2.  On the other 

hand, those corresponding to Fig.13 are Iinc = 1, I1(0) = 0 , and 
~

= 4.  Initially it seemed somewhat of a puzzle that 

large and identical chaotic bands (with identical stopbands) were emerging at feedback gains as different as 2 and 4, 

when in fact it has generally been assumed that one needs a relatively high 
~

 value to achieve steady-state chaos.  To 

further examine this apparent anomaly (i.e., might one get steady-state chaos at lower feedback gains, thereby reducing 

system power constraints?), we began to graphically look at fixed  incI
~

  values, while varying the individual values of  


~

and Iinc .  After a series of such plots (not shown here), it became clear that the nature of the chaotic behavior 

depended on the    incI
~

 product, and not on their individual values, or the initial condition.  This would then explain 

the identical nature of Figs.11 and 13, since the   incI
~

  product for both happens to be 4.  One might then rightly ask if 

there would be a preferred value of feedback gain to operate with (i.e. a lower or a higher value).  Clearly, a lower 

feedback gain would require a higher incident optical power for the same chaotic characteristics, and vice versa.  
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Overall, this likely leads to a tradeoff issue; however, it certainly offers an option in that a loss of optical power might be 

compensated by increasing the feedback gain while maintaining the chaotic behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13. The bifurcation map of I1 versus 0̂  
for fixed values of Iinc = 1, I1 (0) = 0 and β

~
= 4. 

 

3. CONCLUDING REMARKS AND FUTURE WORK 

  In conclusion, we remark that both the Lyapunov exponent analyses and the bifurcation maps offer viable means 

of understanding the conditions needed to achieve monostable, bistable, multistable and chaotic behavior in a complex, 

nonlinear closed-loop system such as HAOF.  These findings have important implications in possible chaotic modulation 

and encryption applications, since the emergence of passbands and stopbands even within otherwise stable chaotic 

regimes shows that large signal dynamic ranges might not be allowable.  Details of these findings are discussed in 

ref.[8]. 

  In subsequent work, we will discuss the effect of the above properties of the HAOF in the chaotic regime in terms 

of practical signal encryption and recovery.  Work on this is currently in progress.  
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