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Self-refraction of nonlinear capillary-gravity waves

P. P. Banerjee, A. Korpel, and K. E. Lonngren

Department of Electrical and Computer Engineering, The University of Iowa, Towa City, Towa 52242

(Received 14 January 1983; accepted 3 June 1983)

Self-refraction effects have been observed during the propagation of deep-water capillary-gravity
waves. The observations are shown to be in qualitative agreement with the theory of self-focusing
and defocusing in a cubically nonlinear medium in the presence of diffraction.

|. INTRODUCTION

This paper is the second report on a series of experi-
ments devoted to investigating the effect of quadratic and
cubic nonlinearities on wave propagation in a dispersive me-
dium. In an earlier paper' we reported on subharmonic gen-
eration caused by the quadratic nonlinearity, and showed
the observations to be in semiquantitative agreement with
theory. The present paper deals with the cubic nonlinearity.

The effect of a cubic nonlinearity on wave propagation,
both continuous and pulsed, has been theoretically studied
over the past few years.? In particular, the phenomenon of
self-focusing has been observed and analyzed in the field of
nonlinear optics, during the propagation of intense laser
beams. In this case the induced polarization is nonlinear,
giving rise to a dielectric constant, and hence refractive in-
dex, that increases as the square of the field amplitude. For
an input profile that monotonically decreases away from the
axis, the refractive index is therefore a maximum on the
propagation axis. This triggers a cumulative process where-
by “rays” that are initially parallel to the propagation axis
bend towards it. This self-focusing action causes a reduction
in the beam waist size.

In this paper we report on a simple experiment using
deep-water capillary-gravity waves for which both self-fo-
cusing and self-defocusing are observed, depending on the
frequency of operation. In the capillary wave regime the
phase velocity decreases with the square of the wave ampli-
tude, which is analogous to the “refractive index” increasing
quadratically with the field amplitude in nonlinear optics.
This causes self-focusing to occur for a bell-shaped input
amplitude profile. The effect manifests itself in the initial
reduction of the waist size of the beam before diffraction
effects dominate and cause beam spreading. Conversely,
self-defocusing is observed at lower frequencies where the
phase velocity increases with the square of the wave ampli-
tude, and the beam spreads more than it would have in the
linear, diffraction-limited case.

Il. EXPERIMENTAL SETUP AND INITIAL
OBSERVATIONS

It is important that the generation of subharmonics
(possible in the capillary wave regime) be avoided in these
experiments. In our earlier experiments we had found that
the use of cold, clean water tended to raise the threshold for
subharmonic generation.' We can expect to raise this thresh-
old even further by having the initial excitation generate a
relatively narrow, profiled beam with a maximum on axis,
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rather than a plane wave (wide, flat beam) as used in our
previous experiments. Consequently we used a narrow (~3
cm) paddle with a triangular tip that maximized its immer-
sion in the center. The waves are monitored optically by a
Schlieren strobe system to study the propagation of wave-
fronts, and electrically by a dc resistance probe to study the
amplitude profiles during propagation. The experiment was

{b)

FIG. 1. Wavefronts on the water surface at 30 Hz (capillary wave regime) (a)
for high input amplitudes, showing self-focusing; and (b} for low wave am-
plitudes. In each case, the paddle is at the top.
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(b)

FIG. 2. Wavefronts on the water surface at 20 Hz (a) for high input ampli-
tudes, showing self-defocusing; and (b} for low wave amplitudes. In each
case, the paddle is at the top.

conducted at frequencies between 10 and 70 Hz.

The “frozen” wavefronts of the propagating wave were
carefully monitored optically while increasing the wave am-
plitudes. Self-focusing, characterized by the initial concavity
of the wavefronts and reduction of the beam waist size before
diffraction effects become dominant, was observed at high
amplitudes for the capillary wave regime, and is shown in
Fig. 1{a). This figure should be compared with Fig. 1(b)
which shows the low-amplitude wavefronts. Conversely,
self-defocusing was observed at lower frequencies for high
input amplitudes. The resulting increased wavefront con-
vexity and the beam waist size are shown in Fig. 2(a), with
Fig. 2(b) again showing the low-level experiment. Care is
taken to avoid extremely high amplitudes in the capillary
wave regime so as not to exceed the threshold for subhar-
monic generation.

In passing, it may be noted that Figs. 1(a) and 2(a) show
wavefronts similar to those observed in the self-refraction of
ion-acoustic waves in plasmas.’
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1il. THEORY

In a medium in which the phase velocity is quadratical-
ly dependent on the wave amplitude, the first-order nonlin-
ear kinematic wave equation may be written as*

Y 2y Y

— + ol + —— =0. 1

5 oll + B¢r) o (1)
For extension to higher dimensions, we assume a weak non-
linearity, differentiate (1) with respect to ¢, use (1) to simplify
and replace d 2/dx? by 92/dx + &*/dy* to get

821,//3
2’

L3 W 9

2
e ————~—7‘fzﬁ; Bi=2bBest 12

ar  ax* 4
Equation (2} is similar to the wave equation in nonlinear
optics where the right-hand side may be identified to be the
source term due to the nonlinear polarization of the medi-
um.? The relationship between £} and the commonly used
nonlinearity parameter (dw/da’)w, around a point (w_,k.) of
the amplitude-dependent dispersion curve may be found by
deriving the latter through substituting ¢~ a cosiwt — kx|
into (1) and equating coefficients at frequency . This yields

Jdw B, 3 ., 2
‘—3“‘2’5 wrl"—‘*— 'g‘ﬁs W, Cg. {3)

Even though the wave phenomenon under investigation is
dispersive, this is irrelevant to our case of cw propagation.
Hence (2} is a sufficiently good model equation if we take ¢,
equal to the phase velocity observed in practice.

Making the substitutions

Bix, pt) = [alx, ple 2= 5 L ce. (4)

(where we have assumed stationarity of the slowly varying
envelope) in (2}, it may be readily shown® that the following
relations are obtained:

2 2
3_¢+L(é£) s Y L da_g
Ax 2k, \dy 2k, 2ak, dy*
o, (Jdw
=380 =8 C(—), 5
y=38; ¢ \da Gl
and
2
@_+ii(@102):o, (6)
dx k.dy\dy

Note that in (S), the third and fourth terms on the left-hand
side represent the contributions of nonlinearity and disper-
sion, respectively.

A particular solution to the system of Egs. (5} and (6} in
the absence of diffraction has been derived by Akhmanov et
al.® For the sake of clarity, however, we shall present an
approximate solution to (5) and (6) in the presence of nonlin-
earity and weak diffraction, starting from an initial Gaussian
profile. To this end, we look for solutions of (5) and (6) of the
form?

al 2
2 Yo _ Yy
T P (yo[h(xn) ’ v
b =Lk, y'plx) + b ), ®)
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with
1 dh

7 —d7 = plx), (9)

i.e., we look for a solution in terms of a Gaussian beam of
width Ay, having a cylindrical wavefront with a variable ra-
dius of curvature 1/p. The reason for this choice is that a
solution of this form, with p and A related as in (9), satisfies
the parabolic equations (5) and (6) when ¥ =0, i.e., in the
linear diffraction limited case. When ¥ #£0, (7)-(9) is still a
solution of the system (5) and (6) provided ya®/2k, is expand-
ed in a power series up to and including terms in y°. Thus,
(7)+9) is now an approximate (paraxial) solution to the sys-
tem valid for y/y, <1 Substituting (7)-(9) in (5), and equating
coefficients of y?, we obtain after some algebra, the relation

R 1 e, _ 7’_4(3_(0)
h o ik h* w2 h¥ da)

(10)
Multiplying (10) by 244 ', integrating with respect to x, and
imposing the initial conditions A =1, #' =0 at x =0, we
find

B k2w,

2
B2 = 412(1—11—2)—4“—"’/-(;1-1—1), (11)
Yo k < y%)

where the first term on the right-hand side of (11) is the dif-
fraction term while the second term represents the nonlinear
contribution.

In the absence of nonlinearity (3’ = 0}, (11) may be di-
rectly integrated to give

Ri=1+4x¥y8 k2, (12)

which represents beam spreading in the linear, two-dimen-
sional, diffraction-limited case.
In the absence of diffraction, (10) becomes

h"/h=2/a/yE h>. (13)

If ¥ <0 (B, <0), i.e., the phase velocity decreases as the
square of the wave amplitude, we expect self-focusing. In-
deed, under this condition, integration of (13) yields

(—2ay/po)v — 7 x=1sin20 + 0,
@=cos 'Vh, h<l (14)

If we define the distance to focus as the point where A = 0,
we notice from (14) that we may have multiple focusing.® For
the first point of focus,

0= —7w/2 (15)
substituting in (14) we obtain
Xy 0.78y, ~ 0.55w, , (16)
a =7 ey -7

where 2w, is the initial width between the 1/e points of the
amplitude profile (7):
Vo =wi/2. (17)

Equation (16} agrees essentially with the expression for
x, given by Akhmanov et al.® for two-dimensional self-focus-
ing in the absence of diffraction.
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For the case of weak diffraction, i.e., when
1/k, yo<aV[7', (18)

(11) can be approximately written as
h,_zaoJ—_;/(l—h)l/Z(l_ 1 h+1)_
Yo h Bag(—¥)yo ki A
(19)
Integration of (19) yields, after some algebra, the relation
—2ap — ¥ x/yy=~(}sin 20 + 0) + misin 20 + 66),
where
6 =cos~' A,
m=[16a;(— )y kz]™'

=[8a}(—y)ws k2]~ h<l (20)
To determine the point of focus, we set 2 = 0 so that

and obtain from (20),

x,:(o.ss T 2) Wo 22)
a(—YWws kZ/ a/ —y

In the defocusing case, when the phase velocity in-

creases as the square of the wave amplitude (y’ > 0), the vari-

ation of /& with distance may be readily shown to be given by
2a0\¥V'x/po=14sinh 20 +8, G=cosh™'Vh, h>1 (23)
in the absence of diffraction and by

2a\ V' x/yo = {}sinh 28 + 8) — m(sinh 20 + 68)  (24)
in the presence of weak diffraction. That the beam spreads
much faster now as compared to the linear, diffraction-limit-
ed case [predicted by (12)] can be easily established by calcu-
lating the distance the wave has to travel for 4 ? to double
from its initial value in each case. For the linear case, the
distance equals x, = k_ y3; while for the nonlinear case, in
the absence of diffraction, it equals x,, = 0.7y/ag/y’ . Clear-
ly, for weak diffraction (18),

X, €Xg. (25)
Furthermore, from (23) and (24), it can be easily seen that A

increases monotonically with x and tends to infinity as
X —> o0.

V. EXPERIMENTAL RESULTS

In order to verify the effects of self-focusing and self-
defocusing of capillary-gravity waves, the amplitude profiles
were monitored at varying distances along the propagation
axis (x) by moving the probe parallel to the paddle. The re-
sults in the capillary wave regime, at a frequency of 50 Hz,
are shown in Figs. 3(a) and 3(b), respectively. The focal dis-
tance x,, taken to be the distance from the paddle to where
the waist (defined by the 1/e points) is a minimum, is of the
order of 4 cm. To compare with the theoretical value, note
that (16) and (22) may be rewritten, using (3), (5), and (10), as

__0.7w, A 72
KA ((—aw/aaZ)) 29
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y (cm)

(b)

> x{cm)

X{direction
of propagation)

FIG. 3. Measured variation of the
amplitude profiles parallel to the
paddle, monitored at different points
along the direction of propagation at
50 Hz (capillary wave regime) (a) for
low input amplitudes; and {b) for
4 high input amplitudes. In each case,
dash—dot lines represent the vari-
ation in waist size.

and

0.8 fe )( fe )"2 W
a wi k2 (— dw/da?) ) \(— dw/da?) a,
(27)

for the cases of no diffraction and weak diffraction, respec-

1

G -

St 40Hz
E T 50Hz
2 v v
< 3 g 60Hz

TOH2z
2 -
1+
1 1 1 1 [| 1 I
o} 10 20 30 40 50 60 70

AMPLITUDE (Arbitrary Units)

FIG. 4. Measured variation of the focal distance with the initial wave ampli-
tude at different frequencies in the capillary wave regime.
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> X (cm)

X (direction of
propagation)

tively. For £, = 50 Hz, w, = 2.5 cm [from Fig. 3(b}]}, ¢, =1
mm, and (3w/a%)|so, = — 2157"/cm? sec (see Appendix),
X, turns out to be approximately 2.4 cm from (26) or 2.9 cm
from (27), in reasonable agreement with the observed value
of approximately 4 cm.

The variation of the focal distance with the initial am-
plitude of the wave profile was also measured at different
frequencies. Results are plotted in Fig 4. Note that x, de-
creases with increasing amplitude, in agreement with (26)
and (27). Also, for a fixed amplitude, we see that x, decreases

]1 1 1 1 1
30 40 50 60 70 80
f(Hz)

v

FIG. 5. Theoretical variation of the focal distance {«x10[f./
{ — dw/3a*)1'/?} with frequency in the capillary wave regime.
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with increasing frequency, which, too, is in agreement with
the theoretical results that are calculated using (26) and plot-
ted in Fig. 5.

The effects of attenuation on our experiments are rela-
tively small and may be assessed as follows.

Figure 3(a) (which represents the low-level experiments)
shows that the attenuation constant at 50 Hz is of the order
of 0.06/cm, a value compatible with our earlier findings.! If
we assume that this value also applies to the high-level ex-
periments, then in Fig. 3(b), we would expect an amplitude
reduction of the order of 25% around the point of focus,
which is, indeed, seen to be the case. As a rough guess, we
would also expect that, to a first order, the effective value of
a, in (16) and (22) would be smaller by the same amount,
thereby increasing the effective distance to focus by a pro-
portional fraction. The new expected value of x; ( = x/.¢)
under these conditions turns out to be approximately 3.0 or
3.6 cm for the cases of no diffraction or weak diffraction,
respectively, which is in better agreement with our observed
value of 4 cm.

The results for a 20 Hz frequency are shown in Figs. 6(a)
and 6(b), respectively, for small and large amplitudes. For
low amplitudes we find that, at a distance of 4 cm from the
paddle, the waist is about 1.3 times the initial value. Thisisin

fair agreement with the theoretical value of approximately
1.15 obtained by the use of (12) with w, = 2 cm. For high
amplitudes, defocusing causes the waist to increase to about
1.6 times its initial value at a distance of 4 cm from the pad-
dle. This appears to be incompatible with values of dw/da’
predicted by the equation in the Appendix, which in fact
predicts self-defocusing only in the regime below ~ 10 Hz.
The reason for this is, at present, unknown.

Note that in all experiments the wave amplitude at the
center of the paddle shows a small kink for large wave ampli-
tudes [see Figs. 3(b) and 6(b)]. This may be due to a weak
attachment of the paddle to the center of the driving loud-
speaker.! However, it is interesting to note that in spite of
this, the effects of self-refraction can be easily observed and
can be explained on the basis of our approximate theory.

V. CONCLUSION

In conclusion, we have observed and analyzed self-re-
fraction of capillary-gravity waves in water and found quali-
tative agreement between theory and experiment. However,
defocusing occurred at higher frequencies than predicted
from calculations based on theoretical expressions for non-
linearity parameters.

(b)

X {direction
of propagation)
FIG. 6. Measured variation of am-
plitude profiles parallel to the paddie
monitored at different points along
the direction of propagation at 20 Hz
{a) for low input amplitudes; and (b)
y (cm) for high input amplitudes. In each
/ case, the dash-dot lines represent
variation in waist size.
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X (direction

of propagation)
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APPENDIX: DERIVATION OF THE CUBIC
NONLINEARITY PARAMETER

In order to evaluate the nonlinear parameters dw/da?,
we must compare the nonlinear Schrodinger equation de-
rived by Karpman’ with the results of Djordjevic and Rede-
kopp.® To establish consistency in notation and show neces-
sary relations, we first summarize Karpman’s results.
Assuming a traveling wave solution of the form

& (Ft)=Re[D(F 1)), (A1)
where

D (7,1 ) = (7t Jeox — @), (A2)
with

Yrt) = alF,t ), (A3)

and an amplitude-dependent dispersion relation of the form

olk,a?) = @y + uglk — ko)+(” )(k kP + 22| 2,
0
(A4)
around (wg,k,), where
dw d’w
Uy —= — , = N AS
vl I 2 FPU

we can obtain, following Karpman, the nonlinear Schré-
dinger equation for the complex amplitude defined by (A3):
u
e+ o ) + ¢,x A “;ww =0, (A6)
0
in which x is the dnrectlon of propagation and 4, the trans-

verse Laplacian. Assuming uniformity in the z direction,
transforming to a moving frame of reference given by

E=x—uyt, =1, =y, {A7)
and substituting in (A6), we derive
M Ty o Y ‘9“’ o [wPe=o. (A8)
ar 2 o9& 2k, I

From Djordjevic and Redekopp, the surface displace-
ment { is given by

§(x y.t ) i—-——(A Jkox — jerot A*e—jk(r"+jwo’) (A9)
g1+T)
20,
=—"0__ Re(jde/tkor— o real, A10
dit 7) (/. Y (A10)
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where A represents the complex envelope and T=k1T/g,
T =TI /p, I"being the surface tension of the liquid and g the
acceleration due to gravity. Comparing the (Al) and (A2)
with (A 10),

¥ = [Jwy/gll + T))4. (ALl

The differential equation satisfied by 4 is given by®

.24 P4 P4
2_]&)0 aT +w0uo 352 +‘—0' a 2 _PIA |2A O
(A12)
where
Kk T T
=_°_( 127 s—_ﬁz), (A13)
2 —2T 1+ T.

for the deep-water limit [kk — o, ® ;" = 0 (see, p. 708 of
Ref. 8), and o = tanh kA — 1]. From (All) and (A12),

e+ 2ty ey —PEEET gy 0. (A
Comparing (A14) and (AS8),
dw| _PPU+T)
da*\ ., 8w,
g2(1+T)2k ( 8+ T4 272 ) (A15)
16w} (1—2T)(1+T)

Note that for capillary waves (i.e., T — «), dw/da* <0 and
for gravity waves (i.e., T — 0), dw/da*>> 0. The crossover
between gravity waves and capillary waves is usually defined
as the point T= 4. At this value (~ 10 Hz for 70 dyn/cm
surface tension), dw/da’* changes sign. We find however, that
apparently this crossover lies at a higher frequency, because
even at 20 Hz we observe apparent self-defocusing and hence
must conclude dw/da* > 0 at this point.
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