
University of Dayton
eCommons
Electrical and Computer Engineering Faculty
Publications

Department of Electrical and Computer
Engineering

9-2004

Volume Holographic Recording and Readout for
90-Deg Geometry
Partha P. Banerjee
University of Dayton, pbanerjee1@udayton.edu

Monish Ranjan Chatterjee
University of Dayton, mchatterjee1@udayton.edu

Nickolai Kukhtarev
Alabama A & M University

Tatiana Kukhtareva
Alabama A & M University

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub

Part of the Computer Engineering Commons, Electrical and Electronics Commons,
Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and Computer
Engineering Commons, and the Systems and Communications Commons

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at eCommons. It has been accepted
for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of eCommons. For more information, please
contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Banerjee, Partha P.; Chatterjee, Monish Ranjan; Kukhtarev, Nickolai; and Kukhtareva, Tatiana, "Volume Holographic Recording and
Readout for 90-Deg Geometry" (2004). Electrical and Computer Engineering Faculty Publications. 261.
https://ecommons.udayton.edu/ece_fac_pub/261

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232843861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/261?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Volume holographic recording and readout for
90-deg geometry

Partha P. Banerjee, FELLOW SPIE
Monish R. Chatterjee, MEMBER SPIE
University of Dayton
Department of Electrical and Computer

Engineering
Dayton, Ohio 45469
E-mail: partha.banerjee@notes.udayton.edu

Nickolai Kukhtarev, MEMBER SPIE
Tanya Kukhtareva
Alabama A&M University
Department of Physics
Normal, Alabama 36752

Abstract. When a prerecorded cross-beam hologram is reconstructed
(so-called edge-lit readout) with a uniform plane wave and a point
source, the resulting exact solutions reveal Bessel-function-type dif-
fracted beam profiles, which are fundamentally modified under weak
propagational diffraction. The case of a profiled beam readout with
propagational diffraction may be analyzed using a transfer function ap-
proach based on 2-D Laplace transforms. In a second series of investi-
gations, dynamic readout from a cross-beam volume hologram recorded
with two orthogonal uniform plane waves is considered for various de-
pendences of the refractive index modulation with intensity. Typically,
refractive index profiles that are proportional to the intensity (as in the
case of Kerr-type media or photorefractives with predominantly photovol-
taic effect) and to the derivative of the intensity (as in diffusion-dominated
photorefractives) are considered. Two-dimensional nonlinear coupled
equations are developed for the two (Bragg) orders for both cases.
Closed form solutions are obtained for the first case, indicating only non-
linearly induced self and cross-phase coupling. A simple experiment in-
volving simultaneous recording and readout using photorefractive lithium
niobate crystal indicates beam profile distortion, which may be expected
in such 90-deg geometries. © 2004 Society of Photo-Optical Instrumentation Engi-
neers. [DOI: 10.1117/1.1774195]

Subject terms: volume holographic recording; volume holographic readout;
cross-beam hologram; 90-deg geometry; beam profile distortion; refractive index
modulation.
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1 Introduction

Cross-beam or edge-lit holograms are of considerable cur-
rent interest due to their potential compactness and inherent
optical isolation between the readout beam and the dif-
fracted order resulting from large Bragg angles.1 Edge-lit
holograms have been recorded in photorefractive materials,
including lithium niobate crystals, using novel multiplexing
techniques.2–4 Numerous applications of the edge-lit tech-
nique are possible, including holographic optical elements
such as diffusers, reflectors, and backscattering plates in
display systems, 3-D object displays, and display screens
for holographic projectors and video.5,6 To achieve flexibil-
ity in display devices, edge-lit holograms must be multi-
plexed for efficient modulation. Owing to the special con-
figurations involved here, which do not conform to
conventional holographic multiplexing techniques, novel
multiplexing techniques suitable for edge-lit holography
have recently been developed.7

In Sec. 2, we consider reconstruction from edge-lit ho-
lograms prerecorded with uniform plane waves. Using
paraxial optics and the slowly varying envelope approxima-
tion ~SVEA!, first-order coupled equations are derived for
the diffracted orders in the two mutually orthogonal direc-
tions, in the absence of propagational diffraction. Given the
orthogonal propagation of the two orders, the resulting
coupled equations may be converted into 2-D Laplace

transformed equations representing the complex spectra of
the scattered orders. For the two special cases of uniform
plane wave readout~here assumed to correspond to a unit
step profile along one of the input planes!, and a point
source~or delta-function! readout, the resulting diffracted
beam profiles are found to be different versions of zeroth
and first-order Bessel functions of the first kind. It is rather
serendipitous that in these two instances, the derived 2-D
Laplace spectra are invertible via straightforward series ex-
pansion methods. When the coupled equations are modified
to include propagational diffraction in each of the orthogo-
nal directions, the resulting 2-D angular plane wave spectra
are found to be expressible as the product of the spectrum
of the incident zeroth-order reading profile, and zeroth- and
first-order 2-D transfer functions~in the manner of linear
systems!, respectively. These transfer functions technically
enable one to find the diffracted beam profiles for arbitrary
reading beam profiles. A primary difficulty in attempting to
solve the spatial diffracted profiles for these 2-D spectral
representations is the complexity of performing inverse
Laplace transforms of dimensions greater than 1. A simple
illustration of the effect of propagational diffraction is pro-
vided by considering weak diffraction, where by using ap-
propriate simplifications, the intermediate inverse transform
over one of the orthogonal directions yields a 1-D Laplace
result that deviates from the corresponding one in the ab-
sence of propagational diffraction via polynomial phase
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terms in the surviving Laplace variable. It is pointed outthat
the inverse transformation of 2-D Laplace functions as de-
rived here is rather difficult even under weak diffraction
limits, even for uniform plane wave or point source reading
beams ~and considerably more so for arbitrary reading
beam profiles!. Attempting conventional numerical integra-
tion ~simultaneously, or one dimension at a time! leads in-
variably to problems involving singularities of the transfer
functions and~likely! of the incident plane wave spectrum.
It turns out, however, that some researchers have recently
attempted to find inverse Laplace transforms of multidi-
mensional Laplace functions.8,9 The essence of one such
technique is briefly discussed. In a follow-up work, results
obtained by using such an inversion technique will be pre-
sented.

In Sec. 3, governing equations are derived for the self-
readout of a dynamic hologram under 1. intensity-
dependent refractive index modulation~as is true for a
Kerr-type material or a photorefractive material with strong
photovoltaic effect!; and 2. intensity gradient-dependent re-
fractive index modulation~as in a diffusion-dominated pho-
torefractive medium! of the volume holographic material.
For the first case, solution of the Helmholtz equation under
SVEA and weak propagational diffraction indicates that the
intensities of the scalar zeroth- and first-order beams de-
pend only on their respective initial intensities at the input
planes. Their phases, however, evolve as combinations of
both self-phase~i.e., due to the incident intensity of the
field itself! and cross-phase~due to the incident intensity of
the orthogonal field! modulations. For the second case, ap-
plication of the index modulation to the Helmholtz equa-
tion, on simplification, reduces to two nonlinearly coupled
first-order intensity and phase equations. The solutions,
subject to initial zeroth- and first-order intensity conditions,
are quite involved, and will be pursued later.

Preliminary experimental results for dynamic recording
and readout of edge-lit holograms in photorefractive
lithium niobate indicate profile distortion under Gaussian
beam input conditions. The results, shown in Sec. 4, sug-
gest that the contribution from diffusion in the holographic
recording and readout process in the material may not be
negligible.

2 Reconstruction of Prerecorded Thick
Holograms for Cross-Beam Geometry

Consider a hologram, as shown in Fig. 1, which is recorded
by interference of two uniform plane waves as10

«~x,z!5«11«2 cos~KW "rW !, ~1!

where the grating vector is

KW 5K cosfaW z1K sinfaW x , ~2!

and

K52k sin
u r2uo

2
, ~3!

where k refers to a propagation constant of light in the
material, to be made more precise later. Also, the angle of
the grating vector is

f5p/21~u r1uo!/2, ~4!

whereu r anduo are the incident angles of the reference and
object waves, respectively.

During reconstruction, the total optical field phasor in
the volume hologram~assumed to have two orders! can be
expressed as:

c~x,z!5@ce0~x,z!exp2 jkW0"rW1ce1~x,z!exp2 jkW1"rW#

5@ce0~x,z!exp2 j ~k0xx1k0zz!

1ce1~x,z!exp2 j ~k1xx1k1zz!#, ~5!

with

k0x5k sinu r , k0z5k cosu r , k1x5k sinu r2K sinf,

k1z5k cosu r2K cosf, ~6!

wherek52pA«1/l2 is the propagation constant of the re-
construction wave.

Substituting Eqs.~5! and~6! into the Helmholtz equation
along with Eqs.~1! through~4!, we get:

¹2ce022 jkW0"¹W ce01
k2«2

2«1
ce150, ~7!

¹2ce122 jkW1"¹W ce11
k2«2

2«1
ce022kQce150, ~8!

whereQ is a dephasing factor, dependent on the angle of
the reading beamce0. Equations~7! and ~8! represent the
coupled wave equations for the two diffracted orders.

Suppose we now assume the following recording param-
eters: 1. the hologram is recorded withu r5p/2, uo50,
which impliesK5&k andf53p/4; and 2. the hologram
is confined between boundary planes specified byz50, z
5L; x50, x5L; where we have assumed a square of size
L. Likewise, we assume the reading parameters to be those
for nominal Bragg incidence, so thatk0x5k, k0z50, k1x

Fig. 1 General edge hologram recording geometry.

Banerjee et al.: Volume holographic recording . . .
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50, k1z5k; Q50. Substituting the parameters in Eqs.~7!
and ~8!, and assuming only plane wave interaction~no
propagational diffraction! and SVEA, we obtain the follow-
ing reduced coupled equations:

]ce0 /]x52 j kce1 ,

]ce1 /]z52 j kce0 , ~9!

where k5k«2/4«1 . The schematic diagram showing the
volume hologram and the reconstruction is shown in Fig. 2.

Note that the previous coupled equations are similar to
the standard ideal Bragg scattering equations in acousto-
optic diffraction, except that the derivatives on the left hand
side ~LHS! are in two ~orthogonal! directions instead of
one. Hence, the solutions are also expected to be signifi-
cantly different, as is shown later.

2.1 Case 1: Uniform Plane Wave Readout

Consider the initial conditions for the zeroth and first orders
at x50 andz50, respectively:

ce0~0,z!5Cu~z!,ce1~x,0!50,

where u(z) is a unit step in thez direction, andC is a
constant.

To solve Eq. ~9!, we Laplace transform the coupled
equations in 2-D between~x,z! and (sx ,sz) to obtain:

sxCe0~sx ,sz!2C̃e0~x50,sz!52 j kCe1~sx ,sz!,

szCe1~sx ,sz!2C̃e1~sx ,z50!52 j kCe0~sx ,sz!, ~10!

where the second terms on the LHS of Eq.~10! are the 1-D
Laplace transforms of the reading initial conditions at the
input planes. Using the initial conditions from before, we
finally obtain:

Ce0~sx ,sz!5
C

sxsz1k2 ,

Ce1~sx ,sz!52
j kC

sz~sxsz1k2!
. ~11!

The solutions in the spatial domain are found by inverse
Laplace transforming the prior expressions. For instance,
inverse Laplace transforming the first of the equations in
Eq. ~11! with respect tosx , we get

C̃e0~x,sz!5
C

sz
exp~2k2x/sz!,

which can be inverse transformed with respect tosz ~using
a power series expansion! to give:

ce0~x,z!5CJ0~2kAxz!. ~12!

In a similar manner, the second of the expressions in Eq.
~11! can be inverse Laplace transformed to give, after some
algebra:

ce1~x,z!5 jCAz

x
J1~2kAxz!. ~13!

Typical solutions~normalized to the incident reading
wave amplitude! are plotted in Fig. 3 at the respective out-
put planes of the hologram.

2.2 Case 2: Delta Function or Point Source
Readout

For initial conditions

ce0~0,z!5Cd~z2z0!,ce1~x,0!50,

Eq. ~10! yields

Ce1~sx ,sz!52
j kC

~sxsz1k2!
exp~2z0sz!. ~14!

Inverse Laplace transforming with respect tosx gives

Ĉe1~x,sz!52
j kC

sz
exp~2k2x/sz!exp~2z0sz!.

It is interesting to note that the inverse Laplace trans-
form with respect tosz will now give a result similar to Eq.
~12! ~which is the result for the undiffracted order for uni-
form plane wave readout!, except with shifted coordinates:

ce1~x,z!52 j kCJ0$2k@x~z2z0!#1/2%. ~15!

2.3 Case 3: Readout in the Presence of
Propagational Diffraction

Strictly speaking, the analysis in case 2 for a point source
should have included the effect~s! of propagational diffrac-
tion. Using the same reading parameters as before, but now
including propagational diffraction and SVEA, the coupled
PDEs become:

Fig. 2 Typical 90-deg recording geometry leading to gratings at 45
deg. Subsequent readout using a beam in the direction of the refer-
ence beam.

Banerjee et al.: Volume holographic recording . . .
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]ce0 /]x52 j kce11
1

2 jk
]2ce0 /]z2,

]ce1 /]z52 j kce01
1

2 jk
]2ce1 /]x2. ~16!

These represent wave coupling under the paraxial approxi-
mation.

Let us assume initial and/or boundary conditions as

ce0~0,z!5 f 0~z!,ce1~x,0!50;

ce0~x,0!50,ce1~0,z!50;

]ce0~x,z!

]z U
z50

50,
]ce1~x,z!

]x U
x50

50. ~17!

Laplace transforming Eq.~16! with respect tox and z,
using Eq.~17!, and after extensive algebra, we get

Ce0~sx ,sz!5

sz2
sx

2

2 jk

S sx2
sz

2

2 jk D S sz2
sx

2

2 jk D 1k2

F0~sz!

5H0~sx ,sz!F0~sz!,

Ce1~sx ,sz!5
2 j k

S sx2
sz

2

2 jk D S sz2
sx

2

2 jk D 1k2

F0~sz!

5H1~sx ,sz!F0~sz!, ~18!

whereF0(sz) is the Laplace transform off 0(z) with respect
to z. The previous relations can be reworked for arbitrary
initial conditions in Eq.~17!.

For weak propagational diffraction, the second of the
relations in Eq.~18! reduces to:

Ce1~sx ,sz!'
2 j k

S sxsz2
sz

3

2 jk
2

sx
3

2 jk D 1k2

F0~sz!. ~19!

Furthermore, on replacingsx in the cubic term with
2k2/sz ~assuming weak propagational diffraction once
again, so that in the first approximation the pole in thesx

plane is at2k2/sz) and taking the inverse Laplace trans-
form with respect tosx , we get, for the case of a point
source readout:

Ĉe1~x,sz!52
j kC

sz
exp~2k2x/sz!@exp~ j k6x/2ksz

4!

3exp~2 jsz
2x/2k!#exp~2z0sz!. ~20!

Comparing with the solution in Eq.~14!, which was
found neglecting diffraction, namely,

Ĉe1~x,sz!52
j kC

sz
exp~2k2x/sz!exp~2z0sz!,

we find additional terms@indicated by the term in square
brackets in Eq.~20!# due to the presence of propagational
diffraction.

Exact analytical solutions of Eqs.~19! or ~20! cannot be
found; one has to resort to numerical methods to find the
inverse Laplace transform. Numerical methods for inverse
Laplace transforms have been a topic of recent interest for
investigating problems in stochastic modeling and opera-
tions research.8,9 The solutions can be symbolically written
as:

ce~x,z!5
exp~cxx1czz!

4p2 E
2`

` E
2`

`

@RCe~cx1 jkx ,cz1 jkz!

3cos~kxx1kzz!2ICe~cx1 jkx ,cz1 jkz!

3sin~kxx1kzz!#dkxdkz , ~21!

Fig. 3 Typical plots for (a) zero- and (b) first-order diffraction profiles
with uniform plane wave readout; wavelength5633 nm, refractive
index51.6, «250.0005, and crystal dimension L51 cm.

Banerjee et al.: Volume holographic recording . . .
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where R denotes the ‘‘real part of,’’ andI denotes the
‘‘imaginary part of.’’ In Eq. ~21!, one needs to choosecx

.dx , cz.dz , whereCe(sx ,sz) is analytic forRsx.dx ,
Rsz.dz . We plan to pursue this in the future.

3 Analysis of Dynamic Recording and Readout
for 90-Deg Geometry

In this case, the hologram is assumed to be simultaneously
recorded and read out in a two-wave mixing geometry, with
the interacting waves traveling nominally at 90 deg to each
other. The starting point is the Helmholtz equation for the
phasor optical fieldc(x,z):

]2c

]x2 1
]2c

]z2 1k2n2~x,z!c50, ~22!

wheren5n01Dn is the overall refractive index, withDn
representing the induced refractive index, andk now de-
notes the propagation constant in vacuum. Assuming small
modulation, Eq.~22! can be restated as

]2c

]x2 1
]2c

]z2 1k2n0
2~x,z!c12n0k2Dnc50. ~23!

It can be shown that the change in refractive index can
be expressed as

Dn5n2ucu2, ~24!

for the case of a Kerr-type material or a photorefractive
material such as LiNbO3, where the photovoltaic effect
dominates, and we have assumed that the intensity interfer-
ence pattern is smaller than the dark current and/or the
background intensity.10 On the other hand, in the case
where diffusion is the dominant mechanism for charge
transfer in a photorefractive material, the change in the re-
fractive index is proportional to the gradient of the
intensity11 and can be expressed as:

Dn5n21

]ucu2/]x

C1ucu2
1n23

]ucu2/]z

C1ucu2
, ~25!

whereC is a constant that depends on the dark current and
any background illumination on the material. Note also that
the right hand side~RHS! of Eq. ~25! represents an estimate
of the electrostatic field, which is related to the induced
refractive index through the index ellipsoid. In our analysis,
we have assumed thatDn is an effective change in the
refractive index, which depends on thex andz derivatives
of the overall intensity. In the case where the contribution
of the intensity interference pattern is smaller than that of
the dark current and/or the background intensity, i.e.,C
@ucu2, Eq. ~25! can be simplified to yield:

Dn5n21]ucu2/]x1n23]ucu2/]z, ~26!

where we have absorbed an additional constant in then2s.

3.1 Case 1: Wave Coupling in Kerr or Photovoltaic
Materials

Assume the total scalar optical field is expressible in the
form

c5
1

2
ce0~x,z!exp2 jn0kx1

1

2
ce1~x,z!exp2 jn0kz. ~27!

After extensive algebra on using Eq.~24! in Eq. ~23!, and
equating the coefficients of exp2jn0kx, exp2jn0kz sepa-
rately to zero, we get, respectively,

]2ce0

]x2 1
]2ce0

]z2 22 jn0k
]ce0

]x
1

1

2
n0n2k2@ uce0u2

12uce1u2#ce050, ~28!

]2ce1

]x2 1
]2ce1

]z2 22 jn0k
]ce1

]z
1

1

2
n0n2k2@ uce1u2

12uce0u2#ce150. ~29!

Now, similar to the SVEA used in propagation prob-
lems, we can neglect the second derivative with respect tox
as compared to the term involving the first derivative inx in
Eq. ~28!. Strictly speaking, the second term on the LHS of
Eq. ~28! represents the propagational diffraction of the
beam as it propagates alongx; however, we assume that the
initial beam size is large enough so that the Rayleigh range
of the beam is much larger than the interaction length in the
crystal; hence, this diffraction term may be neglected. With
these assumptions, Eq.~28! reduces to:

]ce0

]x
52 j

1

4
n2k@ uce0u212uce1u2#ce0 . ~30!

Similarly, Eq. ~29! reduces to:

]ce1

]z
52 j

1

4
n2k@ uce1u212uce0u2#ce1 . ~31!

Equations~30! and~31! can be solved for the amplitude
and phase of the interacting waves in the following way.
Note that by multiplying Eq.~30! by ce0* we get:

ce0*
]ce0

]x
52 j

1

4
n2k@ uce0u212uce1u2#uce0u2.

Now, taking the complex conjugate of this equation and
adding the two equations, we get

]uce0u2

]x
50,

which implies:

uce0u25 f 0
2~z!, ~32!

where f 0
2(z) is an integration constant and equal to the

initial intensity profile of the fieldce0 . In a similar manner
it can be shown that

uce1u25 f 1
2~x!, ~33!

where f 1
2(x) is the initial intensity profile of the fieldce1 .

To solve for the phases, we assume

Banerjee et al.: Volume holographic recording . . .
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ce0~x,z!5 f 0~z!exp2 j f0~x,z!,

ce1~x,z!5 f 1~x!exp2 j f1~x,z!, ~34!

and substitute in Eqs.~30! and ~31! to obtain the pair of
differential equations

]f0

]x
5

1

4
k0n2@ f 0

2~z!12 f 1
2~x!#, ~35!

]f1

]z
5

1

4
k0n2@2 f 0

2~z!1 f 1
2~z!#. ~36!

Equation~35! suggests that the accumulated phase for
ce0 during travel by a distancex through the interaction
region has a part due to self-phase modulation, which is
dependent on the transverse dimensionz, and a part due to
cross-phase modulation, which is dependent on the longi-
tudinal dimensionx. Similar arguments can be made for the
accumulated phase ofce1 . Accordingly, any change in the
profile of the far-field intensity distribution ofce0 ~which is
proportional to the spatial Fourier transform with respect to
z of the exit profile at the end of the interaction region! is
expected to be only due to the initial beam profile ofce0

itself, and is not affected by the initial beam profile ofce1 ,
since the latter is a function ofx. A similar argument can be
advanced for the far-field intensity distribution ofce1 after
passage through the interaction region.

3.2 Case 2: Wave Coupling in Diffusion-Dominated
Materials

In this case, the coupled equations can be shown to be of
the form

]ce0

]x
52guce1u2ce0 , ~37!

]ce1

]z
5guce0u2ce1 , ~38!

whereg is a beam coupling coefficient, related to then2s in
Eq. ~26!. We can assumece0 ,ce1 to be real, and rewrite the
previous set of coupled equations in terms of the intensities
I 0 ,I 1 in the form

]I 0

]x
52gI 0I 152

]I 1

]z
. ~39!

The solution of this set of equations, subject to the initial
conditionsI 0 (x50,z), I 1 (x,z50) is involved, and will be
pursued in the future.

4 Preliminary Experimental Results

We have made experiments with edge-lit holographic re-
cording in a 1-cm3 crystal of Fe-doped LiNbO3, using a
He-Ne laser~wavelength 632 nm!. Two unexpanded near-
Gaussian beams from a low-power~15 mW! He-Ne laser
are made to intersect in the crystal at 90 deg, as shown in
Fig. 4. All laser beams are polarized out of the plane of the

paper, to avoid large nonlinear holographic scattering. The
C axis of the crystal is in the plane of the paper and along
the direction of propagation of one of the beams~see Fig.
4!. Transverse intensity profiles of the two intersecting
beams are measured by a beam profiler. The goal of this
experiment is to check qualitatively the theoretical predic-
tions about spatial redistributions of beam intensity after
diffraction by holographic gratings, recorded in a 90-deg
geometry.

Figure 5~a! shows the intensity profile for one of the
input beams. This distribution is close to a Gaussian distri-
bution, as expected. In Fig. 5~b! we demonstrate the inten-
sity profile of one of the transmitted beams~traveling along
the C axis! after grating recording. Figure 5~c! shows in-
tensity of the other beam profile~that is normal to theC
axis!, after grating recording. We can see substantial spatial
modulation, induced by the recorded holographic grating.
This leads us to believe that contribution from diffusion
leading to energy exchange in LiNbO3 may not be negli-
gible, since the photovoltaic contribution by itself~as mod-
eled! should not cause beam profile distortion, as predicted
from our previous theoretical model. Furthermore, large
modulation effects can also affect the dependence of the
refractive index on the intensity profile, as predicted by
Kukhtarev et al.11 The observed random distortions in the
experimental results~see Fig. 5! can be better analyzed
only if we introduce noise terms into the interaction equa-
tions. At this preliminary stage of investigation, these terms
were omitted, and they will be considered in the future.

5 Discussions

We investigate some aspects of holographic recording and
reconstruction for edge-lit holograms. Beam shaping in the
case of plane wave readout from a previously recorded pla-
nar hologram is predicted. It is also shown that in a simul-
taneous recording-readout configuration, Kerr-type materi-
als ~or photorefractive materials with predominantly
photovoltaic effect! should not alter the transverse shape of
the beam profiles. However, there is a strong possibility
that beam shape distortion will occur in a diffusion-
dominated photorefractive material. This is also observed
in our experimental results of volume holographic record-
ing and reconstruction using a Fe-doped LiNbO3 crystal,

Fig. 4 Schematic experimental setup using Fe:LiNbO3 for simulta-
neous recording and reconstruction of a hologram at 90-deg geom-
etry. Polarization of both beams are perpendicular to the paper and
the C axis.
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suggesting that diffusion effects may not be negligible.
Cases of recording and readout that incorporate propaga-
tional diffraction have been modeled, and will be solved
using a 2-D Laplace transform approach in the near future.
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