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Nonlocal and quantum-tunneling contributions to harmonic generation in nanostructures:
Electron-cloud-screening effects
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Our theoretical examination of second- and third-harmonic generation from metal-based nanostructures
predicts that nonlocal and quantum-tunneling phenomena can significantly exceed expectations based solely on
local, classical electromagnetism. Mindful that the diameter of typical transition-metal atoms is approximately
3 Å, we adopt a theoretical model that treats nanometer-size features and/or subnanometer-size gaps or spacers by
taking into account (i) the limits imposed by atomic size to fulfill the requirements of continuum electrodynamics,
(ii) spillage of the nearly free electron cloud into the surrounding vacuum, and (iii) the increased probability of
quantum tunneling as objects are placed in close proximity. Our approach also includes the treatment of bound
charges, which add crucial, dynamical components to the dielectric constant that are neglected in the conventional
hydrodynamic model, especially in the visible and UV ranges, where interband transitions are important. The
model attempts to inject into the classical electrodynamic picture a simple, perhaps more realistic description of
the metal surface by incorporating a thin patina of free electrons that screens an internal, polarizable medium.

DOI: 10.1103/PhysRevA.90.013831 PACS number(s): 42.65.Ky, 78.67.Uh, 78.68.+m, 71.45.Gm

I. INTRODUCTION

It is generally recognized that theoretical studies of typical
optical phenomena that take place at nanometer and sub-
nanometer scales necessitate the adoption of methods that
go beyond the usual approaches associated with classical
electromagnetism. Two relevant examples are nonlocal effects
and quantum-tunneling phenomena. Plasmonic phenomena
can occur between metallic objects and cavity walls that
are in such close proximity that the electronic clouds nearly
touch, and an applied electromagnetic field can induce elec-
trons to tunnel between metal objects. Quantum-tunneling
phenomena have been addressed using numerically intensive,
time-dependent density functional theory (TDDFT), to explore
the limitations of classical theory [1–5]. The TDDFT has
also been modified into a simpler method referred to as
the quantum correction model, which assigns to the gap
region the same free-electron properties as the interacting
metal components [2]. More recently, in this regard we have
developed a quantum conductivity theory, or QCT [6–8],
that predicts linear and nonlinear, quantum-induced current
densities in the gap region, either a vacuum or a dielectric
material, such that the gap itself acquires additional linear and
nonlinear optical properties.

While the induced quantum currents tend to limit field
enhancement as a result of induced linear and nonlinear
absorption, electron tunneling may also facilitate harmonic
generation at rates that far exceed typical conversion efficien-
cies expected for metal nanostructures if quantum tunneling
were neglected [9]. For practical purposes, the TDDFT is
limited by the number of electronic wave functions that may
be used to describe a nanostructure, and so the system under
consideration must be small and made of the same metal
[1–5,10]. In contrast, the QCT [6–8] generally yields results
similar to the TDDFT theory, uses no free parameters, and may
be easily combined with Maxwell’s equations to explore a wide
variety of complex plasmonic systems composed of different

metals and insulators, as well as nonlinear optical phenomena
that arise as a consequence of quantum tunneling [9].

In addition to quantum tunneling, abrupt changes to the
charge density at or near the surface can trigger nonlocal
effects. These effects may be studied in a purely classical
environment by relating the charge density to the pressure
density of an ideal electron gas [11]. The assumption that
the electron gas has a quantum nature is separate from the
notion of quantum tunneling, and yields a two-component
plasma medium whose linear contribution coincides with the
classical, ideal gas expression [12,13], and to purely quantum
mechanical contributions mostly to harmonic generation if
the pump remains undepleted, and to additional nonlocal
contributions if the pump energy is drained by a nonlinear
conversion process. The result is that the linear dielectric
constant turns into a function of frequency and wave vector,
i.e., ε = ε(ω,k), and the polarization becomes a function of the
field and its spatial derivatives. The effect “softens” the metal
surface and smears charges and fields just beneath it. Local
[i.e., ε = ε(ω)], classical models predict an ever-increasing
local field enhancement as the gap between metal components
is reduced. In contrast, the inclusion of nonlocal effects
in the hydrodynamic model [14–16] typically results in a
reduction of the local field in the gap region, accompanied
by field penetration that may be exploited to access the metal’s
nonlinearity [17].

Interest in the study of harmonic generation from metal
surfaces has never abated since the early days of nonlinear
optics [18–56]. The effective, second-order metal nonlinearity
is usually decomposed as separate, tensorial surface and vol-
ume contributions [45–56] that have dipolar and quadrupolar
origins. Our own, previous treatment of the problem [57,58]
was based on extending the hydrodynamic model [19,31,53],
which treats conduction electrons only (e.g., 6s shell for Au,
5s shell for Ag), by including explicit, microscopic dipolar
[57] and quadrupolar [58] contributions from bound electrons
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FIG. 1. (Color online) Top left: Scale illustration of d and s

orbitals within a single metal atom obtained via Hartree-Fock theory.
The radii of the d and s orbitals, rd and rs , respectively, correspond to
the maxima of each calculated electronic wave function. Parameters
for Au: rd = 0.64 Å and rs = 1.56 Å; Ag: rd = 0.55 Å and rs = 1.53 Å;
Cu: rd = 0.33 Å and rs = 1.37 Å [61,62], and t � 1 Å. Bottom right:
The electron cloud composed of outer s-shell electrons permeates the
entire volume. At the same time, free electrons that belong to atoms
near the surface spill outside and screen the hard, ionic background.

(5d shell for Au and 4d shell for Ag), and by making no a
priori assumptions about what constitutes either surface or
volume source. The classical Drude-Lorentz system that we
use is well behaved at the surface and yields no unmanageable
singularities [51,52]. The inclusion of the linear and nonlinear
dynamics of bound electrons may certainly be viewed as
an improvement to the hydrodynamic model, especially in
near-IR, visible and UV ranges, where the dielectric function
deviates significantly from Drude-like behavior. However,
an additional, persistent issue is the size of typical surface
features and gap or spacer thicknesses, which with modern
atomic-layer deposition techniques can easily approach and
even be smaller than 1 nm: One has to contend with atomic
diameters (or lattice constants) that are of order 3 Å, and an
outer-shell electron cloud that may extend several angstroms
outside the last atomic surface layer.

Like all classical models, the model exemplified in
Refs. [57,58] does not contemplate length scales or roughness
on the order of the atomic thickness, and should not be
expected to compare well with purely quantum mechanical
approaches [10]. However, the situation may be mitigated by
invoking an argument that permits the use of the classical,
macroscopic equations in an atomic environment if sources
are treated quantum mechanically [59,60]. This approach may
be summarized in Fig. 1, where we illustrate scale drawings of
a typical transition-metal atom (inset at the top of the figure),
complete with inner d shells and outer s orbital. A full-fledged,
quantum mechanical Hartree-Fock approach that includes
electron-electron interactions and screening may be used to
calculate the wave functions associated with each orbital.
The wave functions may then be used to deduce orbital radii
[61,62]. By orbital radius one generally refers to the distance
from the nucleus to the maximum of the wave function (or
most likely electron position), which may in fact have several

nodes and be somewhat extended in space [63]. For example,
the radius of the uppermost, 5d orbital of gold is approximately
rd = 0.64 Å, while the wave function of the 6s-shell peaks at
rs = 1.56 Å [61,62], or approximately one atomic radius. Cu
and Ag display similar values (see caption of Fig. 1). Then,
for atoms arranged in a lattice, the simplest, most rudimentary
picture that emerges is similar to the illustration at the bottom
of Fig. 1: Nearly free, outer s-shell electrons and bound (inner
core) electrons permeate the entire volume, while all rows of
atoms near the surface are slightly submerged under s-shell
(conduction) electrons (tiny dots in the illustration) that spill
outside the metal surface, and in so doing screen the internal
medium. Quantum mechanical calculations that assume a
uniform, smooth, generic ionic background in fact predict
an average, free-electron spill-out distance of approximately
2 Å, which may be understood as roughly the midpoint of
a rapidly rarefying medium, i.e., a decaying, electronic wave
function whose tail may actually reach somewhat deeper into
the surrounding vacuum [59,64–67].

The information contained in Fig. 1 suggests that a
classical, Drude-Lorentz oscillator model may be modified to
incorporate the basic ideas. One may assume that the medium
is composed of an internal, uniform, polarizable mixture of
free (Drude) and bound (Lorentz) electrons that extends as
far as the outermost reaches of the surface atoms’ d orbitals,
and by a thin layer of s-shell, free electrons that screens the
internal medium. Of course, this is a simplified view that
seeks to combine the quantum properties of the atom with
macroscopic field equations that are derived in a context where
atomic size or roughness must be averaged out, leaving behind
only smooth surfaces. In a classical sense, the immediate
consequence of the adoption of this physical picture means that
the generic, metallic medium that we envision is characterized
by a surface layer of finite thickness that has two boundaries:
an internal surface, where the (linear and nonlinear) effects of
bound charges are extinguished, and an outer surface grazed
only by free electrons. For simplicity we assume that the
equilibrium (no applied field) charge density of the outer,
free-electron shell is constant throughout the layer, although
in reality an electronic density gradient is to be expected as
the medium becomes more rarefied away from the surface.
Density variations of the unilluminated electron cloud as a
function of distance from the hard surface could be easily
included in the model, with a wave function tail that extends
further than 2 Å into the surrounding vacuum, but we expect no
significant qualitative or quantitative changes with this added
complication.

II. BRIEF OUTLINE OF THE MODEL

The model that we use is based on a microscopic portrayal
that begins with a collection of classical Drude-Lorentz
oscillators that describe free and bound electrons coupled
by the fields. While free charges can move about the entire
volume, the motion of bound charges takes place around an
equilibrium position that we identify as the radius of the d

orbital. This description ultimately gives rise to a patina of
free electrons that separates the metal core from the vacuum.
The basic equations of motion that couple material and field
equations are derived and described in detail in Refs. [57]
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and [58] in a context that includes free and bound, dipolar and
quadrupolar, and linear and nonlinear sources. Here we provide
broad motivation for an approach that includes modification of
that model according to the quantization of the atomic structure
discussed above, which in turn leads to free-electron screening.
We then add the quantum-tunneling parameters for the induced
linear and nonlinear currents derived in Ref. [8].

In the absence of quantum tunneling, the generated second-
harmonic signal is triggered by free and bound charges alike,
because both types of charges interact with the applied fields
via intrinsically nonlinear Coulomb (electric) and Lorentz
(magnetic) forces. We note that the nonlinear dynamics of
bound charges is usually neglected, although it becomes
critical at wavelengths below 700 nm, as interband transitions
contribute to the dielectric constant. Free charges are also
under the action of nonlinear convective and electron gas
pressure forces. In addition, the model allows for multipolar,
nonlinear source distributions [58] as a result of slight
distortions of the inner-core electron cloud resulting from
electron screening. In contrast, while a small fraction of the
third-harmonic signal always arises from a weak, cascaded
process [57] (3ω = ω+2ω, which occurs even if χ (3) = 0)
most of it originates from a bulk, third-order nonlinearity
attributable to anharmonicities in the motion of bound charges
[68].

The effects of the QCT theory are described in detail in
Refs. [6–8]. The theory suggests that the gap that separates
metal objects fills with induced, linear and nonlinear currents
that turn the vacuum or dielectric spacer into an effective
medium that displays its own peculiar, linear and nonlinear
optical properties. For instance, a vacuum gap approximately
g = 0.8 nm thick displays an effective χ (2) � i0.1 pm/V for
adjacent objects composed of dissimilar metals such as Au and
Ag, and an effective χ (3) � i10−(20) m2/V2 for either similar
or dissimilar metals, increasing exponentially for smaller gaps
[8,9]. Even though these values may appear to be relatively
small, the intensity inside the gap may be amplified thousands
of times compared to incident values, thus catalyzing efficient
nonlinear optical processes that can far outweigh the intrinsic
nonlinearities of the metal.

Our approach thus places free and bound charges on the
same footing, adds crucial linear and nonlinear dynamical
components to the dielectric constant that are neglected in
the conventional hydrodynamic model, treats the full vectorial
nature of nonlocal effects without unduly constraining the
current normal to the metal surface [14–17,69,70], and also
includes the effects of electrons tunneling across the gap.
The equations of motion are then integrated in the time
domain using a split-step, fast Fourier transform method that
propagates the fields, combined with a predictor-corrector
method to integrate the material equations [71]. The two-
dimensional spatial grid consists of 208 × 6000 lattice sites
discretized in unit cells 1 Å × 1 Å; the temporal step is
3 × 10−19 s. Reflected and transmitted conversion efficiencies
are calculated by sampling the fields at the grid’s edges (i.e.,
far field), and by normalizing the outgoing energy with respect
to the total, incident pump energy.

As a final note on the approach, we point out that the model
outlined above clearly attempts to account for atomic structure
and size, electron spill-out from the surface, and quantum

tunneling in order to paint a somewhat more realistic picture
of physical phenomena that take place near the metal surface.
However, the same may not be said of alternative approaches
that introduce artifacts to treat the metal nonlocality [72]. For
example, in Ref. [72] the nonlocal metal is replaced outright
with a composite material made of local metal covered by a
dielectric layer approximately 1 Å thick, (i.e., the approximate
Thomas-Fermi length, or in our case, rs–rd ) that even includes
the possibility of unphysical gain, ostensibly for the sole reason
to ease the computational burden that the metal nonlocality
imposes on complex geometrical arrangements. While this
may be a clever way to solve the linear problem, the method
also injects an arbitrary artifice that upsets the linear and
nonlinear postures of surface currents and sources, including
nonlinear, nonlocal contributions [53,57], at the same time
instilling a false sense of security about the application of
effective medium approaches to nonlinear calculations. Then,
depending on its precise composition and thickness, the
top layer may interfere and perhaps even negate quantum-
tunneling effects. Indeed, the modifications that we advocate
are easily implemented and pivotal for nonlinear processes
like harmonic generation, which may be affected drastically
depending on surface properties. Therefore, caution should be
exercised when using effective medium models in nonlinear
contexts.

III. EXAMPLE CALCULATION FOR A NANOWIRE
ARRAY

In Fig. 2 we depict two separate arrays of infinitely
long, metal nanowires. Each nanowire is 10 nm in radius
(approximately 30 atomic diameters). For both arrays, adjacent
cylinders are separated by a distance g, and may be thought of
as being composed of either a single metal or dissimilar metals.
In Fig. 2(a) we show the way metals are normally treated, if
bound charges are considered at all: Free and bound electrons
are allowed to be present everywhere, so that d and s orbitals
belonging to surface atoms overlap, i.e., rb = rf , where the
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FIG. 2. (Color online) (a) Metal array composed of a mixture
of free and bound charges. d and s orbitals overlap, so that bound
electron orbits graze the surface. (b) The illustration of Fig. 1 yields
a picture where an outer, free-electron shell approximately 2 Å thick
covers each nanowire. The green particles inside the gap region of
width g represent tunneling electrons.

013831-3



SCALORA, VINCENTI, DE CEGLIA, AND HAUS PHYSICAL REVIEW A 90, 013831 (2014)

FIG. 3. (Color online) Thin Curves: Reflection, transmission,
and absorption vs. wavelength for the gold-silver nanowire array
in Fig. 2(a), where free and bound charges extend all the way to the
surface. Thick Curves: Reflection, transmission, and absorption for
the gold nanowire array in Fig. 2(b), where bound charges are covered
by a shallow, free-electron layer.

subscripts b and f stand for bound and free, respectively. In
Fig. 2(b) we show the alternative picture that emerges based
on Fig. 1, which yields partially overlapping d and s orbitals
belonging to surface atoms, so that rb < rf . The calculated
linear transmission, reflection, and absorption spectra for the
two scenarios in Fig. 2 are plotted in Fig. 3 for an Au-Ag
array, in the local approximation. Nonlocal effects originate in
the free-electron gas pressure contribution, lead to decreased
local fields, and cause a generic blueshift of the plasmonic
band structure, with few additional qualitative or quantitative
differences [9], at least in this geometrical arrangement. Palik’s
gold and silver data [73] are first fitted in the range indicated
in the figure using one Drude and one Lorentz oscillator,
and are used to calculate the linear spectra of reflection,
transmission, and absorption for the array in Fig. 2(a) (thin
curves in Fig. 3). The Lorentz component is then removed in
a limited region to account for the free-electron-only, green
shell shown in Fig. 2(b) and linear spectra are recalculated
(thick curves in Fig. 3). The results in Fig. 3 thus show
that in the range of interest the linear optical properties of
the two arrays displayed in Fig. 2 are practically indistin-
guishable. However, anticipating our nonlinear analysis, the
slightly different geometries in Fig. 2 nevertheless lead to
large discrepancies in their nonlinear optical properties. The
comparison in Fig. 3 thus demonstrates that mere similarities in
linear behaviors between full-wave approaches and effective
medium models of the kind established in Ref. [72] are not
sufficient to also guarantee similarities in nonlinear optical
behavior. For simplicity, in what follows we will assume
an Au-Ag grating to ultimately excite simultaneously both
second- and third-order nonlinearities inside the gap [8,9],

TABLE I. (Color online) Predicted second-harmonic
generation (SHG) and third-harmonic generation (THG)
conversion efficiencies.

SH and TH 
conversion efficiencies

Peak Pump Intensity 
I = 1.5 GW/cm2

2

Local 1.3 10−8 1.8 10−9

Nonlocal 5 10−9 2.2 10−12

3

Local 2.2 10−8 2 10−8

Nonlocal 4.6 10−9 5 10−9

and that the average thickness of the screening, free-electron
layer is 2 Å [59,64–67]. We will then compare the results
for both types of arrays in order to assess the relevance of
the free-electron buffer layer in modeling nanostructures with
surface features and gap sizes that approach atomic size, and
how nonlocality manifests itself in the two cases, at least
according to our model.

In Table I we show the results for the predicted second-
harmonic generation (SHG) and third-harmonic generation
(THG) conversion efficiencies without quantum-tunneling
effects, with and without the free-electron buffer layer, with
and without nonlocal effects. We assume that both metals
exhibit an isotropic, third-order nonlinear response χ (3) ≈
10−18 (m/V)2 [68] that reaches the surface in Fig. 2(a) in
one case, and is confined to the inner surface in Fig. 2(b)
in the other. Pump pulses are 25 fs in duration, are tuned
to 700 nm, and have peak power of 1.5 GW/cm2. The
second-harmonic (SH) signal is tuned to 350 nm and the
third-harmonic (TH) signal is tuned to 233 nm. In general,
SHG is far more sensitive than THG to surface phenomena
because it depends intimately on the evolution and disposition
of surface sources, given the centrosymmetric nature of the
metal. Without the free-electron screening layer the nonlocal
term smears charges and fields away from the surface just
enough to reduce the magnitude of the field derivatives (Fig. 4),
and hence the amplitudes of nonlinear surface sources, causing
a reduction in conversion efficiencies by approximately a
factor of 2. In contrast, the introduction of nonlocality when
a free-electron buffer layer is present adds elasticity to the
surface, voids all surface contributions due to bound charges
[58], and reduces conversion efficiencies by nearly three orders
of magnitude compared to its local counterpart. If we then
compare only nonlocal predictions for SHG we find that
the free-electron buffer layer suppresses surface contributions
from bound charges very effectively and reduces conversion
efficiencies by three orders of magnitude. Most of the reduction
of SHG conversion efficiency is due to the restriction of
bound charges to the inner metal surface: The transition from
the inner, red region to the green shell shown in Fig. 2(b)
is much smoother compared to the vacuum-metal transition
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FIG. 4. (Color online) Differential, free charge density distribu-
tion δn for (a) local and (b) nonlocal cases. In (b) the metal surface is
more elastic compared to (a), and can accommodate a smoother, but
lower-amplitude charge distribution around the 2-Å-thick nanoshell.
Peak values of δn are larger (by nearly a factor of 4) and sharper in (a)
compared to (b); this leads to larger SHG conversion efficiencies in
the local case (a) compared to the nonlocal case (b). The distribution in
(a) is numerically noisier compared to (b) because the field derivatives
are very close to zero, giving rise to unphysical fluctuations inside
the volume that have been averaged out.

of Fig. 2(a), which reduces dramatically the influence of
nonlinear, bound quadrupolar sources. Our calculations indeed
suggest that most of the reduction in SH efficiency is in fact
due to the absence of explicit, bound quadrupolar terms. In
other words: One structure shields the bound charges, so the
bound quadrupolar source does not contribute, hence SHG is
low; in the other structure the bound charges are unshielded
and bound quadrupoles graze the external surface producing
excess SHG at much larger rates. These results should not
come as a surprise, since in the wavelength range of interest
the dielectric constant is dominated by interband transitions,
i.e., the bound electron cloud.

In contrast to SHG, the TH signal in this particular case
is far less sensitive to the presence of the free-electron buffer
layer because the transverse field component couples to the
internal, bulk nonlinearity in nearly equal measures in both
geometries. Just outside the nanowire, not only is the transverse
electric field intensity nearly three orders of magnitude larger
than the longitudinally polarized field, it is also shielded far
less efficiently. In this case, nonlocal effects reduce conversion
efficiencies by nearly a factor of 3 compared to the local case,
because the nonlocality reduces overall field amplitudes.

The above observations on THG do not constitute general
predictions because slight geometrical changes can strongly

influence the outcome. For example, in Ref. [17] a gold
nanowire of square cross section is placed approximately 1 nm
above a silver substrate. That arrangement strongly favors the
longitudinal component of the field inside the gap region,
triggering a localized surface plasmon with an evanescent
tail that propels the field into the metal. In that environment,
nonlocal effects can either (i) increase THG by nearly three
orders of magnitude, if the nanowire has no free-electron
buffer layer, as in Fig. 2(a); or (ii) have no influence at all
if a free-electron buffer layer only 1 Å thick surrounds the
nanowire, which is the approximate spatial separation between
d- and s-shell electron orbits, and is sufficient to nearly
completely suppress the enhancement of the field normal to
the surface [17]. These considerations should serve as further
cautionary notes that (i) geometrical considerations always
play an important role, and generalization should be avoided;
and (ii) the presence of a shielding, free-electron outer layer
can dramatically alter predicted SHG and THG conversion
efficiencies.

We now illustrate nonlocal effects on charge distribution.
In Fig. 4 we show snapshots of the instantaneous, differential
free charge density derivable from the continuity equation,
in the local and nonlocal approximations, defined as δn =
n(r,t)−n0

n0
= − 1

en0
∇ · Pf (r,t). Although this expression is valid

whether or not the nanowires are surrounded by a thin,
free-electron-only shell, here we treat the case illustrated in
Fig. 2(b). δn is normalized by the equilibrium (no applied field)
charge density, n0, e is the electron charge, and Pf (r,t) =
Pω(r,t)e−iωt + P2ω(r,t)e−2iωt + P3ω(r,t)e−3iωt + c.c. is the
total, real polarization associated with free charges. If the pump
remains undepleted, only the pump term contributes signifi-
cantly. In Fig. 4(a) δn is calculated in the local approximation;
in Fig. 4(b) δn is computed with the addition of the nonlocal
electron gas pressure term, as outlined in [57]. We note that in
the nonlocal case the maximum amplitude of δn is nearly four
times smaller compared to its local counterpart, and slightly
smeared away from the surface. This smaller, smoother, local
surface charge density value explains why the comparison of
SHG conversion efficiencies between local and nonlocal cases
in Fig. 4(b) strongly favors the local approximation: Nonlinear
surface and convective sources are proportional to (∇ · Pf )E
and Ṗf (∇ · Pf ) + (Ṗf · ∇)Pf , respectively [57]; larger spatial
derivatives lead to bigger SH conversion efficiencies.

In Fig. 5 we show a snapshot of the spatial distribution
of the electric field intensities in the nonlocal case, when
the peak of the incident pump pulse reaches the gold-silver
grating with the free-electron shell, with and without quantum-
induced currents. If adjacent nanowires are made of different
metals, and the distance between nanowires is fixed at g =
0.8 nm, the currents inside the gap yield a linear dielectric
constant εω ≈ 1 + i0.4; χ (2) ≈ i0.1 pm/V; and χ (3)

ω ∼ χ
(3)
3ω ≈

i10−20 (m/V)2 [8,9]. We assume incident and generated fields
are polarized along the array axis (as shown in Fig. 2). In
the quantum-tunneling case excitation of the gap region adds
significantly to SHG and THG conversion efficiencies because
the pump intensity becomes well localized in the gap, with an
enhancement factor of nearly three orders of magnitudes; see
Figs. 5(a) and 5(b). However, there are some peculiarities in
the field localization and emission properties that we now
highlight. At moderate intensities (Fig. 5 corresponds to
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FIG. 5. (Color online) Electric field intensity distributions between two adjacent Au-Ag nanowires without (a), (c), (e) and with (b), (d),
(f) quantum-induced linear and nonlinear currents.

0.4 GW/cm2 peak power), the peak pump field intensity is
slightly reduced (less than 3%) by quantum-induced linear
absorption. By the same token, in the quantum case the local
TH field intensity inside the gap [Fig. 5(f)] is enhanced by
nearly four orders of magnitude compared to the classical
case [Fig. 5(e)], a quantitative aspect that is also reflected
in a corresponding increase in THG conversion efficiency,
as reported in Ref. [9]. TH field localization inside the
gap is also highly suggestive of the fact that for the most
part nonlinear sources are distributed inside the gap, where
χ

(3)
3ω ≈ i10−20 (m/V)2, thus overwhelming THG arising from

within the metal. However, the SH (near) field localization
properties are perhaps the most peculiar. Indeed, quantum-
induced currents increase conversion efficiency by nearly three
orders of magnitude [9], notwithstanding the fact that the local
field intensity decreases by nearly 10% [compare amplitudes
in Figs. 5(c) and 5(d)], with field localization properties that
are practically unchanged relative to the absence of quantum
tunneling. Put another way, a quantum gap is equivalent to
a gap doped with a nonlinear material, thus comparable to
the introduction of an effective dipolar contribution to the
scattered SH light, forbidden in the classical representation. As
a consequence, the presence of nonlinear quantum tunneling
makes the structure a far more efficient radiator of SH
light, even though field localization properties appear to
change little compared to the classical case. We believe that
this phenomenon is a unique marker of quantum tunneling.
While linear effects of quantum tunneling are inherently
subtle and hardly distinguishable from nonlocal effects, the
nonlinear response is drastically altered by quantum tunneling,
especially for SH light, whose nature is forcibly converted from
quadrupolar to dipolar.

One needs to bear in mind that material dispersion and
incident wavelength are important factors that determine the
evolution of the harmonic fields. In general, in the wavelength

range under consideration (below 700 nm) the linear dielectric
response of the metal at the harmonic wavelengths (deep in the
UV range) is dominated by the dynamics of bound electrons.
However, the nonlinear response in fact also appears to be
regulated by the presence of a screening, free-electron layer,
which becomes one of the dominant features in harmonic
generation. As an example, pumping the grating at 600 nm
increases THG (at 200 nm) by two orders of magnitude
compared to pumping at 700 nm, thanks to a combination
of improved resonance conditions and field penetration depth,
and reduced Im(ε) for both Ag and Au.

Finally, we note that according to the QCT model [6–9] the
magnitude of the quantum-induced coefficients increases at
near-exponential rates for decreasing gap sizes. For example,
according to the model a gap g = 0.6 nm wide will display
increased linear absorption and nearly two orders of magnitude
enhancement in the nonlinear coefficients compared to a
0.8-nm gap. By the same token, a different geometrical
arrangement may offer far improved field localization char-
acteristics, as in Ref. [17], for example, where the local field
intensity is enhanced more than 104 times, which may suffice to
trigger quantum-tunneling events for slightly larger gap sizes
[8].

IV. CONCLUSIONS

We have presented a theoretical model that allows the
study of linear and nonlinear optical phenomena like SHG
and THG from nanoplasmonic environments in a context
that takes into account (i) linear and nonlinear dynamics of
the bound electron cloud; (ii) electron spill-out effects and
resultant screening of an internal, polarizable medium; and (iii)
electronic quantum-tunneling effects that induce linear and
nonlinear currents between two metal objects placed in close
proximity. We have investigated harmonic generation and
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compared the results in the local and nonlocal approximations,
with and without electron screening conditions. In the absence
of quantum tunneling, which for vacuum translates to gap
sizes of order 1 nm, and up to �2 nm for appropriate dielectric
materials [8], our results suggest that both SHG and THG
are sensitive to the geometry, the screening effects of a
free-electron cloud that surrounds the internal medium, and
nonlocal effects. For sufficiently small gap sizes, harmonic
generation originating inside the quantum gap can easily
overcome, by several orders of magnitude, the amplitudes of
the harmonic signals arising from the intrinsic nonlinearities
of the metal [9]. Our results thus suggest that both quadratic
and cubic nonlinear effects may be triggered by quantum
tunneling and may be observed in the far field at practical light
irradiance levels (�1 GW/cm2), using femtosecond pulses,

from metallic nanostructures with gap sizes of the order of
1 nm. Linear optical experiments designed with exquisite,
atomic-layer by atomic-layer control over the spacing between
the structures were reported in [16,74,75]. New experiments
may be designed in similar fashion to study the nonlinear
response.
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