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Self-enhancement of dynamic gratings in photogalvanic crystals

N. V. Kukhtarev, S. F. Lyuksyutov,* P. Buchhave,† and T. Kukhtareva
Physics Department, Alabama A&M University, Normal, Alabama 35762

K. Sayano
Accuwave, 1651 19 Street, Santa Monica, California 90404

P. P. Banerjee
Department of ECE, University of Alabama in Huntsville, Huntsville, Alabama 35899

~Received 1 October 1997!

We have developed a compact closed-form solution of the band transport model for high-contrast gratings in
photogalvanic crystals. Our solution predicts the effect of the photoconductivity and the electric field grating
enhancement due to the photogalvanic effect. We predict a pronounced dependence of the steady-state photo-
galvanic current on the contrast of the interference pattern and an increase of holographic storage time due to
the enhancement of the photoconductivity grating contrast. In the high contrast limit and a large photo-
galvanic effect the refractive index grating will be shifted from the position of the intensity modulation pattern,
contrary to the usually adopted model of unshifted gratings.@S1050-2947~98!03610-5#

PACS number~s!: 42.65.Hw, 42.70.Nq

I. INTRODUCTION

The popular photorefractive model@1# known as the band
transport model for recording of dynamic holographic grat-
ings was originally solved for a small contrast of the inter-
ference light pattern. The small contrast approximation was
very successful in description and prediction of many inter-
esting effects such as energy transfer@2#, anisotropic diffrac-
tion @3#, phase conjugation, and holographic storage. How-
ever, a growing number of new experiments with high
contrast interference patterns reveal the necessity for further
development of the model for photorefractivity in order to
describe high contrast effects. Several attempts have been
made to expand the theory to high modulation using both
analytical@4# and numerical approaches@5#. In this paper we
expand our new compact analytical solution@8,12# to encom-
pass the problem of high contrast gratingsincluding the pho-
togalvanic current@13#.

Our solution addresses the problems of holographic cur-
rent @6# and of photoconductivity modified by dynamic grat-
ings @7#, where the current is very sensitive to the degree of
modulation of the photoconductivity grating. Photogalvanic
current can give a major contribution to the grating recording
in Fe-doped LiNbO3 crystals@9# and is also pronounced in
such materials as BaTiO3 and KNbO3 @10#. Photogalvanic
effects were also measured in the cubic sillenite crystals
Bi12XO20 ~X5Si, Ge,Ti! @11# by using an original modula-
tion technique, which involves the detection of the alternat-
ing photogalvanic current with the change of polarization of
incident light. In the first commercial applications of holo-

graphic storage for optical filters based on LiNbO3:Fe, pho-
togalvanic current was proven to be a major player in the
grating recording with high contrast@14#.

II. THEORETICAL MODEL

We shall start from the standard monopolar photorefrac-
tive model @1,3# with the equations for concentrations of
photocarriersn, ionizedN1, and neutralN donors, and com-
pensating centersNA :

ṅ5Ṅ12
¹ j

e
, ~1!

Ṅ5g~N2N1!2rnN1. ~2!

Here g is the generation rateg5b1sI, b is the thermal
generation rate,s is the photon capture cross section, andI
5I 0(11m cosKx) is the intensity pattern with contrastm.
The expression for electric density currentj,

j 5emnE2eD¹n1pI, ~3!

includes the usual conductivity (;emn), diffusion
(;eD¹n), and photogalvanic current, represented for sim-
plicity by the main term as for LiNbO3 along theC axis
(;pI), with p being the effective Glass coefficient@13#. For
determination of electrostatic fieldE we use the Poisson’s
equation

¹~«E!5e~n1NA2N1!. ~4!

Combining equations~1!–~4! we can get the expression for
the total current densityJ:

J5 j 1
]

]t
~«E!, ~5!
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which is connected with external voltageV by Kirchhoff’s
law:

JRS1dE05V, ~6!

whereR is the external resistance,S is the area of contact,d
is the distance between the contacts, andE05^E& is the spa-
tially averaged external electric field. These basic equations
~1!–~6! describe the formation of the photoinduced grating
of the electric fieldE, the concentration of photoinduced car-
riers n ~or the grating of photoconductivitys5enm!, and
also the ionized impurity gratingN1.

For the steady state assumingNA@n, the system of equa-
tions ~1!–~6! will be simplified to

N15g~N2NA!/~nr !,

E5
D

m
¹ ln n1

J

emn
2

pI

emn
, ~7!

¹~«E!5e~NA2N1!.

Seeking the solution of the system~7! for n(x) in the form
n5n0@11a cos(Kx1w)# with free parametersn0 , a, w in
the one-dimensional case, we obtain

J5s0A12a2~E02Epv!

with

Epv52
pI0

s0
S m̄c

a
1

12mc /a

A12a2 D . ~8!

Heres05emn0 andmc5m cosw. The justification for this
form of solution is discussed in details in@12#. For short
circuit conditions whenJRS!dE0 ,

E05V/d. ~9!

The average field is constant and the conductivity grating
influences the total electric current densityJ. We can see@8#
that both the field gratingE and the ion gratingN1 can be
explicitly defined as functions of the carrier gratingn. This
means that the solution is dependent only on the parameters
n0 , a, w in the carrier distribution. These parameters we shall
find from Poisson’s equation, which after substitution ofE
andN1 as a function ofn takes the form

l~ ln n!91 j̄S 1

11a cos~u1w! D 8
1FS 11m cosu

11a cos~u1w! D
512

G0

n0
S 11m̄ cosu

11a cos~u1w! D , ~10!

wherel5«DK2/emNA5ED /EQ , ED5KD/m is the diffu-
sion field,EQ5eNA /«0«K is the limiting space charge field,
j̄5«KJ/e2mNAn0 and F5p«KI 0 /e2mn0NA5Epv

0 /EQ , m̄
[m/(11sd /sp) and sd /sp5b/sI0 is the ratio between
dark and photoconductivities. We use the transformationu
5Kx for the spatial variable and use the symbol ( )8 for the
derivative with respect tou. Finally, Epv

0 5pI0 /s0 . After av-

eraging Eq.~10! ~charge neutrality conditions!, and equating
coefficients to the cos(u1w) and sin(u1w) terms, we have
three equations:

n0

G0
5

mc

a
1

a2mc

aA12a2
,

l2
Fms

a
5

G0~mc2a!

n0aA12a2
, ~11!

j̄

A12a2
1

F~a2mc!

aA12a2
52

G0mc

n0a
,

where G05(b1sI0)(N2NA)/gRNA , m̄c5m̄ cosw. The
system of equations~11! can be solved for two limiting cases
of practical importance: for small and large photogalvanic
field.

Let us start with small photogalvanic field. For a small
photogalvanic field,Epv

0 !ED EQ we can obtain the follow-
ing solution from the system of equations~11!:

n05
G0~11M2d2!

~11l!@12dA11M2~d221!#
,

~12!

a5
M

~11M2d2!
$12dA11M2~d221!%,

where j5E0 /EQ , d5l/(11l), M5m̄(11l)/
Aj21(11l)2, and tanw52j /(11l). This solution is simi-
lar to that derived by us in@12# and shows that even the
averaged concentration of photocarriersn0 depends on con-
trast, grating period, and external fieldE0 . For the electric
field we have the expression

E52ED

a sin~u1w!

11a cos~u1w!
1

A12a2~E02Epv!

11a cos~u1w!

1
Epv~11m cosu!

11a cos~u1w!
, ~13!

where the two first terms correspond to diffusion and drift
contribution and the third term is related to the photogalvanic
current. It can be seen from Eq.~13! that the photogalvanic
term will generate spatial harmonics of the electric field with
a phase shift between harmonics dependent on the initial
phase shiftw and the fundamental harmonics ofn(x) and
E(x). This means that due to the dependence ofw on E0 and
grating period~12! the phase shift between spatial harmonics
of the electric field grating can be adjusted with the value of
E0 and the period of the interference pattern.

For the case of large photogalvanic fieldEpv
0 @ED ,E0 we

get from Eq.~11! the solution forn0 , w, anda by neglecting
the dark photoconductivity:
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n05
G0mA11F2

a
,

~14!

a5
mA11F2

11F21m2F4 $11F2A12m2~12F2!%,

where F5tanw5Epv
0 /EQ5pI0 /emG0EQ . In this limit the

average concentrationn0 and the maximal value of conduc-
tivity grating modulationa grow with photogalvanic field
Epv . The dependence of the conductivity grating contrasta
on the interference pattern modulationm calculated from Eq.
~14! is shown in Fig. 2 for three different values ofF. It is
interesting to note that in this limit of large photogalvanic
field the contrast of the conductivity gratinga can exceed the
modulation of the interference pattern: from Eq.~14! it fol-
lows that forF@1, m21 we obtain

a5120.5~mF!22. ~15!

This contrast enhancement effect for the photogalvanic cur-
rent will be pronounced in this limiting case. From the ex-
pressions~8!, ~15! we obtain for the current

J5s0EQSm21, ~16!

whereS is the area of the electrodes. This relation still holds
also for small contrast~provided thatEpv

0 is large enough
Epv

0 @EQm21!. From Eq. ~16! we can see that the current

will be smaller than in a homogeneously illuminated crystal
~with the same intensity! with a pronounced dependence on
the contrastm.

This effect of contrast enhancement for the photogalvanic
current may have an important practical application for ho-
lographic storage due to the dependence of storage time on
photoconductivity. It is quite unusual to have contrast en-
hancement. We can compare it with the previous limiting
case of small photogalvanic field, whena<m is always the
case due to the charge screening by diffusion and drift. The
influence of the photoconductivity contrast on the holo-
graphic storage time may be explained by taking into ac-
count the fact that the storage timet depends on the ionic
conductivity @12#: t}s21. When the ionic conductivity is
spatially modulated with contrastm, then the storage time
also will be spatially modulated within the rangets0<ts
<ts0 /(12mi) where ts0 is the small-contrast~averaged!
value of the storage time.

From the general solution for the photoinduced electric
field ~13! we can obtain the solution for the fundamental
harmonic E15E1c cosu1E1s sinu that determines beam
coupling~self-diffraction! and diffraction efficiency: For the
componentsE1c andE1s we can write

E1c5TH a~F2j!2F~Fms2la!1
F~mc2a!

A12a2 J ,

~17!

E1c5TH aF~F2j!1~Fms2la!1
F2~a2mc!

A12a2 J
where T5EQ(12A12a2)/(a2A11F2). For large enough
photogalvanic field,Epv

0 @EQm21, ED , we get from Eq.
~17!:

E1C>2Epv ,
~18!

E1s'mFEpv
0 'm~Epv

0 !2EQ
21.

In this limit of high photogalvanic effect, the shifted compo-
nent of theE field (Eis) responsible for the energy exchange
will be proportional to the grating vectorK. This means that
small period gratings may be effectively recorded without
being limited by the space-charge screening as in the case of
the diffusion dominated mechanism of recording. We also
want to underline that with increasing grating vector, the
refractive index grating, will be shifted from the position of
intensity modulation, contrary to the accepted model@1,2#
based on the small contrast approximation. This shift will
lead to energy exchange between writing beams and an ab-
sence of ‘‘phase exchange’’ that introduces instability in the
recording process.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

To compare our compact solution for Eq.~14! with ex-
periment, we performed a set of experiments to estimate the
photogalvanic current in KNbO3. The dimensions of the
crystal were 53536 mm. To obtain uniform illumination of
the face crystal surface an Ar-ion laser beam polarized in the
plane of incidence at a wavelength of 488 nm passed through
a telescopic system consisting of two lenses~3 and 30 cm,

FIG. 1. ~a! Configuration for current measurements in photore-
fractive KNbO3. ~b! Typical trace of the discharge of capacitor after
10 min of illumination with light of intensity 30 mW/cm2.
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respectively! and a pin hole at 15 mm placed between them.
This configuration ensured a fairly uniform intensity distri-
bution ~plane wave! of output light beam. The beam was
divided on a beam splitter on two separate coherent beams to
create interference pattern of desired spacing through con-
ventional two-wave-mixing configuration. Those plane-wave
beams were incident on a sample of KNbO3. The C axis of
the sample was along the wave vectorK of the grating. The
interference pattern had a spacing 24mm. This configuration
guaranteed the maximum photogalvanic current along theC
axis. The sample was placed between two electrodes con-
nected to capacitorC of 10 nF. A sketch of the experiment is
given in Fig. 1~a!. The photogalvanic current flows along the
C axis and charges the capacitor. After a fixed period of time
T0 ~in our case usually 10–30 min! the capacitor discharges
through a resistance of 1 MV, and the discharge trace is
captured with a digital oscilloscope. The measuring proce-
dure is similar to that performed in@15#. A typical discharge
trace is shown in Fig. 1~b!. The photogalvanic current is
evaluated as:J5CUmax/T0, whereUmax is the peak value of
the discharge voltage. This simple configuration allows one
to measure the photogalvanic current with a high degree of
accuracy.

We studied the dependence of the currentJ on the modu-
lation of the interference patternm52AI 1I 2/(I 11I 2), where
I 1 andI 2 are intensities of the beams. As predicted by theory
we found a pronounced dependence of the current onm. This
also gives information about the contrast of the grating re-
corded in the samplea and the relation betweena andm. As
shown in @12# the current must have its maximum value
when there is no modulation of the light incident on the
sample, i.e., when the contrasta equals zero. A modulation
of the light results in a modulation of the free carrier distri-
bution leading to a decrease of the net photoconductivity and
of the current. To erase the interference pattern we used a
phase modulation technique@16#. A phase modulation is ap-
plied to one of the beams with a piezoelectric mirror driven
by a sinusoidal voltage. By this means the interference pat-
tern ~and photorefractive grating in the sample! can be selec-
tively switched on and off without changing the total inten-
sity of the light. Thus by measuring the current with and
without modulation of the incident light we obtain the ratio
J/Jmax5A12a2, which gives the value of the contrast of the
grating. Performing this procedure for different values ofm
we get an experimental relation betweena and m. The ex-
perimental dependence is shown in Fig. 2~filled circles!. To
compare experiment and theory we use formula~14! with a
fitting parameterF. The result of the calculations is also
shown in Fig. 2 for three different values of the parameterF.

Our experimental results allow us to estimate the strength
of the photogalvanic field in the KNbO3:Fe. The material
parameters for this KNbO3 are as follows. The donor con-
centration isND51025 m23, the absorption coefficient isa
51 cm21 and «33550. Those values are taken from@17#.
The acceptor concentration for this particular sample isNA
51.931020 m23. We evaluate the photogalvanic field using
the relation betweenEpv

0 and the limiting field EQ : F
5Epv

0 /EQ . To evaluate this field we need only the values of
acceptor concentration and dielectric constant specific for
our sample and also the value of spacing for grating re-
corded. To fit our experimental points we used formula~14!

with different values of parameterF. The best coincidence
occurs atF50.96. Therefore we can obtain forEpv

0 : Epv
0

50.96eNAL/(2p««0)52.48 kV/cm. This value is very
close to that given in@17#.

We have used our compact, analytical method@12# to
solve the problem of the description of high contrast gratings
in photorefractive, photogalvanic crystals like LiNbO3:Fe
and KNbO3. The photogalvanic mechanism of recording
dominates in the realization of the first commercially avail-
able holographic in LiNbO3 with thermal fixing. Our calcu-
lations reveal, unexpectedly, an interesting effect of contrast
enhancement: the contrast of the photoconductivity grating
can be larger than the contrast of the initial interference pat-
tern. Our experimental results show that this effect is very
pronounced for values ofm between 0.5 and 0.8. At first
glance it looks very unusual: we should remind the reader
that drift and diffusion currents result in conductivity grat-
ings with diminished contrast. However, we must take into
account that the photogalvanic current by virtue of it being a
local effect with a current proportional to the light intensity
does not depend on the gradients of the electric potential and
concentration like drift and diffusion currents do. This essen-
tial difference between the currents explains the effect of
contrast enhancement in the photogalvanic crystals.

The fundamental spatial harmonic of the electric field
~and of the refractive index grating! for a large photogalvanic
field also has some new features such as an absence of space
charge screening for small periods and a contrast-dependent
phase shift. Contrary to the accepted model, the index grat-
ing will be shifted away from the position of light intensity
when the contrast is large. In this case there will be no phase
exchange introducing instability in the recording process.

We have also programmed the reduced system of equa-
tions ~1!–~4! and for j 50 assuming predominantly photo-
voltaic contribution to the photorefractive effect. This was
done using MATLAB to solve the resulting first-order non-
linear differential equation for the electrostatic field. The re-
sults ~not plotted here! show the phase difference between

FIG. 2. The dependence of grating contrasta on modulation of
interference patternm. Curves 1–3 calculated by using formula~14!
for the case of large photogalvanic field. Filled circles: experiment.
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the intensity profile, electrostatic field, and the electron den-
sity, in agreement with analytical results above. Furthermore,
our computations preserve all spatial harmonics for the elec-
trostatic field and the electron density.

To observe contrast enhancement, the most direct method
is to measure the photogalvanic current for a small contrast
of the interference pattern. Provided the photogalvanic effect
is large enough, we observe a pronounced dependence of the
current on the interference pattern contrastm ~even for small
values ofm!. The experimental dependence ofa as a func-
tion of m clearly shows the enhancement ofa with respect to
m for m between 0 and 0.4.

Contrast enhancement may have practical applications
such as increasing the holographic storage time in Fe-doped
crystals of LiNbO3 and allowing recording of short-period
gratings without space-charge screening.
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9700255. Nickolai Kukhtarev wishes to acknowledge the
support from The Technical University of Denmark and
from the NSF under Grant No. HRD-9353548. Tatiana
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