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Interaction of profiled light with contrapropagating
acoustic waves: a Fourier transform approach

Partha P. Banerjee
Chen-Wen Tarn
Jaw-Jueh Liu
University of Alabama in Huntsville
Department of Electrical and Computer

Engineering
Optical Information Processing Laboratory
Optics Building
Huntsville, Alabama 35899

1 Introduction
Inprevious 2 wehave used a Fourier-transform
technique in conjunction with multiple plane wave scattering
theory3'4 to describe the acousto-optic (AO) interaction of
light beams having arbitrary amplitude and phase profiles
with cw and pulsed ultrasound, in terms of transfer functions
relating the spatio-temporal spectra of the scattered light to
the spatial spectrum of the input light profile. The Fourier-
transform technique we have used is similar to the method
employed for solving the paraxial wave equation.5 The transfer
functions derived clearly bring out the effects of AO inter-
action and propagational diffraction, and show how the in-
teraction coefficients may be modified because of the latter
effect. Our results for the interaction between profiled light
and cw sound compare favorably with the analysis of Chat-
terjee et al.6 (which does not take propagational diffraction
into account) and can be readily derived from Korpel's
analysis,7 which employs the concept ofthe so-called virtual
angular plane wave spectrum. The concept of the transfer
function has also been used in connection with the analysis
of apodized AO Bragg cells.8 The rigorous comparison be-
tween different analytic methods used by various groups of
researchers in the area, and details of the derivation of our
analytical approach (as in Refs. 1 and 2), and that of Korpel7
will be presented elsewhere.9 The transfer function approach
has also been successfully used to assess the effect of various
sources of noise in AO devices and, on a related note, in
the performance of photorefractive volume holograms .

In this paper, we use the same Fourier transform tech-
nique to analyze the problem of an incident light beam
undergoing Bragg scattering by contrapropagating acoustic
waves in an AO medium. A special case of this is a standing
wave AO modulator, which is used quite often in the active
mode-locking of lasers, and in intensity modulation of laser
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Abstract. A straightforward Fourier-transform approach is employed to
investigate acousto-optic interaction between an input optical beam with
arbitrary profile and contrapropagating cw sound in the Bragg regime.
The process can be analyzed in terms of the simultaneous scattering of
light by the two sound waves in the interaction region. Analytic expres-
sions for the equivalent transfer functions are obtained and the scattered
light profiles are plotted.

Subject terms: acousto-optics; contrapropagating acoustic waves; Gaussian beams;
transfer functions.
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beams .
' 2 The standing wave can be considered to be a

superposition of equal amplitude acoustic waves propagat-
ing in opposite directions. To give readers some physical
insight into the problem, the heuristic photon-photon col-
lision model of AO interaction leading to conservation laws
of momentum and energy is first presented in Sec . 2 . We
consider the so-called multiple scattering model and show
how even in the case of Bragg diffraction, one can get
different up- or down-shifted frequencies oflight in the same
scattered direction. Subsequently, for a more precise for-
mulation, a set of coupled differential equations are derived
from the wave equation to describe the corresponding in-
teraction between the scattered orders at different frequen-
cies.

In Sec . 3 , we use the Fourier-transform technique to
express the coupled equations in the spatial frequency do-
main. Two different sets of analytic solutions are then pre-
sented in terms of transfer functions which relate the output
spectra of the scattered orders to the input light spectrum.
The first set corresponds to the case where the amplitudes
of the contrapropagating sound waves in the AO interaction
region are equal and give rise to a standing acoustic wave
pattern. Our results, which compare favorably with those
in Haus," are expressible in terms of Bessel functions of
different orders. The order of the Bessel function is com-
mensurate with the amount of frequency shift of the output
scattered light. This approach takes into account the multiple
scattering of the different frequency components, and es-
sentially serves as a check ofour formulation ofthe problem.
In the second case, we restrict ourselves to two scatterings
only, realizing that the contributions from higher order scat-
tering may be neglected under appropriate assumptions for
the sound field amplitudes. In this case, we use the derived
transfer functions to compute the output profiles of the light
emanating in different directions . The composite profiles
depend not only on the amplitudes of the contradirected
sound, but are also functions of time. These results are
shown in Sec. 4. Our conclusions are presented in Sec. 5.

OPTICAL ENGINEERING / October 1992 / Vol. 31 No. 10 / 2095

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/07/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



BANERJEE, TARN, and LIU

We now write

z, t) = ½EOC[A exp( —jKx) +B exp(jKx)I

Xexp(jt)+c.c. , (2)

where c.c. denotes the complex conjugate. A and B denote
the amplitudes of the contrapropagating components of the
sound in the AO interaction region. C is an interaction
constant and K is the propagation constant for the sound.
Also, following our heuristic development, we write

E1(x, z, t) = z) exp(fioot)

Xexp(—jkoz cos4B)+c.c. , (3)

Fig. 1 Interaction between light and contradirected sound in the
Bragg regime.

2 Heuristic Bragg Regime Analysis and
General Formalism

As a heuristic background, we first use the momentum and
energy conservation laws7 to determine the direction and
frequency of each component of the scattered light inter-
acting with the contradirected sound in the Bragg regime.
The overall acoustic signal responsible for the scattering can
be considered in general as a superposition of two acoustic
waves with same frequency but different amplitudes prop-
agating in opposite directions, as shown in Fig. 1 . The
acoustic wave A propagating along the + x direction dif-
fracts the light, nominally incident at the Bragg angle + 4B,
and at frequency (Os, into the —1 order, which has a fre-
quency (00 —fl and travels at an angle — B, where 1 is
the sound frequency. All angles mentioned in this paper are
with respect to the z axis. Similarly, the sound wave B,
propagating along —x, generates the + 1-order light, which
has a frequency oo + fl and propagates along the same di-
rection as the — 1 order. Furthermore, in the case of strong
interaction, the acoustic wave B rescatters the diffracted
light (t.oo — fl) into the —2 order, which has a frequency
(00 —2f1 and propagates along the same direction as the
incident, or 0-order light.

Note that subsequent multiple scatterings will generate
two groups of scauered light. The first group comprises the
frequencies oo 2nfl, where n is an integer, and propagates
at an angle + B. The second group comprises light at
frequencies coo (2n + 1)11, and propagates at an angle —B.
Thus, every direction, B, has different frequency com-
ponents of the scattered light field, leading to intensity mod-
ulation of the light in time, which can be observed at all
distances to the right of the AO cell that are smaller than
the coherence length of the output light, typically of the
order of ccllO m.

To quantitatively predict the spatial profile of the inten-
sity modulated light, we start from the wave equation for a
TE optical field in a medium with constant permeability tO
and whose permittivity E(x, z, t) =o+ e '(x, z, t) is a slowly
varying function of x, z, and t:

2 a2E(x, z, t) , 82E(x, z, t)V E(x, z, t) — jioEo 2 (x, z, t)
0t2

E(x, z, t)= ½E[kJJ2fl(x, z) exp(j(wo + 2n11)t)

x exp( —jkoz cos4o —jkjx sino)

+ 4'2n + 1Cr, z) exp[j(oo + (2n + 1)fl)tI

X exp(—jkoz cos4i —jkox sin i)+ cc.
(4)

where is the optical field incident on the sound column.
Furthermore, from our previous discussion, it is clear that

=4B, —1= —4B, where sin4B =K/2k0 and k0 is the
propagation constant for the light.

Substituting (2) and (4) into (1), assuming fl << wo, and
collecting terms with same carrier frequency, we have, after
considerable algebra,

L! 0241 4'2n
2jk

OkJJ2n2 + Y — 2jko sin41B— — cos(f)B—x Oz Ox

and

02412n +1 024'2n + 1 . 8412n +1+ 2 +2]kosin41Bz Ox

OkJJ2n +1—2jko cos41B
Oz

+½kCB412+½kCA*412+2=0. (6)

Using these coupled equations, we can describe the inter-
action of a light profile with contrapropagating sound more
precisely. Equation (5) describes the evolution of all com-
ponents of scattered light traveling nominally at + 41B for
an input profile nominally incident at + B . Similarly, Eq.
(6) describes all components traveling nominally at —41B.
The physical interpretation is as follows: The evolution of,
say, the 0-order light in z depends on (1) the interaction
between — 1 order with the acoustic wave A (the fifth term
on the LHS of Eq. (5), (2) the interaction between the + 1
order with the acoustic wave B* (the sixth term on the LHS),
(3) the effect of propagational diffraction (the first term on
the LHS). The third term on the LHS of Eq. (5) is merely
the effect of the 0-order light traveling in a direction slightly
different from its nominal direction + 41B . Reasons for this

(1) departure from the heuristic model may be found in Refs.

2096 / OPTICAL ENGINEERING / October 1 992 / Vol. 31 No. 10

A(f�) B(1)

N

z=O z=L

+ ½kCA412 i + ½kCB*41 i = 0 (5)
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CONTRAPROPAGATING ACOUSTIC WAVES

1 and 6. A similar physical interpretation can be advanced
for all other frequency components that nominally travel at
+ 4B , as well as for those components that nominally travel
at B, using Eq. (6). Note that by settingB=O orA=O,
we can reduce Eqs. (5) and (6) to forms that are identical
to those found in Ref. 1 . In this case, however, the light
exiting at B contains only one frequency.

3 The Fourier Transform Approach and the
Spatial Transfer Function

We now employ a Fourier transform technique to express
the interaction described by Eqs. (5) and (6) in the spatial
frequency domain. To this end, we define the Fourier trans-
form pair:

z)=F[(x, z)J=J z) exp(jkx) th

z)=F1[I'(k, I'(kx, z)

Xexp(—jkx) dk

where k is the spatial frequency variable corresponding to
x. The method used is identical to the technique for solving
the paraxial wave equation to derive the transfer function
of propagation and, hence, the Fresnel diffraction formula
during free-space propagation of a light beam in the presence
of diffraction.5

The coupled differential equations in the spatial fre-
quency domain are

d'I'2(k, z) k+2kok sin4B,(k
z)=

2ko cosBdz

and

kOCA
—j 1It2_i(k, z)

4 cos4B

kOCB*
—i 1'2n+l(k, z)4 cos4

dhIt2+i(k, z) .k—2kok sinB4, (k z)=3dz 2/co cos4B

k0CB
34 'I'2(k, z)

cos4B

/COCA*
—j 4r2+2(k, z)4 cosB

where we have assumed ' 'slow' ' variation of iJi,, (and hence
It) with respect to z, enabling us to neglect second deny-
atiyes with respect to z.

There is no analytic solution for these coupled equations,
unless some assumptions are made. In this paper, we solve
(9) and (10) for two illustrative cases, mentioned below.
For each case, we can derive the spatial transfer functions

OPTICAL ENGINEERING / October 1 992 / Vol. 31 No. 10/ 2097

(7)

(8)

that relate the output spectra of the scattered orders to the
input spectrum of arbitrary beam profile. It is convenient to
track these relationships along z' and z", which are the
nominal directions of propagation, at angles B , with
respect to z. The directions orthogonal to z' and z" are x'
and x", respectively, and k' and kr" denote the corresponding
spatial frequencies. Details of the coordinate transformation
and its effect on the derivation of the transfer functions may
be excavated from Ref. 1 . This helps us derive the inter-
action transfer functions H2(k' ; z"/L) and H2 + i(k"; z"/L)
in the presence of propagational diffraction and, hence, the
scattered light profiles at different frequencies using the
relations

2n(X', z'/L)=1 I z'/L)H2(K';z'/L)2iri—

Xexp(—jk'x') dk' , (11)

2n+ i(X", z"/L)= I z"/L)H2+ i2ir.' —

x (ks"; z"/L) exp( —jk"x") dk" , (12)

where

xl = x cosB Z sinB , Z X 5inB + Z cosB , (13)

xl'=x cosB + Z sinB , z"= —x sin4B + z cosB . (14)

Note that in Eqs. (11) and (12), the integrands without the
exponential terms are respectively equal to I'2(k'; z'/L)
and I2n +i(k"; z"/L), which are the Fourier transforms of
the scattered light profiles 14i2n and J2n +1.

Case 1: A=B

By assuming A =B = a real constant, we can solve (9) and
(10) to express %n, '1 in terms of 'Pjn, and hence
derive the transfer functions H2(k' ; z') and H2 +i(k"; z"),
after straightforward but tedious algebra, as

H2(k'; ')=(—j)2 exp[j(k'z'/2Ko—4Bk'z')]

I koCAz' Isin(4BkX'z')xJ2n I , , (15)
2cosBL 4Bkx'Z

H2 i(k"; z") = ( .j)2fl+ 1 exp[j(k"z"/2Ko + 4Bkx"Z)]

I køCAz" FsinBkx"z"
xJ2n+1'i I ,,

(2cos4BL 4Bkx"Z

(16)

The calculations involved in the derivation of the transfer
functions are somewhat similar to those encountered in the
derivation of the transfer function for the case of light scat-
tering in the Raman-Nath regime for unidirectional propa-
gating sound, as shown in Ref. 13 . The first part of each
exponential in (15) and (16) represents the effects of prop-

(9)

(10)
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agational diffraction, with the second part denoting a small
spatial shift in the far field, similar to earlier observations
in Refs. 1 and 6. The transfer functions have been expressed
with z' and z" as parameters, instead of z'/L and z"/L to
enable easier comparison with Haus . For plane wave in-
cidence (for the light), Ji11 =1 , implying = (k), and
42n and 412n + 1 become (—j)2'J2(koCAz'I2 cos4B) and
( _j)2fl+ 'J2+ i(koCAz"12 cos4B), in agreement with the re-
sults in Ref. 1 1 . The above example thus serves as a check
of our mathematical formulation thus far.

Case 2: A B
In case 1 , note that at the exit of the sound cell (z' z"
L), the argument of the Bessel functions is equal to the peak
phase delay a =k0CALI2 (B small) encountered by the light
during its passage through the sound cell. Accordingly, for
reasonably small a( 'rr/2) , the contributions from scattered
light for nt 3 are negligibly small when compared to that
resulting from lower values of n . Thus, in this case, we
restrict ourselves to the scattered orders Jii , 'i i , and
kJfl — 2 . We remind readers that 4io and j 2 propagate at an
angle + 4B for light incident at the same angle, while jii
and Ji _ i propagate nominally at —B . We can now write
the evolution equations for these components in the spatial
frequency domain using (9) and (10). Note that, for instance,
the evolution of the 0 order depends on the 1 orders,
while that for — 2 and + 1 depends on the — 1 and 0 orders,
respectively. The contributions to the — 1 order come from
the 0 and —2 orders. However, realizing that the —2 order
should be much smaller than any of the other orders , we
may neglect the contribution from the —2 order toward the
evolution of the — 1 order. This assumption turns out to be
a valid one, as is realized from examining the derived trans-
fer function H—2. Furthermore, the assumption helps us
write the interaction transfer functions elegantly in closed
form and in a manner reminiscent of the transfer functions
derived in Ref. [1] for Bragg scattering of light by unidi-
rectional cw sound. After straightforward but lengthy al-
gebra, these transfer functions may be written as

Ho(k', z'/L) =exp[j(k'LI2ko —k'QA/4rr)z'/L]

x {cos1(k'QA/4'rr)2 + (ai/2)2 + (a2/2)2]"z'IL

k'QAI4
+J[(kQAI4)2 + (aiI2)2 + (a212)21½

x sin(k'QA/41T)2 + (aiI2)2 + (a2/2)2]"z'IL}

H_1(k", z"/L) = —j exp[j(k'LI2ko+ k"QAI4ir)z"/LI

f (ai/2) exp
1Rk"QA/4r)2 + (a1/2)2 +

. k'QAI4i
+J[(kQAI4)2 + (aiI2)2 + (a212)21½

x sin[(k'QA/4)2 + (aiI2)2 + (a212)21½z7L 1 }

(20)

where x' , z' and x", z" are defined in (13) and (14).
The quantities ii( = koCjALI2) and a2( =k0CIBIL/2) de-

note the peak phase delays encountered by the light during
its passage through the sound waves A and B, respectively,
and argA , argB denote the phases of A and B , respectively.
Also, A is the wavelength of sound in the interaction region
and Q =K2L/k is the Klein-Cook parameter. This time we
express the transfer functions in terms of z'/L and z"IL for
purposes of comparison with Ref. 1.

From the transfer functions (1 5) derived from the Fourier-
transform technique as above, we find out that the output
profile of each scattered light beam depends not only on the
forward-traveling sound wave A(ai), but also the backward-
traveling wave B(a2). It can be readily seen that IH_21 <
<IHol if a2 < al We also can observe the effects of prop-
agational diffraction and spatial shifting as seen in the case
of unidirectional cw sound. Also, by letting a2 =0 (cw
unidirectional sound), the transfer functions Ho and H —
become identical to the ones derived in Ref. 1, while H + i
and H —2 become equal to zero, as expected.

4 Calculation Results and Discussion

We have computed the composite amplitude profiles io + i —2
exp( —j2,1t)I and 1ii exp(jIIt) + 'i — i exp( —jflt) in the + B
and — directions, respectively, at the exit of the AO
interaction region (z =L) for various values of a i and a2,
as well as for various values of the phase difference O
between the forward- and backward-traveling sound waves
A and B, respectively, and as functions of time. We remark,
in passing, that the ' 'far-field' ' profiles can also be readily
calculated by deleting the integrations in (11) and (12) and
by replacing k' by kv'Iz' and kr" by kox"Iz". Figures 2(a)
and (b) show three-dimensional plots of the composite pro-
files along + 4B and — B, respectively, for Q =8, al =0.4'rr,

(18) O = 0, and at t =0, as a2 varies from 0 to 0.21T. In this

2098 / OPTICAL ENGINEERING / October 1 992 / Vol. 31 No. 10

H± 1(k", z"/L) = —j exp[j(k"L/2ko+ k"QA/4'rr)z"/L]

I (a212) expj(argB)x
[(k"QA/4i)2 + (aiI2)2 +(a2/2)21½

x sin[(k"QAI4)2 + (aiI2)2 + (a2/2)2J½zIL}

(19)

H_2(k', z'IL) =exp[j(k'L/2ko — k'QAI4Tr)z'IL

—j(argA + argB)]

x a2{ [(kQA/2)2+ (ai/2)2 + (a212)2]½zF/L
al + €12

(17)

X sin[(k"QA/4'rr)2 + (al/2)2 + (a2I2)2]½z/L
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(d)

Fig. 2 (a) Three-dimensional plot showing variation of composite profile in the + 4B direction as

functions of a2 and x/D for Q=8, al O.4i, M=O, and at t=O. (b) Three-dimensional plot showing
variation of composite profile in the — 4B direction as functions of a2 and x/D for Q = 8, a = O.4i,
O=O, and at t=O. (c) Cross-sectional plots of (a) for a2=O.O5i, OuT, Ol5ir, and O.2rr. (d) Cross-

sectional plots of (b) for a2=O.051T, OuT, O.15'rr, and O.27r

figure and in all subsequent plots, we assume an incident
Gaussian beam of waist size D =2A, where A, the wave-
length of sound, is 0. 128 x 10 3m; Xo = wavelength of
light = 0.632x 106m, and L =5 cm. We assume, for sim-
plicity, that the refractive index of the AO cell is equal to
1 . Figures 2(c) and (d) are representative cross sections from
Figs. 2(a) and (b), respectively, and show that the composite
amplitude peak along —4B increases as a2 increases . Note
the small distortion in the composite profile along +4B as

a2 5 increased. This may also be interpreted as a gradual
narrowing of the profile with increase in a2, as may be
verified by measuring the width (distance between the lie
points) of each of the curves.

A representative set of plots showing the dependence of
the profiles on the phase difference zO and at t= 0 is shown
in Figs. 3(a) through 3(d) for ai = O.4rr and a = O.2'rr. The
sequence of figures is maintained the same as in the setof
plots in Figs. 2(a) through 2(d). Note the decrease in the
composite peak along — 4B when L\O = ir. The reason for
this is clear if one reexamines the derived transfer functions
(18) and (19) in this case. It is clearly seen that H1 is now
proportional to —i but opposite in sign, so that at t= 0,

the output profile, which is proportional to
1F 1[(H_ +Hi)4'], is a minimum. The distortion in the
composite profile along + B for O = 2m (or 0) is also
visible.

OPTICAL ENGINEERING / October 1 992 / Vol. 31 No. 1 0 / 2099

(a)

(b)

+

(c)

0.0
x/D
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Fig. 3 (a) Three-dimensional plot showing variation of composite profile in the + 4B direction as
functions of O and xID for Q = 8, a O.4i, a O.2i, and at t= 0. (b) Three-dimensional plot showing
variation of composite profile in the B direction as functions of O and xID for Q = 8, aj = O.4'rr,
a2 = O.2'rr, and att= 0. (c) Cross-sectional plots of (a)for M = O.5'rr, rr, 1 .5'rr, and 2'rr. (d) Cross-sectional
plots of (b) for zO = O.51T, 'TI, 1 .5'rr, and 2'rr.

Finally, we show plots of the output profiles as a function
of time for al = O.4'n and a2 O.2ir in Figs. 4(a) through
4(d). It is important to note that the output profiles vary
periodically as a function of time, and that the maximum
intensity in the — 4B direction occurs at t= IT/fl or 0. At
this time, the profile along + B also exhibits the maximum
distortion and narrowing. The minimum intensity along —
occurs at t= 'rrI2. The intensities are , therefore , time mod-
ulated with a modulation frequency 2fl. Thus, a good qua!-
ity, constant width, time-modulated intensity profile can be
obtained in the B direction using contradirected sound
fields by making a2 as large as possible and by ensuring

LO = 0. The depth of modulation (or modulation index) for
this intensity profile is roughly proportional to the ratio
a2/al =IBI/IAI.

5 Conclusion
A straightforward Fourier-transform approach has been de-
veloped to solve the light—sound interaction problem be-
tween an input optical beam with arbitrary initial profile and
contrapropagating sound waves in the Bragg regime. An-
alytic expressions for the interaction transfer function of
each scattered order light is presented, and the nature of the
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(c)

CONTRAPROPAGATING ACOUSTIC WAVES

Fig. 4 (a) Three-dimensional plot showing variation of composite profile in the + B direction as
functions of time and x/D for Q=8, aj =O.4ii, and a2=O.21T. (b) Three-dimensional plot showing
variation of composite profile in the — B direction as functions of time and x/D for Q =8, ci = O.41T,
and a2=O.21T. (c) Cross-sectional plots of (a) for flt=O.25'rr, O.5'rr, O.75rr, and i. (d) Cross-sectional
plots of (b) for (t=O.251T, O.5'rr, O.75'rr, and IT.

output intensity modulated beam is studied. Criteria for
obtaining a good quality, time-modulated intensity profile
are presented. The transfer functions derived will be used
to assess the performance of AO devices in the presence of
noise where we can include the effect(s) of any possible
backscatter of the propagating sound in a commonly used
AO cell. Work on this is currently in progress.
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