
University of Dayton
eCommons
Electrical and Computer Engineering Faculty
Publications

Department of Electrical and Computer
Engineering

2003

Digital Image Processing
Russell C. Hardie
University of Dayton, rhardie1@udayton.edu

Majeed M. Hayat
University of New Mexico - Main Campus

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub

Part of the Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and
Computer Engineering Commons, Other Physics Commons, and the Signal Processing Commons

This Encyclopedia Entry is brought to you for free and open access by the Department of Electrical and Computer Engineering at eCommons. It has
been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of eCommons. For more
information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Hardie, Russell C. and Hayat, Majeed M., "Digital Image Processing" (2003). Electrical and Computer Engineering Faculty Publications.
88.
https://ecommons.udayton.edu/ece_fac_pub/88

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/88?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Digital Image Processing 

Russell C. Hardie 
University of Dayton, Dayton, Ohio, U.S.A. 

Majeed M. Hayat 
University of New M exico, Albuquerque, New Mexico, U.S.A. 

INTRODUCTION 

In recent years, digital images and digital image proces
sing have become part of everyday life. This growth has 
been primarily fueled by advances in digital computers 
and the advent and growth of the Internet. Furthermore, 
commercially available digital cameras, scanners, and 
other equipment for acquiring, storing, and displaying 
digital imagery have become very inexpensive and in
creasingly powerful. An excellent treatment of digital im
ages and digital image processing can be found in Ref. [1]. 

A digital image is simply a two-dimensional array of 
finite-precision numerical values called picture elements 
(or pixels). Thus a digital image is a spatially discrete (or 
discrete-space) signal. In visible grayscale images, for 
example, each pixel represents the intensity of a 
corresponding region in the scene. The grayscale values 
must be quantized into a finite precision format. Typical 
resolutions include 8 bit (256 gray levels), 12 bit (4096 
gray levels), and 16 bit (65536 gray levels). Color visible 
images are most frequently represented by tristimulus 
values. These are the quantities of red, green, and blue 
light required, in the additive color system, to produce the 
desired color. Thus a so-called ''RGB'' color image can be 
thought of as a set of three " grayscale" images-the first 
representing the red component, the second the green, and 
the third the blue. 

Digital images can also be nonvisible in nature. This 
means that the physical quantity represented by the pixel 
values is something other than visible light intensity 
or color. These include radar cross-sections of an object, 
temperature profile (infrared imaging), X-ray images, 
gravitation field, etc. In general, any two-dimensional 
array information can be the basis for a digital image. 

As in the case of any digital data, the advantage of this 
representation is in the ability to manipulate the pixel 
values using a digital computer or digital hardware. This 
offers great power and flexibility. Furthermore, digital 
images can be stored and transmitted far more reliably 
than their analog counterparts. Error protection coding of 
digital imagery, for example, allows for virtually error
free transmission. 
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OPTICS AND IMAGING SYSTEMS 

Considering that optical images are our main focus here, 
it is highly beneficial to review the basics of optical image 
acquisition. During acquisition, significant degradation 
can occur. Thus in order to design and properly apply 
various image processing algorithms, knowledge of the 
acquisition process may be essential. 

The optical digital-image acquisition process is 
perhaps most simply broken up into three stages. The 
first stage is the formation of the continuous optical image 
in the focal plane of a lens. We rely on linear systems 
theory to model this. This step is characterized by the 
system point spread function (PSF), as in the case of an 
analog photographic camera. Next, this continuous optical 
image is usually sampled in a typical fashion by a detector 
array, referred to as the focal-plane array (FPA). Finally, 
the values from each detector are quantized to form the 
final digital image. 

In this section, we address the incoherent optical image 
formation through the system PSF. In the section 
"Resolution and Sampling," we address sampling and 
quantization. There are two main contributors to the 
system PSF, one of which is the spatial integration of the 
finite detector size. A typical FPA is illustrated in Fig. 1. 
This effect is spatially invariant for a uniform detector 
array. Spatial integration can be included in an overall 
system PSF by modeling it with a convolution mask, 
followed by ideal spatial sampling. More details will be 
supplied about this presently. Another contributor is 
diffraction due to the finite size of the aperture in the 
optics. Other factors such as lens aberrationsr

2
•
31 

and 
atmospheric turbulence141 can also be included in the 
image acquisition model. 

Let us examine a uniform detector array and provide a 
mathematical model for the associated imaging system. 
We will closely follow the analysis given in Ref. [5]. The 
effect of the integration of light intensity over the span of 
the detectors can be modeled as a linear convolution 
operation with a PSF determined by the geometry of a 
single detector. Let this detector PSF be denoted by 
d(x, y). Applying the Fourier transform to d(x, y) yields 
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Fig. 1 Uniform detector array illustrating critica l dimensions. 
(From Ref. [5].) 

the effective continuous frequency response resulting 
from the spati al integration of the detectors[ 1 •2•51 

D(u , v) = F{d(x ,y) } ( I ) 

where F { ·} represents the continuous Fourier transform. 
Next, define the incoherent optical transfer function 

(OTF) of the optics to be H0 (u , v) . The overall system 
OTF is given by the product of these, yielding 

H(u, v) = D(u, v)H0 (u , v) (2) 

The overa ll continuous system PSF is then given by 

hc(x,y) = .r- l {H(u, v)} (3) 

where .r-1 { ·} represents the inverse Fourier transform. 
If we intend to correct for thi s blurring in our digital 

image with postprocessing, it is most convenient to have 
the equivalent discrete PSF (the impul se- invari ant sys
tem). The impulse- invariant di screte system PSF,r6l 
denoted as hd(n I> n2), is obtained by sampling the con
tinuous PSF such that 

(4) 

where r l and r2 are the horizontal and vertical detector 
spacings, respectively. Thi s accurately represents the 
continuous blurring when the effect ive sampling fre
quency, I/T1, exceeds two times the horizontal cutoff 
frequency of H(u ,v) and l/T1 exceeds the vertical cutoff 

/6/ 
frequency by twofold . . . . 

Let us now specifically cons ider a system with uniform 
rectangul ar detectors, as shown in Fig. 1. The shaded 
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areas represent the active region of each detector. The 
detector model PSF in this case i given by 

d(x ,y) = ~rect(_:: !:.) 
ab a ' b 

{~ for jxjaj < I / 2 and lx/bl < 1/2 

otherwise 
(5) 

Let the active region dimensions, a and b, be measured in 
millimeters (mm). Thus the effective continuou fre
quency response resulting from the detector i 

sin (nau) sin (nbv) 
D(u, v) = sinc(au , bv) = 

2 
b (6) 

n au v 

where u and v are the horizontal and vertical frequencie 
measured in cycles/mm. 

The incoherent OTF of diffraction- limited optic with 
a circular exit pupil can be found 121 as 

2 - 1 p p p 
-cos - -- I - -

{ [ F(j])2] 
H,(u, ') ~ : CJ p, p, 

where p = J u2 + v2. The parameter Pc 
system cutoff frequency given by 

Pc 
I 

Af/# 

for p < Pc 

otherwi e 
(7) 

the radial 

(8) 

where fl# is the !-number of the optics and }, i the 
wavelength of light considered. Because the cutoff of 
Ho(u, v) is Pc• so is the cutoff of the overall system 
H(u, v). 

Fig. 2 shows an example of D(u, v), H0 (u, v), H(u, v), 
and hc(x,y) for a particular imaging system. The sy tern 
considered happens to be a forward- looking infrared 
(FUR) imager. The FUR camera uses a 128 x 128 
Amber AE-4128 infrared FPA. The FPA is composed of 
indium -antimonide (lnSb) detectors with a re ponse in 
the 3-5 ~m wavelength band. This system has quare 
detectors of size a = b = 0.040 mm. The imager is 
equipped with 100 mmf/3 optics. The center wavelength, 
A = 0.004 mm, is used in the OTF calculation. Fig. 2a) 
shows the effective modulation transfer function (MTF) 
of the detectors, ID(u, v)l. The diffraction-limited OTF 
for the optics, H 0 (u, v), is shown in Fig. 2b). Note that 
the cutoff frequency is 83.3 cycle/mm. The overall sy -
tern MTF, IH(u , v)l, is plotted in Fig. 2c). Finally, the 
normalized continuous system PSF, hc(x,y), is plotted in 
Fig. 2d). The continuous PSF is sampled at the detector 
spacing to yield the im pu lse invariant discrete system 
impul se response. 
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Fig. 2 (a) Effective MTF of the detectors in the FLIR imager; (b) diffraction- limited OTF of the optics; (c) overall system MTF; (d) 
overall continuous system PSF. (From Ref. [5].) 

RESOLUTION AND SAMPLING 

Resolution is generally thought of as the ability of an 
imaging system to preserve contrast in small , closely 
spaced objects. Thus resolution is tied to the ability of a 
system to preserve information necessary to resolve point 
sources at various separations. In this sense, resolution is 
affected by the three stages of image acquisition described 
above. We must consider the optical cut-off freq uency, 
which limits the resolution of the optical image in the 
focal plane. Next, we must consider the ability of the 
sampling and quantization to preserve this optica l 
resolution in our digital image. 

The cut-off frequency of the optics and detector 
integration is a good means of quantifying the resolution 

of the optical image in the focal plane (prior to the spatial 
sampling and quantization). Another related means. of 
quantifying optical resolution involves the Rayleigh 
distance.' 11 The Ray leigh distance is related to the wtdth 
of the PSF spot. For a diffraction-limited system with a 
circular aperture, the first zero of the PSF occurs at 

).d 
ro = 1.22 -

a 
(9) 

where )., is the optical wavelength, d is the foca l length, 
and a is the aperture diameter. Thus the Rayleigh dis
tance, r

0
, basically describes the width of the PSF spot 

size (ignoring detector spatial integration). Thus accord
ing to the Rayleigh criterion, two point sources can be 

,/ 
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"resolved" in the focal plane image if they are separated 
by r0 or greater. 

Because of sampling and quantization, the diffraction
limited resolution does not tell the whole story for a 
digital imaging system. Another important aspect is the 
detector spacing which determines the spatial sampling 
rate . [?J The optical cut-off frequency and the Rayleigh 
distance lead to two different detector spacing criteria for 
"proper" sampling. The Nyquist criterion specifies that 
the sampling frequency must exceed two times the optical 
cut-off frequency. Note that the detector spacing in the 
focal plane determines the sampling frequency. Thus for a 
typical camera system with a cut-off frequency of fc = 
ai(Ad), the detector spacing for Nyquist sampling would 
be (Ad)!(2a). Sampling at this rate means that the data 
are free from alias ing. Consequently, with proper inter
polation, it is possible to recover the continuous image 
from its samples without error. Thus it is fair to say that the 
full optical resolution is preserved by Nyquist sampling. 

The Rayleigh sampling criterion is less strict than the 
Nyquist criterion. According to the Rayleigh criterion, we 
space the detectors at one half of the Rayleigh distance, 
0.5r0 . By doing so, two resolvable adjacent spots in the 
focal plane image will remain resolvable in the sampled 
data. Thus for our typical camera system with a cut-off 
frequency of fc = ai(Ad), the detector spacing for Ray
leigh sampling would be 0.6Ud!a. Note that this is 22% 
larger than the spacing for Nyquist sampling. As a result, 
some aliasing will be present in the imagery, and it is not 
possible to perfectly reconstruct the continuous image 
from its samples. Many camera-system designs utilize a 
sampling rate lower than the Nyquist. This is partly 
attributed to the fact that little energy tends to exist at 
the higher aliased frequencies, and fewer detectors means 
less data (for the same field of view) and lower cost. 

In infrared imaging systems, commercially available 
FPA arrays tend to have fewer detectors than in visible 
systems. This is attributed to the cost and fabrication 
complexity. This, coupled with the desire for a wide field 
of view (small focal length) , means that aliasing is a 
significant problem in these systems. A number of 
algorithms have been developed which attempt to 
compensate for the aliasing in all types of images by post 

. h . [5 8- I5] processing a sequence of frames wit motion. · · 
Related to these aliasing reduction algorithms are super-

] · h · fi 6- I9lTh t · " ol t·o" reso uti on tee mques. · · e erm super-res u 1 n, 
is generally used to refer to algorithms that use post
processing to recover frequency information beyond that 
of the cut-off of the optics. This requires creating a new 
effective sampling grid denser than the Nyquist criterion 
dictates. Clearly, this is a far more ambitious goal than 
simply trying to realize the fu ll resolution afforded by 
the optics. Such techniques require a priori information 
about the scene and its dynamics in some form . 
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IMAGE DEGRADATION AND NOISE 

In almost all imaging systems, the very proce of 
recording or acquiring of an image is accompanied by one 
or more forms of degradation and noise. This section 
deals with some of the prevalent sources of degradation 
and noise encountered in modern imaging systems. 

There are many sources of degradation in imaging 
systems, and they can be categorized according to their 
spatial and temporal characteristics. Point degradations 
often refer to types of degradation where the values of 
individual pixels are affected without introducing any blur. 
In this case, the pixel values undergo a simple pointwise 
transformation. A good example of point degradation is 
the pixel saturation effect exhibited by visible and infrared 
cameras for which an excessive level of intensity will set 
the detector output to a saturation level. Practical imaging 
systems also introduce some form of image blur, in which 
case, the gray level of a pixel is affected by the gray levels 
of the neighboring pixels. These types of degradation are 
commonly referred to as spatial degradations. A prime 
example is the optical (or Rayleigh type) blur, which is 
particularly pronounced in small-aperture optical imaging 
systems. Another related example of spatial degradation 
is the blur introduced by the finite size of the active area 
of each detector in the array. 

Other types of degradation involve chromatic or 
temporal effects. In some cases in hyperspectral imaging, 
for example, the PSF of the system can be strongly 
dependent on the optical wavelength of the incoming light, 
which may cause image deformation and additional blur. 
Another form of degradation occurs when imaging is 
performed in the presence of atmospheric turbulence. In 
this situation, the system PSF randomly fluctuates in time, 
according to the changes in the refractive index of the 
column of air between the object and the camera. This type 
of degradation may result in blur, tilt, or other aberration 
depending on the exposure time of the camera and 
atmospheric conditions.f41 Yet another important form of 
degradation involves the geometric deformation of the 
image, which can be attributed, for example, to aberration 
associated with the optical elements (e.g., lenses). 

The above sources of degradation are all operational in 
nature. In other words, they can be thought of as some 
operator (or system) acting on the true image. This 
representation becomes particularly useful in image 
restoration, where the goal is to perform counter 
operations in an effort to "undo" degradation. However, 
such degradations are not the only cause of reduction of 
image quality because recording or acquisition of an 
image is always accompanied by measurement noise. 

As in the case of image degradation, there are many 
sources of noise that can seriously degrade the qua
lity of images. In principle, noise be classified into two 



Digital Image Processing 

categories: signal-independent and signal-dependent. 
Thermal noise (also known as Johnson noise), which is 
inherent in all electronic measurements, is an example of 
signal-independent noise. This type of noise is added to 
each pixel value and can become a limiting factor in cases 
when the object illumination is weak. Thermal noise is 
often modeled by a Gau sian process whose variance is 
dependent on the temperature, the resistance and the tem
poral bandwidth of the electronic circuitry.!ZOJ In array 
sen ors, however, there i additional noise because of the 
nonidentical responsivities of the individual detectors. In 
particular, any two detectors may respond slightly dif
ferently to the same intensity level. This results in a spatial 
pattern, which appears atop the image causing visual 
distortion and reducing the gray-level accuracy. This type 
of noise is commonly refetTed to as fixed-pattern noise; it 
can be a limiting factor in high-precision applications 
particularly in mid- to far-infrared imagers.!

21
-

231 Fixed
pattern noise is a form of signal-dependent noise. For 
example, fluctuations in the gains of detectors are affected 
(in a multiplicative form) by the level of intensity. A 
number of techniques which attempt to correct for this 
nonuniformity'21 •23- 311 have been proposed. 

The most fundamental source of noise in optical mea
surement, however, is quantum noise, which arises from 
the photon nature of light. Quantum noise represents 
the uncertainty in the number of photons collected in 
any time intervaJ.f3·321 This random fluctuation in the 
photon number increases with the optical energy (or 
signal) per measurement time. Interestingly, the mag
nitude of quantum noise, relative to the mean photon 
number, is inversely related to the optical energy. Quan
tum noi se therefore plays an important role in limiting 
the accuracy of optical imaging and vision in situations 
when the density of photons per measurement time is 
small, i.e., at low intensities of light.1331 These situations 
occur, for example, when imaging fa int astronomical 
objects and in medical radiographic imaging.

1341 
More

over, this type of signal -dependent noise is also important 
in high-intensity imaging applications whenever high 
levels of measurement accuracy is desired. For fully 
coherent light, the photon number distribution obeys a 
Poisson distribution. The Poisson distribution is also used 
as an approximation for partially coherent and thermal 
light as long as the measurement time and area (i.e., 
detector integration time and active area) are greater than 
the coherence time and area of the light, respectively.l35

1 

In any imaging application, the harm resulting from 
image degradation and measurement noise can be better 
overcome if the sources of degradation and noise are 
~dentified and properly modeled. Much of the available 
Image restoration and model -based enhancement tech
niques often require a mathematical model for pertinent 
image-degrading effects. 

OVERVIEW OF IMAGE 
PROCESSING TECHNIQUES 

407 

Digital image processing generally refers to the mani
pulation of the pixel values using a digital computer. 
The goals of such processing vary widely. In this work 
we describe six major categories of image process
ing algorithms. Each is addressed in detail in subse

quent subsections. 

Image Restoration 

One important class of image processing problems is 
image restoration. In image restoration, the goal is to 
estimate an image free from some corruptive process 
based on corrupted observations. The corruptive process 
may include blur, noise, or alias ing, for example. Image 
restoration tends to be quantitative (rather than qualitat
ive) and requires some knowledge of the corruptive 
process. The corruptive process modeled may include the 

imaging system itself. 
Image restoration techniques can be divided into linear 

and nonlinear methods. Typical linear methods tend to be 
well suited for the restoration of images corrupted by a 
linear blur and additive Gaussian noise. Linear filters 
enjoy the benefits of having a well-established and rich 
theoretical framework. Furthermore, real-time imple
mentation of linear filters is relatively easy because 
they employ only standard operations (multiplication 
and addition), and can also be implemented using fast 
Fourier transforms. In many cases, however, the restric
tion of linearity can lead to highly suboptimal results. In 
such cases, it may be desirable to employ a nonlinear 
filte r.136- 38l Furthermore, as digital signal processing 
hardware becomes increasingly more sophisticated and 
capable, complex nonlinear operations can be realized in 
real-time. For these reasons, the field of nonlinear filters 

has grown, and continues to grow rapidly. 
While many applications benefit from the use of 

nonlinear methods, there exist broad classes of problems 
that are fundamentally suited to nonlinear methods and 
which have motivated the development of many nonlinear 
algorithms. Included in these classes of problems are: 
suppression of heavy-ta iled noise ~rocesses and shot 
noise; processing of nonstationary signals ; superresolu
tion frequency extension; modeling and inversion of 

nonlinear physical systems. 

Image Enhancement 

Another class of image processing techniques is image 
enhancement. Enhancement is the process of subjectively 
improving image quality. These techniques tend to be more 
qualitative than quantitative. Enhancement includes point 

/ 
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operations which may modify the hi stogram of an image. A 
hi stogram of a grayscale image is simply a plot of the 
number of times each gray leve l is observed in the image. 
Changing the brightness or contrast using a linear scaling 
of each pixe l va lue, for exampl e, will change the hi stogram 
of the image. Enhancement includes many other operations 
including spatial smoothing and spatia l sharpen ing. These 
can be accompli shed with linear low-pass and high-boost 
filters, respectively. In a broader sense, enhancement can 
include edge detection , image resizing through inter
polation , and other geometric transformations. 

Multispectral and Hyperspectral 
Image Processing 

A visible multi spectral image is a collection of images of 
the same scene at different optica l wavelengths. Each 
image or " band " typically corresponds to a narrow
spectral-band image of the scene. The te rm " hyperspec
tral" is generall y reserved for multi spectra l images where 
hundreds of spec tra l bands are used. In a broader sense, 
some nonvisible images are described as mu ltispectral 
when they are composed of a set of images, each 
measuring a different physica l quantity. For exampl e, in 
magneti c resonance imaging (MRI), the moda li ty of the 
imager can be changed to co llec t several different types of 

images of the same area. 
It may be that visib le multi spectral and hyperspectral 

images have most often found application in remote 
sensing. An excellent treatment of the su bject can be 
found in Ref. [39]. The multiple wavelength in formation 
can provide a wealth of information about the scene. In 
the case of hypespectral imagery , each pixel provides 
significant information about spectral reflectance pattern 
or signature for the scene in that area. Such a spectral 
re fl ectance pattern can be used to dist inguish the various 
materi als in the scene with far more preci sion than with a 
single band. This is carried out by using multivariate 
clustering techniques. In some cases, it is even possible to 
perform materi al identification for each pixe l based on the 
spectra l reflectance signatures inferred from a hyperspec
tra l image deck. Thi s is referred to as pi xe l classificat ion. 

Image Segmentation 

Segmentation is the process of grouping pixels in an image 
into simi Jar classes.1401 T hi s creates a set of nonoverl ap
ping reg ions in the image. Segmentation is used in a 
number of ways . Perhaps the primary application is to 
isolate groups of pixels with similar properti es so that 
these groups can then be c lass ified together. T hi s is 

. . · !39 1 I · I performed extensive ly 111 remote sensi ng. t .'s a so 
carri ed out with non visible images such as MRI Images. 
In the case of MRI , the different ti ssue types are seg-
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mented and may then be c lassified by a radiologi tor by an 
automated system. 

In automatic target recognition (ATR) , described 
below, it is often necessary to isolate a single target 
object from the background prior to attempting to identify 
the object. This is carried out through image egmenta
tion. Another use for segmentation is to allow one to 
perform different processing techniques on different 
groups of pixels (segments).14 1 1 Segmentation can be 
accompl ished using gray-level information, color or other 
spectral characteristics, local texture, boundaries, etc . 

Automatic Target Recognition 

ATR using image data remains an important problem in 
image processing. ATR refers to the proces ing of 
identifying an object in image data, based solely on an 
automated system (no human in the loop). lll ATR 
capabi lities are an important aspect of many autonomous 
veh icles, surveillance systems, and military systems. ATR 
is also important in a number of industrial applications 
such as automatic sorting of objects and quality control in 
an assembly line. 

ATR is genera ll y broken down into the steps of 
segmentation, feature extraction, and c lassification (pat
tern recogniti on). 142 1 Segmentation, de cribed above, is 
used to iso late objects from one ano ther and the 
background. Feature extraction is the process of convert
ing the observed pixel data in the segment of interest into 
a compact and concise set of numerical observations. 
These "features" shou ld be designed to offer maximum 
class separability with a minimum of redundant informa
tion. Such fea tures can include shape analysis parameters, 
Fourier descriptors, edge locations, object symmetry 
parameters, size, color (spectra l characteristics), etc. 

Thus the features can be both spatial and spectral in 
nature. lt is generally believed that a combination of these 
factors offers the most promi se for many application . 
Note that if only spat ia l in fo rmation is used, this generally 
requires very high spatia l reso lu tion. If high-resolution 
spectral information is avai lable, it may be possible to 
perform ATR with onl y one hyperspectra l pixel on the 
object. Thus there is c learl y an interesting trade-off 
between spatia l and spectra l resolution. 

The pattern recog niti o n step is the process of 
classifying (or naming) the objects based on the extracted 
features for those objects. This process can be accom
pl ished using a number of frameworks inc luding Bayesian 
analysis, neural networks, k nearest neighbor analysis, 
etc .l421 

Image sequences can a id ATR. For example, moving 
targets are easily segmented from the background in an 
image sequence. Furthermore, the motion parameters 
themse lves could be used as features for ATR. Multiple 
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looks from an image sequence from different viewing 
angles can also be a big aid, especially in the case of 
partially hidden or obscured object . 

Image Sequence Processing 

With recent advances in video hardware and desktop 
digital video product , full-motion digital video and other 
image sequence data are becoming increasingly prevalent. 
Image sequences offer a wealth of information which can 
be exploited in image processing algorithms. Image 
re toration, enhancement, segmentation, and automatic 
target recognition can all benefit from image sequence 
information.1431 Consider the case of temporal noise, for 
example. Such noise can often be greatly reduced with a 
motion-compensated temporal-averaging filter.143

1 Re
dundant information in sequences can also be exploited 
for dramatic video compression, as seen in the Moving 
Picture Experts Group (MPEG) tandard. In many image 
sequence processing algorithms, scene motion parameters 
are frequently required. This may involve rigid object 
motion or full deformable optical flow . Thus motion 
estimation and optical flow estimation are fundamenta l 
problems associated with image sequence processing. 

CONCLUSION 

In this article, we have attempted to convey the basics of 
digital image representation and some aspects of vis ible 
image acquisition. We have also highlighted six major 
areas within the broad field of digital image processing, 
which are discussed in more detai l in related articles. We 
hope that the reader will benefit from the references 
cited in this work, which provide a fuller treatment of 
these subjects. 
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