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Analysis of mnltifrequency dispersive optical bistability and switching in nonlinear ring cavities
with large medium-response times

Pawel Pliszka
Department ofPhysics, Syracuse University, Syracuse, Nera York 13244

Partha P. Banerjee
Department ofElectrical Engineering, University ofAlabama in Huntsville, Huntsville, Alabama 35899

(Received 13 May 1991;revised manuscript received 25 November 1991)

Using a simple model of a ring cavity comprising a cubically nonlinear medium, we analyze dispersive
optical bistability in the presence of more than one spectral component. We show the phenomenon of
so-called competition for resonance. In addition to presenting cavity characteristics for the cases of two
and three different frequencies, we also discuss the general method for finding steady-state solutions and
checking their stability. A simple and eScient algorithm, based on a relaxation method, is devised to
find steady-state solutions satisfying appropriate boundary conditions. The relaxation dynamics is physi-
cally related to a finite response time of the medium.

PACS number(s): 42.65.—k, 42.60.Da

I. INTRODUCTION

Optical bistability or optical phase transitions, as one
should rather call it in general, has been a subject of in-
tensive study over the last two decades. Motivated partly
by a hope of possible application to optical computing,
several efforts have been made to master the understand-
ing of phenomena of optical bistability, effect of hys-
teresis, dynamics of switching, and instabilities [1,2]. Al-
though leaving many practical questions still unresolved,
these efforts have contributed largely to the physics of
nonlinear phenomena, the formulation of problems of op-
tical bistability in the context of the theory of dynamical
systems [2,3] and nonequilibrium statistical mechanics
[4].

It is our aim in this paper to present some new effects
which emerge in a multiwave nonlinear ring cavity (see
Fig. 1). Instead of choosing a standard, more challeng-
ing, model of resonant interaction of light with a mul-
tilevel atomic system [5,6] we investigate these effects us-

ing a more phenomenological model of cubic nonlineari-
ty. In essence, our model is similar to that of [7], where a
nonlinear ring cavity with two orthogonal polarizations,
and with different detunings, is discussed. As mentioned
in [7], two optical frequencies interacting incoherently
would also obey the same model. In this paper we
present steady-state characteristics for such a device,
which exhibits interesting phenomena absent in the
single-wave models. We would like to point out that
two-wave bistability is also discussed under the high-
finesse approximation in [8], where some of these phe-
nomena are mentioned. In our work we do not impose
this approximation; moreover, our ability to tackle the
problem relies neither on the existence of explicit rela-
tions between the intensities and the medium variables,
nor on the existence of explicit solutions of the propaga-
tion equations.

We should stress the difference between our study and

those done in the context of Maxwell-Bloch equations in
the mean (uniform) field limit. This limit is relevant in
the study of many laser systems, but does not hold for an
externally driven cavity of low finesse or for a long medi-
um. In such cases propagation of fields must be taken
into account.

Our model incorporates the spatial variations of the
fields. For the sake of simplicity, we assume that the
propagation equations in the steady-state limit can be de-
rived from the nonlinear optics equation.

We discuss the case of coherent and incoherent in-
teractions of two waves, and coherent interaction of three
waves (carrier and a sideband pair). Most importantly,
we give a very practical numerical tool for finding steady
states for an arbitrarily large number of degrees of free-
dom (e.g., number of different frequency components).
Using a concept of relaxation or "slowing down" of the
round-trip map, which models the finite response tiine of
the medium, we are able not only to present steady-state
input-output characteristics, but also to discuss the sta-
bility of its various branches in an almost trivial fashion.
It has to be stressed that our model assumes several
simplifications. First, the propagation equation is taken
to be the cubically nonlinear equation for the optical field

only, and the dynamics of the medium is treated phenom-

Kerr medium

L

FIG. 1. Nonlinear ring cavity for two incident frequencies.

507 Qc 1992 The American Physical Society



PA%EI- PLISZKA AND PARTHA P. BANERJEE 46

enologically. Therefore our model does not account for
beating between waves [9], as well as for any complicated
response of the atomic variables, present, for instance, in
a two-level system [5]. Second, the assumption that only
specified spectral components propagate inside the reso-
nator is an approximation which may be justified when
unwanted frequencies cannot be effectively generated be-
cause of, for instance, the phase mismatch between polar-
ization and the electric field. Then the spectral transmis-
sion of resonator selects only a given, narrow range of
spectral components to experience positive feedback;
therefore it seems reasonable to assume that only those
optical frequencies which are incident on the cavity are
present inside of the cavity. This is in opposition to the
study of the propagation of beams or pulses in nonlinear
materials where any restriction on the number of spectral
components cannot be a priori made because of the pro-
cess of self-phase modulation [10]. We discuss the case of
a ring resonator, rather than of a Fabry-Perot resonator,
to avoid complications related to presence of both back-
ward and forward traveling waves, but we believe that
the main feature which we refer to as a "competition be-
tween waves for resonance" appears for any kind of pha-
sor feedback. Furthermore we do not take into account
any transverse degrees of freedom [11,12], thus neglecting
possible infiuence of self-focusing [13] and related effects.
Finally, we neglect any effect which may cause saturation
of the index of refraction.

Specifically, the layout of the paper is as follows. Sec-
tion II presents a steady-state analysis. We discuss, in

brief, the propagation of two and three waves in the non-

linear material in subsections II B and II C, respectively.
The characteristics of the cavity for these two cases are
presented in subsections II D and IIE. We discuss the
case of a symmetrically pumped two-wave cavity, and

present important phenomena of selective switching and

intensity locking. In Sec. III, using a phenomenological
description of the evolution of nonlinearity, we generalize
the Ikeda map for the two-wave case and for an active
medium with a large response time. We iterate this map
numerically to find the steady-state solutions. We should

point out that the main emphasis of the paper is on the
derivation of the steady-state solutions (cavity charac-
teristics) rather than on the dynamics; this is why we

defer discussions of the dynamics to Sec. III. In Sec. IV
we discuss the numerical method.

&J(0)=v T 6,„+Re'6' (L), . (3)

where 8;„;is the input field of each wave, R denotes the
refiectivities of the mirrors 1 and 2 (assumed to be the
same for all waves), and T= 1 —R. The amplitudes
6', (L) are related to C, (0) by the propagation equations
discussed below.

B. Propagation of two waves

1 Bb' i)@ P Bb
v c)I Bz 3v c}

with p being a cubic nonlinearity coefficient, and where U

is the linear phase velocity in the medium. We refer to
this equation not as a specific model of interaction of the
fields with matter, but rather as a framework providing
us with a consistent terminology which can be flexibly ap-
plied for different models.

To obtain equations governing the spatial dependence
of 6., we ignore the second-order derivatives of @J, and
make two assumptions. We take Nj Ukj for simplicity.
Note that even if co Avk, the equations which we derive
below can be obtained by a simple change of the depen-

iz(ap. —
U k. )/2k. u

dent variable 6,'—:8 e ' ' ', provided that
terms co —vk corresponding to a possible linear disper-
sion are the same for all waves. Secondly, since we are
interested in the case of optical frequencies being very
close to each other, i.e., (co&

—ai )/aij. &10, we can re-

place all k s by a single k in the equations describing
propagation of different fields, and set k =1 for simplici-
ty. Note that while this assumption is equivalent to

(ik(PL) (ik.PL)
neglecting terms of the type ~e

' —e '
~, we may

not neglect the difference of the linear detunings of each
frequency with respect to the resonant frequency of the

i9. (ik.X)
cavity, related to terms e '=e ' (where L and X are
the lengths of the active medium and of the resonator, re-
spectively). Linear detunings are difFerent due to the
difference of wavelengths, or due to linear birefringence
as in the case of two polarizations [7].

Since the fields 6' exist in a unidirectional ring cavity

(see Fig. 1), the amplitude of each field independently

obeys a two-point boundary condition, which for the
steady state takes the form [1,2]

II. STEADY-STATE ANALYSIS In the case of two waves, X =2; hence from (1) and (2)
we obtain

A. Formulation of the problem

To describe the propagation of the scalar optical field

@, comprising multiple frequencies, we use a standard an-

satz

dD, (z)

dz

d Az(z)

dz

iPA, (I, +aI~—),

= —ip62(I&+aI, ),
(4)

N i (k.z —co. t)
6, (z)e ' ' +c.c. ,

i=]
where for this section we disregard the temporal depen-
dence of the slowly varying complex envelopes 6 . The
equations governing the spatial dependence of @ can be
formally derived from the nonlinear optics equation [14]

where I —= ~A' ~, and may be readily shown to be con-
stants with respect to z.

The solutions of (4) describe a nonlinearly induced
i/ -(&)

change of the phases of the fields, 6 (z) =(I, )
' e

with

P, (z) =P(I, +aIz )z, $2(z) =P(I2+ aI i )z .
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The coefficient a is equal to 2 in the case of coherently
interacting waves. In the case of incoherent interaction
of two waves, or in a diffusion dominated medium [8], as
well as in the case of two orthogonal polarizations [7]
(within the limits of a scalar analysis of nonlinearity),
a =1, so that the index of refraction is proportional to
the total incoherent intensity. Note that the nonlinearly
induced changes in the index of refraction affecting each
wave do not change with z. This is related to the assump-
tion that evolution (generation) of frequencies 2a)( —a).
can be neglected. This restriction is not present in the
next section.

C. Propagation of three waves

The propagation of three coherently interacting waves
is more interesting because as a result of the interaction
the waves exchange energy. Thus the intensities are no
longer constant along the active medium but change
periodically [15]. We assume ( to be of the form

i(k )z —cu (t) i(kpz cop()

,e + ()e

i(k)z ru) t)—
(6)

d( ()(z)

dz

d( ((z}

= —i[( ()(2I I())+2( ()(
—)8,],

= —i[(",(2I I, )+( ()("')—],
where I—:I &+ID+I& is the conserved total incoherent
power. The last terms on the right-hand side are respon-
sible for the intensity changes which, roughly speaking,
are related to scattering from induced dynamical grat-
ings. One can show that the system of Eqs. (7) is com-
pletely integrable [15]. Below we present a simplified
proof of this fact and restate the results of [15],providing
some physical insights.

Motivated by the usefulness of the Harniltonian ap-
proach to the wave interaction [16],we have found that it
is possible to introduce a real-valued Harniltonian
H (8 (, 4'(), C„6'), 4(), 8; ) which allows us to write
down "equations of motion" as

. BH
dz ()@~J

(8)

and the complex conjugate of this equation for evolution
of the "conjugate momenta" @*-,which are to be treated
here as independent degrees of freedom. The Harniltoni-
an is the sum of two independent constants of motion:

I i +Io+I )H =I'+I,(I,—I,)'"cos(8)—
4

which describes a propagating carrier and two sidebands,
which could originate, for instance, from modulation.
Following the lines of Sec. II A, one can show that the
propagation of ( is given by the following set of equa-
tions:

d 6' )(z) = —i[(,(2I I, ) + 8()( ( ]-,
Z

where 6' =(I ) e ', 8(z) —=2$o(z) —((()((z)—p ((z).
Thus the existence of the Hamiltonian directly gives us
one more nontrivial invariant: 0—I . Besides these two
constants of motion exists a third, viz. , I&

—I &, corre-
sponding to a "preserved symmetry of the spectrum. "

Since the Hamiltonian depends on the phases of the
complex fields only through 8, the knowledge of the
three constants of motion makes the set of equations
completely integrable, thereby reducing it to effectively a
one-dimensional problem. It turns out that the spatial
evolution of the intensity of the carrier is the same as a
temporal behavior of the position of a ball placed in a
quartic gravitational potential

V(I())=a4I()+a3I()+a2I()+a(I()+a() .

The propagation equation for Io is therefore of the form
'2

dIp =E —V(I() ),
2 dz

(10)

D. Two-wave resonator characteristics

Below we discuss how the solutions of (4) obeying the
boundary condition (3) depend on the parameters E;„J,
which can be taken to be real. The numerical method for

where E is reminiscent of the total energy of the mechan-
ical system. Notice that the "potential" and "kinetic"
terms are not explicitly separated in the Hamiltonian;
therefore V depends on the initial conditions, I (z =0},
8(z =0), through the coefficients a;. These coefficients
can be expressed in terms of the three above invariants.
Of course, for specified values of all the three invariants,
there is still freedom for the choice of the initial value of
Io. As is obvious from the form of the invariants, this
freedom is, however, restricted, with the restriction being
that I()(0) must lie between two points which turn out to
be the first two positive roots of the equation
E —V(I())=0, since both Io and (dIp/dz) are greater
than zero, while a4(0. This trivally implies that the
only possible motion is between these roots, and therefore
the most general behavior of Io consists of oscillations
around the minimum of V which is placed between these
roots. Small-amplitude oscillations are of course har-
monic, but large-amplitude oscillations may not be sym-
metric due to the asymmetry of V. Formally, the oscilla-
tions of intensities can be written in terms of the elliptic
functions [15]; unfortunately formulas expressing period
and amplitude of the oscillation by the initial conditions
are rather involved. For small intensities of the side-
bands the amplitude of the oscillation of the carrier in-
creases linearly with amplitude of each sideband, so the
process of energy transfer between the carrier and side-
band pair is very efficient. Indeed, the three-wave in-
teraction may be viewed as a simplified model of spectra
broadening due to self- and cross-phase modulation [10].
When the intensities of the three waves are comparable,
however, the efficiency of the energy exchange is sensitive
to the relative phase difference. For instance, for
8(0)=0 and I ((0)=I((0)=—2Ip(0) no energy exchange
takes place; the intensities remain constant with z [15].
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finding the steady-state solution and checking its stability
are described in the next two sections, together with the
discussion of the dynamics, for purposes of comparison.
Now, for the sake of simplicity, since we have two in-
dependent variables I;„:

~ 8;„~~, j= 1,2, and two
dependent variables I,„,= ~ 6,„,. ~, we restrict ourselves
to the case when the two input intensities change propor-
tionally and remain comparable. Practically such a situa-
tion could be realized by splitting light from a single
quasimonochromatic source, by passing it through two
Fabry-Perot resonators of slightly different lengths, and
then by superimposing the beams at the input of the non-
linear ring resonator. The general case of asymmetric
pumping is more complicated to describe, because the
state of the device depends on the particular path one fol-
lows in the input plane (I;„&,I;„z).

In what follows, we focus our attention on the depen-
dence of the characteristics on the difference between the
linear detunings 58= 82 —8&.

Because each wave experiences a different linear detun-
ing, one may expect that the two frequencies will never
be at resonance together. For the incoherent case (a =1)
it is obvious, since the nonlinear phase shifts P&, P2 will

always be the same for both waves. The behavior of the
system depends on the position of the two linear detun-
ings on the linear transmittivity-versus-detuning curve
(see insets in Figs. 2 and 3). The effect of nonlinearity
manifests itself in an intensity-dependent shift of this
curve. For p&0, the curve is shifted to the left for in-

creasing intensities.
In the case of a %1 and 58=0, which may be the case

where two orthogonal polarizations interact via non-
linearity of a tensorial nature {e.g., via light-induced
quadrupole moment), and the birefringence is absent, we
observe nondeterministic symmetry breaking, as reported
in [8,17,18]. This means that when the cavity is symme-
trically pumped, i.e., I;„&=I;„2,and the linear detunings
are the same, the output intensities are not equal, and it is
impossible to predict which is greater. This happens for
sum[ciently large intracavity intensities, when the sym-
metric steady-state solution becomes unstable, and two
asymmetric stable solutions emerge [see Fig. 3(a)]. The
process can be intuitively understood as a second-order,
symmetry-breaking, phase transition. In a more realistic
model which takes into account fluctuations of phases,
one should expect possible switching between these two
asymmetric solutions, as we see in our numerical simula-
tions. It implies that the output intensity of each wave

may nondeterministically jump, such that the total out-
put intensity stays constant.

Figures 2 and 3 show the behavior of the output inten-
sity of each wave as a function of the input intensity,
both for the cases of coherent and incoherent interaction.
These graphs should be regarded as a projection of a
curve (in general self-intersections are possible) imbedded
in three dimensions (I;„,I,„,&,I,„,2 ) on the planes
(I;„,I,„,&

), (I;„,I,„,z). (In the figures we show only the
branches of characteristics corresponding to the increase
of the input intensities. ) Observe that in the case where
60 is greater than the width of the transmission curve

—T but smaller than m, the wave with the smaller linear
detuning A"2 is never in resonance with the cavity. It ex-
plains the lack of "up-switching" of I,„,z.

The discontinuous change (first-order phase transition),
familiar from the single-wave optical bistability is, in the
case of the higher frequency, replaced by a discontinuity
of the derivative dI,„,&ldI;„[seeFig. 2(c)]. In spite of
the lack of up-switching of 6z, the two-wave system ex-
hibits typical features of first-order phase transitions;
transition is accompanied by a change of energy inside
the resonator and through the effect of hysteresis. For
the decreasing input intensity a small "down-switching"
for 62 occurs.

In passing, we remark that in order to rigorously inter-
pret optical bistability in the language of statistical
mechanics, one needs to incorporate fluctuations into the
description. (In principle, by solving a resulting Fokker-
Planck equation for the probability distribution of the
complex fields, one could derive thermodynamic poten-
tials and other thermodynamical variables of interest
[2,4].) Therefore we refer here to the language of thermo-
dynamics only at the phenomenological level [2], invok-
ing the analogy with a first-order, liquid-gas, phase tran-
sition. Here, the inverse of the strength of coupling
(roughly R '), rather than the strength of the fiuctua-
tions, can be compared to the temperature of the liquid-
gas system and I;„canbe viewed as the applied pressure.
Whereas in the case of the single wave the intracavity in-
tensity plays the role of the scalar order parameter (e.g. ,
average density), here, in order to distinguish between
different fields, one should rather invoke an analogy with
multicomponent systems.

In our discussion we will not invoke the temperature
parameter since we are interested rather in strong cou-
plings R & 0. 1, pI;„kL—1. This corresponds to a system
being well below "the critical temperature" for the transi-
tion. In other words we do not pay much attention to the
onset of the switching in relation to the parameters of the
cavity. We show different plots to stress the dependence
of characteristics on the position of the linear detunings
(see Fig. 2).

Next, to explain qualitatively the behavior of the two
frequencies in the cavity, we use a phenomenological ar-
gument based on the left shift of the transmission curve
{p & 0) or equivalently right shift of detunings. When the
cavity is gradually tuned to Cz by the increase of the in-

tracavity intensity, 8, is also tuned toward resonance (see

Fig. 2 or 3). The state in which 6"z will be exactly in reso-
nance is typically unstable because any spontaneous in-

crease of the intracavity intensity will tend to grow.
will experience a tuning effect; so with the increase of I;„,
it wi11 grow much faster than @2 can decrease. This is be-

cause at the point of resonance, the transmittivity for Dz

is at the maximum and it is not sensitive to small changes
of the intracavity intensities, unlike the transrnittivity for

Resonance for 6, can in turn be stable, for the same
reason as in the single-wave case. Observe that for
40 & ~, when the differential gains or, equivalently, slopes
of the transmission curve at 0, and Oz, are comparable,
the above arguments do not apply and the behavior is
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more complicated [see Figs. 3(c) and 3(d)]. In suc cases
one can also see down-switchin of I
metric um

'
lllg o out 2 even fol sym

me ric pumping. Down-switching has indeed bin ee een ob-

p imentally m a semiconductor device [19) for
the case of asymmetric pumping (i.e., where I playsi.e., w ere I;„&plays

t e ro e of the independent parameter, while I „,z is the
dependent variable). In term f ff

~ ~

erms o effective one-
dhmensional characteristics (i.e., one in e
e er an one ependent variable), it corresponds to a re-
verse hysteresis curve.
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sion curve, and the cavity behaves as a linear device for
E;„2.This in turn causes destructive linear detuning for
6 i, resulting in a decrease of I,„,, Since these two linear
effects are of opposite nature, the sum of output intensi-
ties remains constant with the increase of the input inten-
sities (signifying locking). This phenomenon of an exact
locking of output occurs when I;„,=I;„2but this condi-
tion is not very critical (a difference of 10%%uo does not
affect the characteristics). For the case of incoherent in-
teraction (and symmetric pumping), the total intensity
input-output relation is a monotonic, while the value of
Ip t ] is approximately locked after the first switch up.

The locking of the output may prove useful for possible
applications as a power stabilizer or "digitizer" for opti-
cal computing. This phenomenon has been mentioned in
the early works [20], but rather as an approximate effect.

ing assuming some N-independent quantities 8 (0),
j= 1, . . . , N and then solving for 8;„].Although such
a method will yield a solution formally, it will be general-
ly unstable. Moreover, the curve in the input space, I;„.,
obtained this way can be physically meaningless. From

(a)
Ch

gAAA Ag+ CL
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E. Three-wave resonator characteristics

It is now our task to examine how the energy exchange
process can affect the input-output characteristics of the
nonlinear ring resonator. We again assume that the in-
tensities of the three waves change proportionally at the
input. One can see from Fig. 4(a) that the symmetry of
the spectrum of the input field is broken at the output.
This, as in the two-wave case, is simply a result of the
difference in the linear detunings. Besides phenomena fa-
miliar from the two-wave case, it should be noted that the
structure of the input-output characteristics becomes
much more rich. Even if the cavity is originally detuned
and the intensities of the input increase proportionally,
one may see large down-switching of the output intensi-
ties of the separate waves and nonmonotonicity of the to-
tal output incoherent (i.e., time-dependent) intensity I,

„„

see Fig. 4(b). The effect of the change of the index of re-
fraction is twofold; as in the previous cases it tunes the
cavity towards resonances, and also changes the value of
e(0), which in turn affects the energy transfer efficiency.
Since at a first glance these two effects are not simply re-
lated, the input-output diagrams become much more
complex, and depend on the relative phase of fields inject-
ed into the nonlinear medium. The regions of the input
intensity corresponding to a dominance of a specific fre-
quency become much narrower; so do the regions of the
hysteresis effects.

It should be noted that although the case of incoherent
interaction of three, or more, waves is certainly more
complicated than the discussed case of two waves, we ex-
pect that all the resulting phenomena can be understood
in similar terms since the relative phases of the injected
fields do not play any role in the incoherent interaction.

We remark that when the intensities of the sidebands
are much smaller than the carrier intensity there are no
new dramatic effects as compared to the single-wave case,
since only the carrier frequency comes into resonance
with the cavity.

Finally, before presenting the method used to find the
steady-state solutions, we stress that in the multiwave
case, in spite of the independence of the boundary condi-
tion (3) for each wave, one cannot apply the one-
dimensional technique for each wave separately [involv-
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FIG. 4. (a) Input-output characteristics for the three
coherently interacting waves, in the case of symmetric pumping
and different phases of the pumping fields (shown for the in-
creasing input intensities). Squares represent I,„,0, crosses,
I t &, triangles, I „,, (b) Input-output characteristics for the
sum of intensities.
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the above results, it should be obvious that the different
fields inside the resonator cannot be set independently,
and implying any relations between them on the basis of
the knowledge of the incident fields is insurmountably
difficult.

rt(r) = rt(L, r),
and obeys an evolution equation

rt—+LPI(0, r} .
17}(r)

(16)

(17}

III. DISCUSSION OF THE STABILITY
AND DYNAMICS

In order to discuss the stability of the steady states, one
needs to incorporate dynamics of the medium to the
model. %e limit ourselves to the phenomenological
description, in which medium variables are represented
by a single scalar variable —the nonlinear susceptibility
[21]. We also restrict the description to the case of two
waves. The coupled equations for the electric field and
susceptibility are

(1 la)

(1 lb)

where ( ) denotes average over rapid oscillations, and r
is the medium response time. In the slowly varying en-

velope approximation, and for the case of incoherent in-
teraction of two waves we get the following set of equa-
tions in terms of the variables ( g, r) = (z, t —z lv):

(12a)

Now, assuming that the fields do not change substan-
tially during the time r„(r ))r„),we can approximately
integrate the last equation over a period ~„and reduce
the system to a discrete-time mapping:

r}„+i =rt„(1 a)+—aLPI„,
i(8) —g„)

@i „+i=&T8 i+Re

(18a)

(18b)

(18c)
i (82 —g„)

82 „+,=v'T 6,„2+Re
—~ /v

where a=—1 —e
This map is a multidimensional extension of the Ikeda

map to the case of two complex fields, coupled to each
other through the total nonlinear phase shift g, which is
no longer adiabatically eliminated. Equation (18}may be
simply generalized to allow different phase shifts for each
wave, and a nonlinear absorption through a complex g.
(Linear absorption may be, of course, incorporated in the
values of R.)

The form of the map (18a) naturally suggests the con-
cept of what we call "relaxed maps. " Let us discuss this
concept as simply as possible, assuming for a moment a
"uniform relaxation" of all variables. Given a map
x„+i

=V(x„)(x can be a scalar or a vector), we define its
a (uniform) relaxation V (0(a (1)as a map given by

(12b) x„+,=9' (x„)=a9'(x„)+(1—a)x„. (19)

The time-dependent boundary conditions are It is trivial to check that the fixed points of both maps are
the same. However, their stability is usually different.
The eigenvalues of the linearized problem (i.e., eigenval-
ues of the Jacobian matrix at the fixed point) for the re-
laxed map are given by the simple relation

6'J(0, r) =&T 6;„~+Re'@J(L,r r„), —(13}

where r„=—(X L)/c+L/v —is the round-trip time.
Following the procedure described in [22], we will

show that the problem can be reduced to a system of
difference-differential equations. %e can formally in-

tegrate (12a) to get

X~= 1+a(A, —1) . (20)

Equation (20) states that the eigenvalues X of the "re-
laxed" problem are obtained by multiplying the (com-
plex) eigenvalue A, of the original problem by a and by
shifting the result to the right by 1 —a. After this opera-
tion all eigenvalues lie in the complex plane in the vicini-

ty of 1, i.e., inside a circle centered at 1 —a with radius
proportional to a. Since the criterion for stability is

~
A,

~

( 1, by taking a to be sufficiently small, the oscillatory
instabilities related to Re(A, ) (0, and also others (see Fig.
5) can be removed, while the "blow-up" instabilities relat-
ed to Re(A. ) ) 1 are preserved in the relaxation.

The difference between uniform relaxation of a11 vari-
ables (corresponding to a being a scalar), and relaxation
of only medium variables (corresponding to a being a di-
agonal matrix) is in our case of secondary importance for
the stability of the steady state. (The steady-state solu-
tion is, of course, again independent of a.) Notice that in
the limit of a~0, the reduced maps for fields are linear
and have eigenvalues satisfying ~A, ;~ =R (1. Therefore
the stability of fixed points can always be enforced by the

(14a}

Also, from (12b),

r}+PI(0,r)f —.r}r}(E,r)'
B1

(14b)

where the total nonlinear phase shift g(t) is defined as

above equation I =
~ 8, ~

+
~ gz ~, and

g(g, r)= fog(z, r)dz and represents the nonlinear phase
shift of the fields (we have assumed g to be real). The
above equations may be used to relate 8 (L,r r„}with. —
8 (O, r). This combined with the boundary condition (3)
gives the relation between fields at z =0 at subsequent in-
stances of time, separated by the round-trip time.

6' (0,~)=&T6';„(r)+Re ' " 8 (O, r —r„),
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FIG. 5. Diagram illustrating the efFect of the relaxation on
the complex space of eigenvalues of the Jacobi matrix; see Eq.
(20).

sufBciently slow medium response. Although for the case
of nonuniform relaxation Eq. (19) is no longer valid, and
the corresponding relation between eigenvalues in general
cannot be simply stated, one can check that as far as the
stability of the steady state is concerned, the only
difference between this case and the former is in the actu-
al values of a necessary to provide the stability.

In the simplest case, when the index of refraction de-

pends only on the sutn of intensities, Ref. [7] gives analyt-
ical criteria for stability, stating that the sum of the in-
verse of differential gains should not exceed unity. [This
criterion checks only against the "blow-up" instability re-
lated to Re(A, ) ) 1.] However, in order to apply such cri-
teria, one would need to know the steady-state solution,
while our method directly relates the stability condition
with parameters which are explicitly present in the prob-
lem.

As an illustration we show, in Fig. 6, the stability dia-
gram for the case of two incoherently interacting waves
in the (I;„,a) plane.

On this diagram one can see a characteristic region of
oscillatory instability of the upper branch surrounding
the point of the transition for I, (for the increasing input
intensity). This type of instability is related to the com-
petition for resonance and is different from the one ob-
served in the single-wave optical bistability.

Numerical simulations show stability of the first two
branches of characteristics for the two-wave case provid-
ed that medium-response time v is a few times larger
than round-trip time ~,. In the multiwave case for
68)&T we do not see any dramatic changes in stability,
i.e., in the maximal values of a allowing stability of the
steady state, as compared to the single-wave case. How-
ever, both the stability diagrams and the form of instabili-
ties for the two-wave and one-wave cases are different.
For b,8- T, we see oscillatory instability far in the upper
branch even for relatively slow media (r„/r -0.05).
This implies that dynamical competition for resonance is
particularly pronounced when the separation between the

0.1

I

t

I

~BI

l

I

lilt(l(lllfllll'

FIG. 6. Approximate stability diagram for the map (18) (steady-state characteristics drawn in inset) in terms of the variables I;„
(symmetric pumping) and a. Shaded region corresponds to oscillatory instability. Vertical line corresponds to the resonance (switch
up) for increasing input intensity. The diagram depends strongly on 58 due to the "competition for resonance" [here 8, = 10, Hz = 11,
rest of parameters as in Fig. 2(d), which corresponds to a=0.05]. The time dependence of the total intensity for the marked points in
parameter space is shown in Fig. 7. Inside of the region of instability shown, only periodic and quasiperiodic evolution are possible.
There exist other regions of instabilities corresponding to larger I;„,not shown in the figure, which yield both quasiperiodic and
chaotic oscillations of intensities; see Fig. 7, plot C2.
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frequencies is of the order of the spectral range of the
resonator.

The steady state, when it is stable, is approached in the
quasicontinuous evolution either monotonically (see Fig.
7, plot A t ) (for the lower branch of the characteristics)
or in decaying oscillations (see Fig. 7, plot A 4) (for the
upper part of the characteristics). Oscillatory approach
of the steady state is related to the appearance of two
complex-conjugate eigenvalues k. This is a general
feature present for two waves as well as for a single wave,
which is also familiar in the context of Maxwell-Bloch
equations [23]. As is evident from the possible oscillatory
approach of the steady state (even in the single-wave
case), the quasicontinuous dynamics cannot be effectively
explained in the terms of the intensities only, and one
should expect that for N fields the problem has intrinsi-
cally at least 2N + 1 (real) degrees of freedom.

When the steady state becomes unstable, the dynamics
takes a form of quasiperiodic oscillations (see plots B, ,

B2 in Fig. 7).
For much higher input intensities chaotic oscillations

of output intensities are possible even for relatively slow
media (a & 0. 1), as shown in plot Cz in Fig. 7.

In the stable regime, far from bifurcation points, the
short time scale v„related to the discrete-time character
of the evolution, does not manifest itself in the dynamics
of the fields, and besides few initial oscillations one sees
quasicontinuous evolution of the intensities. However,

I i
i

I i
'

I/

when the fixed point becomes unstable fields may change
significantly during v., and the reduction of the
differential equation (17) to a map may no longer be legi-
timate. Equation (17) integrated over one round-trip
time gives

7

r)(r„)=r)(0)e ' + f I(0,r)exp
~m

(21)

and involves the unknown function I(O, r). Note that for
this reason the local stability of a fixed point does not
strictly imply the stability of the steady-state solution of
the corresponding partial differential equation. However,
the stability of the fixed point combined with structural
stability of the map [stability against perturbations of the
functional dependence of g„onI„&reflecting the rela-

tion between I„&and time average of I(r) present in

(21)], would imply the stability of the system. We did not
perform the structural stability of the map.

IV. NUMERICAL METHOD

The relaxed map approach, regardless of its limitation
for the description of the dynamics, is useful as a numeri-
cal tool for finding the steady-state cavity characteristics
[24]. In general, the form of the map should be chosen in

such a way that the fixed-point fields will satisfy the
steady-state boundary conditions (3). The choice of such
a map is, of course, not unique and should be motivated
by the dynamics of the medium. For the purpose of nu-

merical simulation alone, the simplest choice is the uni-

formly relaxed map. For example, in the case of three
waves the presented steady-state solution is a fixed point
of the round-trip map

' '
I

' I! i f if

, Ag

I&

+By

6 (0, (n + 1)r„)=a[&TE;„+Re'6" (L, n r„)]
+(1—a)8~(O, nr„), (22)

with the terms 8 (L,nr„)obtained by integration of the
steady-state propagation equations (7) with the initial
condition given by 8 (O, nr„). For sufficiently small a,
iterations always converge to one of the fixed points.
This map may, of course, not model the physical dynam-
ics [25], but nevertheless is useful as a tool for finding the
steady-state solutions, which can be applied to an arbi-
trary number of frequencies. Given some additional
specific information about the medium, allowing separa-
tion of the fast and the slow degrees of freedom, one can
construct the corresponding relaxed map more appropri-
ate for the discussion of the dynamics and stability, as
was shown in Sec. III.

U. CONCLUSION

FIG. 7. The I,„,vs time dependence shown for times up to
300~, . Plots A and 8 correspond to di6'erent values of a and I;„
as shown in Fig. 6. Plot C, : a =2, a=0.03, I;„=15,60=0.
Plot C, : a =1,a=0.05, I;„=15,50-T.

We analyze a simple model of dispersive bistability in a
ring cavity filled with a slow nonlinear medium in the
presence of two and three different frequencies. The
steady-state characteristics are shown and the condition
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for a selective switching is studied. The characteristic
phenomenon of locking of the output intensities is
presented. The effect of the finite response time of the
nonlinear medium on the stability of the steady states and
on the dynamics is discussed in the framework of general-
ized Ikeda maps. Phenomenological description of the
dynamics incorporated into a round-trip map allows one

to relate directly the condition for numerical stability of
the algorithm with those for physical stability.
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