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integrated microgrid polarimeters
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Abstract: Imagery from microgrid polarimeters is obtained by using a
mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each
distinct polarization image is obtained by subsampling the full FPA image.
Thus, the effective pixel pitch for each polarization channel is increased
and the sampling frequency is decreased. As a result, aliasing artifacts from
such undersampling can corrupt the true polarization content of the scene.
Here we present the first multi-channel multi-frame super-resolution (SR)
algorithms designed specifically for the problem of image restoration in
microgrid polarization imagers. These SR algorithms can be used to address
aliasing and other degradations, without sacrificing field of view or compro-
mising optical resolution with an anti-aliasing filter. The new SR methods
are designed to exploit correlation between the polarimetric channels. One
of the new SR algorithms uses a form of regularized least squares and has
an iterative solution. The other is based on the faster adaptive Wiener filter
SR method. We demonstrate that the new multi-channel SR algorithms are
capable of providing significant enhancement of polarimetric imagery and
that they outperform their independent channel counterparts.

© 2011 Optical Society of America

OCIS codes: (110.5405) Polarimetric imaging; (100.6640) Superresolution; (120.5410) Po-
larimetry; (120.2130) Ellipsometry and polarimetry.

References and links
1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote

sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
2. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid

polarimeter imagery,” Opt. Express 17(11), 9112–9125 (2009).
3. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained

with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
4. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE

Signal Process. Mag. 20(3), 21–36 (2003).
5. B. M. Ratliff, J. S. Tyo, W. T. Black, and C. F. LaCasse, “Exploiting motion-based redundancy to enhance

microgrid polarimeter imagery,” Proc. SPIE 7461, 74610K (2009).
6. D. A. Lemaster, “Resolution enhancement by image fusion for microgrid polarization imagers,” in IEEE

Aerospace Conference, Big Sky, MT (2010).
7. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High resolution image recon-

struction from a sequence of rotated and translated frames and its application to an infrared imaging system,”
Opt. Eng. 37(1), 247–260 (1998).

#147072 - $15.00 USD Received 6 May 2011; revised 1 Jun 2011; accepted 2 Jun 2011; published 20 Jun 2011
(C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS  12937



8. R. Hardie, “A fast image super-resolution algorithm using an adaptive Wiener filter,” IEEE Trans. Image Process.
16(12), 2953–2964 (2007).

9. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
10. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
11. R. R. Shannon, “Aberrations and their effect on images,” Proc. SPIE 531, 27–37 (1985).
12. T. Gotoh and M. Okutomi, “Direct super-resolution and registration using raw CFA images,” in IEEE Conference

on Computer Vision and Pattern Recognition, vol. 2, pp. 600–607 (Los Alamitos, CA, 2004).
13. S. Farsiu, M. Elad, and P. Milanfar, “Multi-frame demosaicing and super-resolution of color images,” IEEE

Trans. Image Process. 15, 141–159 (2006).
14. L. Condat, “A generic variational approach for demosaicking from an arbitrary color filter array,” in Proceedings

of IEEE ICIP, pp. 1625–1628 (2009).
15. R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high resolution image estimation

using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
16. B. M. Ratliff, J. S. Tyo, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “Dead pixel replacement in

LWIR microgrid polarimeters,” Opt. Express 15(12), 7596–7609 (2007).

1. Introduction

Passive polarimetric imaging has emerged in recent years as a useful sensing modality for de-
tection and recognition [1]. The added information provided by polarization can aid in clutter
reduction and object characterization. Imagery from microgrid polarimeters is obtained by in-
corporating a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Such imagers
are akin to Bayer pattern color cameras, except the mosaic pattern is for polarization state,
rather than color. With a typical microgrid polarimetric sensor, four polarimetric state images
are acquired using a 2×2 pattern of polarizers. In this manner, each polarization image is ob-
tained by subsampling the full FPA image by 2 in each dimension. Thus, the effective pixel
pitch for each channel is twice that of the native FPA (1/2 the sampling frequency). Because of
the desire for a wide field of view and other factors, many imaging systems are equipped with
optics that allow some undersampling for a given FPA. By employing the microgrid with the
same optics and FPA, undersampling and resulting aliasing artifacts are increased [2, 3].

Multi-frame super-resolution (SR) enhancement methods have been widely demonstrated
to improve the effective sampling rate of undersampled imagers [4]. By using multiple low-
resolution (LR) frames from video, these SR algorithms exploit sub-pixel motion between
frames to effectively enhance the sampling rate for the native FPA. By doing so, these SR
methods effectively trade temporal resolution for spatial resolution. In addition to enhancing the
sampling rate and reducing aliasing, the SR algorithms typically perform restoration to reduce
noise and blur. Generally speaking, iterative image reconstruction based SR methods are among
the best performing algorithms, but come with a relatively high computational cost [4]. The sim-
plest SR algorithms, in a computational sense, are the interpolation-restoration approaches [4].
Here we shall consider these two classes of SR algorithms as applied to polarimetric imagery.
Because of their ability to help overcome undersampling, we believe multi-frame SR algo-
rithms are a powerful match for microgrid polarimeters. To the best of our knowledge, the only
publications to date exploring this connection were the result of preliminary work led by two
of the current coauthors [5, 6]. We believe the current paper represents the first comprehen-
sive treatment of the subject. In [5], Ratliff et al used the iterative multi-frame SR algorithm
in [7] applied to the four demosaiced polarimetric channels independently. LeMaster explored
a simple and fast multi-frame SR algorithm in [6] that registered and interlaced samples from
multiple frames, also using independent channel processing. The work in [5, 6] demonstrated
that SR can be used to enhance the resolution of polarimetric data from a microgrid imager, but
neither fully exploited the redundant information available in the microgrid array.

Here we present two new multi-channel multi-frame SR algorithms specifically designed for
processing imagery from microgrid polarimeters. The new SR methods are designed to provide
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Fig. 1. Microgrid pattern for the polarimetric imager considered here. Four polarization
images are acquired using a 2×2 repeating pattern of micropolarizers on the FPA.

improved performance by exploiting correlation between the polarimetric channels and by us-
ing a detailed observation model that includes an accurate point spread function (PSF). One
of the two new SR algorithms presented here uses a form of regularized least squares (RLS)
related to that in [7] and has an iterative solution. The proposed RLS algorithm is novel in that
here we jointly estimate all of the polarimetric images and use a new regularization function that
exploits correlation among the polarimetric channels. The other proposed algorithm is a new
type of adaptive wiener filter (AWF) SR method [8] designed for microgrid image data. The
microgrid AWF method leads to a faster implementation that is more readily suitable to real-
time processing with appropriate hardware than the RLS method. We study the performance of
the two new microgrid SR methods using imagery from a long-wave infrared (LWIR) micro-
grid polarimeter. We also present results using simulated microgrid data derived from a visible
polarimetric imaging system. These simulated data are used to allow for a new quantitative
performance analysis. Our results demonstrate that there can be significant benefits to using SR
with microgrid polarimeters. We also show how multichannel SR processing that exploits the
correlation between the polarimetric channels yields improved performance over independent
channel processing.

The remainder of this paper is organized as follows. In Section 2, background on polarimetric
imagery is briefly reviewed and the observation models are presented. The new microgrid RLS
SR algorithm is presented in Section 3 and the new microgrid AWF SR method is presented
in Section 4. Experimental results are presented in Section 5 to illustrate the efficacy of the
proposed methods. Finally, we offer conclusions in Section 6.

2. Observation model

The sensor we are focusing on is equipped with four polarization analyzers oriented at angles
θ1 = 0o, θ2 = 45o, θ3 = 90o, and θ4 = 135o. The microgrid configuration for acquiring these
four polarimetric images is shown in Fig. 1. As shown, the microgrid image can be deinterlaced
to produce the four individual polarimetric images. The choice of angles is designed to make
the computation of Stokes vector images convenient [1, 9]. In general, let the ideally-sampled
high-resolution (HR) polarimetric image, with P channels and N pixels per channel, be repre-
sented in lexicographical notation as p = [p1, p2, ..., pNP]

T . Breaking this down into individual
polarimetric channels, we get p = [pT

θ1
,pT

θ2
, ...,pT

θP
]T , where pθi = [pθi,1, pθi,2, ..., pθi,N ]

T . For
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Fig. 2. Block diagram illustrating the observation model relating p to the observed frames
g(k), for k = 1,2, ...,K.

such a four-angle sensor, the first three Stokes images [1] can be estimated as

s0, j =
(
p0, j + p45, j + p90, j + p135, j

)
/2

s1, j = p0, j − p90, j

s2, j = p45, j − p135, j

. (1)

The s0 term is the total light intensity, and s1 and s2 present linear polarization content. Note that
since we have four polarimetric states being measured and three Stokes images relating to linear
polarization, there is some redundancy. That is, ideally we should have s0, j = p0, j + p90, j =
p45, j + p135, j. Later we shall seek to exploit this redundancy in our SR algorithms. Another
useful statistic, related to the Stokes images, is the degree of linear polarization (DoLP) [1]
given by

DoLPj =

√
s2
1, j + s2

2, j

s0, j
. (2)

For multi-frame SR, let the number of observed LR microgrid frames be K. Let
the LR observed pixels from frame k be expressed in lexicographical notation as g(k),
where k = 1,2, . . . ,K. Breaking down each observed frame by polarimetric channel we
get g(k) = [gT

θ1
(k),gT

θ2
(k), ...,gT

θP
(k)]T , where gθi(k) = [gθi,1(k),gθi,2(k), ...,gθi,M(k)]T . Let

the complete set of all observed pixels in lexicographical notation be specified by g =
[gT (1),gT (2), ...,gT (K)]T = [g1,g2, ...,gKMP]

T .
A block diagram illustrating the observation model relating p to the observed frame g(k)

is presented in Fig. 2. The ideal polarimatric data in p is assumed to be sampled above the
Nyquist rate. The motion between frames is parameterized with the vector s(k). Next, the model
includes a linear shift invariant blurring using the discrete PSF for the optical system. This is
followed by down-sampling by a factor of L. Finally, the down-sampled images are mosaiced
into the pattern in Fig. 1 and noise is introduced to obtain g(k). This observation model can be
mathematically expressed such that each observed pixel is a weighted sum of the ideal pixels
in p plus noise. The particular weights depend on the system PSF, the motion between frames,
and the microgrid layout. In particular, the LR pixels can be expressed in terms of ideal HR
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Fig. 3. Alternative observation model valid for translational motion (and rotational motion
when the PSF is circularly symmetric). Here the motion model is commuted with the PSF
and integrated into what becomes a nonuniform sampling operator.

pixels as follows

gθ ,i(k) =
N

∑
j=1

hθ ,i, j(k)pθ , j +nθ ,i(k), (3)

where hθ ,i, j(k) is the contribution of pθ , j to gθ ,i(k) and nθ ,i(k) is the noise term for gθ ,i(k). This
model can be express compactly for all frames jointly as

g = Hp+n, (4)

where H is a KMP×NP matrix and n is a KMP×1 vector of noise samples.
The observation model in Eqs. (3) and (4) will be used for the RLS SR algorithm. However,

to aid in the development of the fast AWF algorithm here, we consider an alternate observation
model based on that in [8]. The alternate observation model is shown in Fig. 3. Here the motion
model is commuted with the PSF and integrated into what becomes a nonuniform sampling
operator. This alternative observation model is equivalent to the model in Fig. 2 for translational
motion. It is also equivalent for rotational motion when the PSF is circularly symmetric [8]. The
power of this model is that it leads to the computationally simple interpolation-restoration SR
algorithms [8]. Based on this model, nonuniform interpolation can be used to recover noisy,
but uniformly spaced, samples of f (x,y,θi) from g. Then, restoration is used to estimate the
corresponding samples of p(x,y,θi).

Let us now consider the modeling of the system PSF. We model the optical transfer function
(OTF) with three components

H(u,v) = Hdif(u,v)Habr(u,v)Hdet(u,v), (5)

where u and v are the horizontal and vertical spatial frequencies in cycles per millimeter,
Hdif(u,v) is from the diffraction-limited optics, Habr(u,v) models optical aberrations, and de-
tector integration is included as Hdet(u,v). The OTF from diffraction-limited optics with a cir-
cular pupil function is given by [10]

Hdi f (u,v) =

⎧
⎨

⎩

2
π

[
cos−1 (ρ/ρc)− (ρ/ρc)

√
1− (ρ/ρc)

2
]

for ρ < ρc

0 else
, (6)
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where ρ =
√

u2 + v2 and ρc =
1

λN , and N is the F/# of the optics. Since a purely diffraction-
limited optical system is perhaps overly idealistic, we also include the following aberration
OTF [11]

Habr(u,v) =

{
1− (WRMS/0.18)2(1−4(ρ/ρc −0.5))2 for ρ < ρc

0 else
, (7)

where WRMS is the root mean square wavefront error [11]. The detector component of the OTF
is found as the Fourier transform of a mask with the geometry of the active area of an individual
detector in the FPA. Finally, the system PSF is the inverse Fourier transform of the overall OTF
in Eq. (5).

The microgrid polarimetric imager used here has the following specifications. It has a spectral
bandwidth of λ = 7.8− 9.8 μm. We use a wavelength of λ = 9 μm for our PSF model. The
system uses F/2 optics and has a full FPA pixel pitch of 25 μm with approximately 100%
fill factor rectangular detectors. Note that for this microgrid imager, the pixel pitch for pixels
of like polarization is actually 50 μm. Thus, the effective active area for the like-polarization
sub-array detectors is modeled as spanning half the 50 μm like-polarization pixel pitch in each
dimension. This equates to a 25% fill factor (taking into account the skipping of detectors in the
FPA as shown in Fig. 1). For abberation modeling, we use WRMS = 1/14 [11]. Cross sections of
the relevant 2-D modulation transfer functions (MTFs) are shown in Fig. 4(a) for this system.
The continuous PSF is shown in Fig. 4(b). The discrete impulse invariant PSF, for use in the
observation model operating on the HR image, can be found by sampling the continuous PSF
with a sampling period of 50/L μm.

Note that the Nyquist or folding frequency (i.e., 1/2 sampling frequency) for a single channel
is 10 cycles/mm, as shown in green in Fig. 4(a). This is well below the 55.56 cycles/mm cut-off
frequency of the optics. Any scene frequency content above the Nyquist frequency is “folded”
into lower frequencies, creating aliasing artifacts. Thus, this system is likely to exhibit signifi-
cant aliasing without SR. Another point to note from the overall MTF is that it has a low pass
blurring effect. However, the blurring cannot be combatted with a linear shift-invariant filter
without first (or jointly) addressing the undersampling issue. Otherwise, the aliasing artifacts
will simply be amplified. Based on the overall system MTF shown in Fig. 4(a), we believe that
L = 4 is a practical choice for SR processing for this sensor. The effective sampling frequency
is then 80 cycles/mm, with a Nyquist frequency of 40 cycles/mm as shown in yellow in Fig.
4(a). In addition to aliasing reduction, we also hope to restore the imagery from the blurring
effects of the overall MTF.

3. RLS SR for microgrid polarimeters

Based on the observation model depicted in Fig. 2 and detailed in Eq. (3), we propose an RLS
estimator for p. The output of the RLS algorithm is given by

p̂ = argmin
p

C(p). (8)

The cost function to be minimized is given by

C(p) = 1
σ2

n
∑
θ

K
∑

k=1

M
∑

i=1

(

gθ ,i(k)−
N
∑
j=1

hθ ,i, j(k)pθ , j

)2

+
2
∑

m=0

1
σ2

sm

N
∑

i=1

(
N
∑
j=1

wi, jsm, j

)2

+ 1
σ2

r

N
∑
j=1

(
p0, j + p90, j − p45, j − p135, j

)2
. (9)

The first term in Eq. (9) is the main term that is minimized when p projected through observa-
tion model matches the observed data g. Since this term alone may be insufficient to provide a
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Fig. 4. (a) Cross sections of theoretical 2-D MTF and its components for the microgrid
polarimetric imager used here. (b) Theoretical continuous PSF for L = 4.

unique solution, the second and third terms act as a regularization function. The second term
acts as a smoothness constraint on the Stokes images. For this smoothness term we use a dis-
crete Laplacian operator given by

wi, j =

{
1 i = j

−1/4 j is cardinal neighbor of i
. (10)

Finally, the third term in Eq. (9) exploits the redundancy in the four polarimetric measurements.
This term is minimized when p0, j+ p90, j = p45, j+ p135, j. For an ideal noise-free sensor, with no
cross-talk between polarization channels, this equality should be true [1] and this cost function
term would go to zero. However, in practice, noise and non-ideal sensor characteristics make
this a small but non-zero term. Note that each term in Eq. (9) has a corresponding scaling
parameter. The value of these constants govern the relative impact of each term on the cost
function, and ultimately the final estimate. Specifically, the first term is scaled by 1/σ2

n , which
would typically be related to the expected noise variance in the observation model. With high
noise level, we would expect a larger error in the first cost function term, even for the true image
as the estimate. Thus, employing a larger σ2

n reduces the cost associated with this expected
higher error. The second term has scaling parameters of 1/σ2

sm
, for m = 0,1,2. These reflect

our a priori assumptions about the variance of the Laplacian of the Stokes images as defined
using Eq. (10). Finally, the third term is scaled by 1/σ2

r , which reflects our expectation for the
variance of the difference between p0, j + p90, j and p45, j + p135, j. Note that it is only the relative
values of these scaling constants that matter for the algorithm.

While this RLS approach is based on that in [7], what makes Eq. (9) novel are the regular-
ization terms. The RLS algorithm in [7] uses only one regularization term, a smoothness term
for the single channel data. Here we have multichannel data with physical constraints, like the
redundancy exploited in the third term in Eq. (9). Note also, that the smoothness terms are ap-
plied here to the Stokes images, and not the original polarimetric channels. This is done for
several reasons. First, the Stokes images may be a final product for such an imaging system. By
having smoothness terms applied here, we better ensure that this product will be free from high
frequency artifacts. Furthermore, {s1, j} and {s2, j} are known to generally have relatively low
energy (i.e., low variance). Thus, applying a term favoring small high-frequency energy in these
channels is sensible. The Stokes image {s0, j} is the total intensity image. This should contain
most of the energy. One may choose to use the smoothness constraint on this term minimally
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by employing a high σs0 . The parameters σs1 and σs2 may be smaller, because of the expected
lower energy in these images. Finally, because the Stokes terms interrelate the different polar-
ization channels, it allows us to exploit their distinct spatial sampling positions better than if
we applied a smoothness constraint on each channel independently. The approach of applying
smoothness regularization to the Stokes images in polarimetric data may be viewed as akin to
using luminance and chrominance coordinates in color processing [12–14]. It is interesting to
note that the RLS estimate can be viewed as a maximum a posteriori (MAP) estimator in the
case of independent and identically distributed Gaussian noise [15]. In the MAP framework, the
quadratic nature of the regularization terms in Eq. (9) can be seen as resulting from a Gaussian
prior pdf.

To minimize the cost function in Eq. (9), one may use a gradient descent or conjugate gradi-
ent algorithm similar to that presented in [7]. Here we develop the somewhat simpler gradient
descent approach. We initialize the RLS estimation process by registering all K frames to a
common reference. A convenient choice of reference is the most recent observed frame. Note
that we need to register the frames to subpixel accuracy. We have found that we get better reg-
istration performance by deinterlacing the channels, applying the registration algorithm in [7],
and then averaging the registration parameters obtained from the four channels. With this and
the PSF from Section 2, we have a complete observation model. Next, we take the reference
image and use single frame interpolation to obtain an initial estimate of p, denoted p̂0. To im-
prove this estimate using gradient descent, we need the gradient of Eq. (9) with respect to p,
denoted ∇pC(p). This gradient is composed of the partial derivative of the cost function with
respect to each of the HR samples in p. This can be expressed as

∇pC(p) = [∇p0C(p)
T ,∇p45C(p)

T ,∇p90C(p)
T ,∇p135C(p)

T ]T , (11)

where

∇pθ C(p) =
[

∂C(p)
∂ pθ ,1

,
∂C(p)
∂ pθ ,2

, . . . ,
∂C(p)
∂ pθ ,N

,

]T

. (12)

The partial derivatives making up the gradient can be computed from Eq. (9), yielding

∂C(p)
∂ p0,q

= H(0,q)+S(0,q)+S(1,q)+R(q), (13)

∂C(p)
∂ p45,q

= H(45,q)+S(0,q)+S(2,q)−R(q), (14)

∂C(p)
∂ p90,q

= H(90,q)+S(0,q)−S(1,q)+R(q), (15)

∂C(p)
∂ p135,q

= H(135,q)+S(0,q)−S(2,q)−R(q), (16)

where the observation model gradient term is given by

H (θ ,q) =
2

σ2
n

K

∑
k=1

M

∑
i=1

hθ ,i,q(k)eθ ,i(k), (17)

and the model error component is

eθ ,i(k) =
N

∑
j=1

hθ ,i, j(k)pθ , j −gθ ,i(k). (18)
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The Stokes gradient term is given by

S(m,q) =
2

σ2
sm

N

∑
i=1

wi,q

(
N

∑
j=1

wi, jsm, j

)

. (19)

Finally, the redundancy gradient term is

R(q) =
2

σ2
r

(
p0,q + p90,q − p45,q − p135,q

)
. (20)

Given the gradient, the gradient descent updates are computed as follows

p̂n = p̂n−1 + εn∇pC(p)|p=p̂n−1 , (21)

where εn is the step size for iteration n. The iterations may be performed a predetermined
number of times, or may be stopped with a halting criterion, such as ||p̂n − p̂n−1|| < T , where
T is a threshold.

The optimum step size at each iteration can be found by optimizing C(p̂n) as a function of
εn, given p̂n−1. In particular, we set the derivative of C(p̂n) with respect to εn equal to zero, and
solve for εn. This calculation results in an optimum step size of the form

εn =
N1 +N2 +N3

D1 +D2 +D3
. (22)

The individual terms in the optimum step size are given by

N1 =
1

σ2
n

∑
θ

K

∑
k=1

M

∑
i=1

(
N

∑
j=1

hθ ,i, j(k)γθ , j

)

eθ ,i(k), (23)

N2 =
2

∑
m=0

1
σ2

sm

N

∑
i=1

(
N

∑
j=1

wi, jsm, j

)(
N

∑
j=1

wi, jSm, j

)

, (24)

N3 =
1

σ2
r

N

∑
j=1

(
p0, j + p90, j − p45, j − p135, j

)(
γ0, j + γ90, j − γ45, j − γ135, j

)
, (25)

D1 =
1

σ2
n

∑
θ

K

∑
k=1

M

∑
i=1

(
N

∑
j=1

hθ ,i, j(k)γθ , j

)2

, (26)

D2 =
2

∑
m=0

1
σ2

sm

N

∑
i=1

(
N

∑
j=1

wi, jSm, j

)2

, (27)

D3 =
1

σ2
r

N

∑
j=1

(
γ0, j + γ90, j − γ45, j −λ135, j

)2
, (28)

where

γθ , j =
∂C(p)
∂ pθ , j

∣
∣
∣
∣
p=p̂n

(29)

and
S0, j =

(
γ0, j + γ45, j + γ90, j + γ135, j

)
/2

S1, j = γ0, j − γ90, j

S2, j = γ45, j − γ135, j

. (30)
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Fig. 5. Observation window for the microgrid AWF algorithm for polarimetric data with
L = 4. For simplicity, the window is shown populated with pixels from only a single frame.

Computing the optimum step size in this fashion tends to be faster than performing a search. A
final point to note about the RLS microgrid SR method is that we can easily treat “bad” pixels
by simply setting the error, eθ ,i(k) as defined in Eq. (18), to zero for any θ , i, and k for which
gθ ,i(k) is known to be a bad pixel value. This is convenient as it obviates the need for a separate
bad pixel correction algorithm, even when using a single frame. This is how we address bad
pixels for the RLS SR results presented in Section 5. Other bad pixel replacement strategies
that exploit microgrid redundancy have been proposed in [16].

4. AWF SR for microgrid polarimeters

Unlike the RLS, the AWF SR method [8] is non-iterative and has a potentially faster implemen-
tation than the RLS. Here we propose a new type of the AWF SR algorithm [8] for use with
a microgrid imager. As in [8], the microgrid AWF uses a moving observation window on the
HR grid as shown in Fig. 5. The observation window is shown for L = 4 and is populated with
pixels from a single frame for simplicity. With multiple frames of data with motion between
them, the observation window will contain additional sets of pixels from each polarization state,
positioned according to the motion. In general, let the observation window span Wx HR pixel
spacings in the horizontal direction and Wy HR pixel spacings in the vertical direction. All of
the LR pixels of any polarization that lie within the span of this observation window are placed
into an observation vector gi = [gi,1,gi,2, . . . ,gi,Ji ]

T , where i is the window positional index and
Ji is the number of LR pixels within the window span. The samples within the observation
window will be used to estimate the HR pixels within the generally smaller Dx ×Dy sample
estimation window at the center of the observation window, as shown in Fig. 5. Thus, the AWF
SR method is effectively performing nonuniform interpolation and restoration simultaneously.
One of the main differences here, versus the AWF in [8], is that the observation window con-
tains LR pixels from multiple polarizations. Furthermore, at each HR pixel location, we must
estimate all of the polarization states, not just a single value.

The HR pixel estimates for the samples within the estimation window are obtained using a
weighted sum of the LR pixels in the observation window. This is expressed as

d̂i = WT
i gi, (31)

where d̂i = [d̂i,1, d̂i,2, . . . , d̂i,DxDyP]
T and Wi is a Ji ×DxDyP matrix of weights. Each column of

Wi contains weights used to estimate the value of one particular HR pixel at one polarization
state inside the estimation window. The observation window moves across the HR grid in a
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raster scan fashion stepping by increments of Dx and Dy in the horizontal and vertical directions,
respectively (non-overlapping estimation sub-windows).

We wish to employ the minimum mean squared error (MSE) filter weights in Eq. (31). The
additional challenge we face when processing microgrid data is that we must not only consider
the spatial arrangement of samples in a given observation window, but also their polarization
state. Given a correlation model for the observed samples, the minimum MSE weights [8] are
given by

Wi = R−1
i Pi, (32)

where Ri = E{gigT
i } is the autocorrelation matrix for the observation vector and Pi = E{gidT

i }
is the cross-correlation between the true desired vector di and the observation vector. The goal
now is to provide the statistics in Ri and Pi. As in [8], let fi be the noise-free version of gi, such
that gi = fi +ni, where ni is the random noise vector. We shall assume that the noise vector is
zero-mean with independent and identically distributed elements of variance σ2

n . In this case,
the autocorrelation matrix for the observation vector is given by

Ri = E{gigT
i }= E{fifT

i }+σ2
n I (33)

and cross-correlation matrix is

Pi = E{gidT
i }= E{fidT

i }. (34)

To fill the matrices in Eqs. (33) and (34), we need a statistical model to provide the needed
correlations. Consider a correlation model, specifically designed for microgrid data, that incor-
porates knowledge of the spatial separation between samples, and the polarization state of each.
For the desired data, we denote this correlation function as rdθ dφ (x,y). The variables θ and φ
represent the polarization angles of the two samples involved, and x,y represents the spatial
separation. Here we propose the following model

rdθ dφ (x,y) = σ2
θ ,φ ρ

√
x2+y2

θ ,φ , (35)

where σ2
θ ,φ controls correlation between samples at the same spatial location and ρθ ,φ controls

the decay of the correlation with separation distance. We have obtained useful results using
ρθ ,φ = ρ for all θ ,φ , and

σ2
θ ,φ =

{
σ2

p θ = φ
ασ2

p otherwise
. (36)

Note that if α = 0, we assume no correlation between samples of different polarizations re-
gardless of their spatial proximity. This gives rise to an algorithm essentially equivalent to de-
interlacing the microgrid data and applying independent AWF SR [8] to each channel. In most
cases, this is not the best approach, as there is often significant correction across polarization
channels. By letting α = 1, this is equivalent to applying a single AWF to the mosaic microgrid
data as if it were a standard FPA and each pixel represents the same physical quantity. In that
case, spatial separation is the only factor altering the correlation model. This is also not likely
the best approach as samples from the same polarization generally do exhibit higher correlation
than those of different polarizations. Thus, one would want to select α in the range 0 ≤ α ≤ 1
based on expected scene content. A relatively high α is appropriate when we have weakly po-
larized data, like we may see in LWIR. A lower α may be used for more highly polarized data
with a high average DoLP.

Given rdθ dφ (x,y), it can be shown that the cross-correlation function between p(x,y,θ) and
f (x,y,φ), as shown in Fig. 3, can be expressed as

rdθ fφ (x,y) = rdθ dφ (x,y)∗h(x,y). (37)
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The cross-correlation between f (x,y,θ) and f (x,y,φ) is given by

r fθ fφ (x,y) = rdθ dφ (x,y)∗h(x,y)∗h(−x,−y). (38)

By registering the LR frames, the spatial locations and corresponding polarizations of all the LR
pixels that make up gi, which are the same for fi, are known. Thus, the horizontal and vertical
displacements between these samples can be computed. Evaluating Eq. (38) using the displace-
ments and the corresponding polarizations allows us to fill the correlation matrix E{fifT

i }. Next,
Ri can be found from Eq. (33), given the noise variance. Similarly, we compute the displace-
ments between the samples in the estimation window and the LR pixels in the observation
window. With these displacements and the corresponding polarizations, we evaluate Eq. (37)
and complete Pi as given in Eq. (34). Finally, the weights are found using Eq. (32).

As described in [8], there are circumstances where one only needs to compute one set of
weights for processing all the observation windows for an entire output frame. This allows for
very fast processing. This fortunate case occurs when we have global translational motion and
the statistical parameters are assumed to be constant across the image. With global translational
motion, the same spatial pattern of LR samples is observed in each observation window, so
long as the observation and estimation window sizes are an integer multiple of L. If we have
bad pixels, we can simply exclude those from the observation vector gi, so that they do not
contribute to the output. However, this requires that a distinct set of weights be computed around
any bad pixels, as it changes the spatial distribution of samples in the observation window.
If processing speed is critical, a bad pixel replacement algorithm can be employed prior to
AWF filtering [16]. This faster approach is how we address bad pixels for the AWF SR results
presented in Section 5.

An example of some polarimetric AWF filter weights is shown in Fig. 6. The brightest pixel
corresponds to a weight of 1.41 and the darkest is −0.17. The remaining weights are scaled
linearly. For reference, note that the perimeter weights are very close to zero. These weights are
computed for K = 1 frame, P = 4 polarimetric channels, and an upsampling factor of L = 2.
Thus, we assume we have a single microgrid frame and we form an estimate of each polar-
ization at each FPA location. This can be viewed as demosaicing with restoration. This simple
case is shown to make interpreting the weights more straightforward than with mulitple frames
and/or more upsampling. In computing these weights, we assume the noise variance is σ2

n = 1
and σ2

p = 100. The observation window size is Wx =Wy = 10 and the estimation window size
is Dx = Dy = 2. The weights correspond to estimating the upper left pixel in the estimation
window. This location is highlighted with a plus sign in Fig. 6. Each of the four columns in Fig.
6 corresponds to a different polarization sample being estimated for the one spatial location,
and each row corresponds to using a different α in computing the weights. In particular, the
columns from left to right correspond to polarization angles of θ = 0o, 45o, 90o and 135o. The
rows from top to bottom correspond to α = 0, 0.7, 1.0. Note that when α = 0 (top row), the
weights are only nonzero for pixels on the microgrid of the same polarization as the output.
On the other extreme, when α = 1 (bottom row), the weights treat all pixels on the migrogrid
array as equivalent, ignoring their polarization differences. Thus, the output for all polariza-
tions is formed with the same weights, yielding the same output. This would be appropriate
when the DoLP is assumed to be zero, and all polarization channels should be equal. The case
where α = 0.7 (middle row) yields an interesting result, where samples from all polarizations
are combined to form each output, especially when estimating at a location where that polariza-
tion is not measured (columns 2-4). The advantage of using samples with polarizations other
than the one being estimated is that they offer spatial locations not represented by pixels of
like polarization. Spatially close pixels of a different polarization may be more correlated to the
sample we are estimating than ones farther away that have the same polarization. Thus, using α ,
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Fig. 6. AWF filter weights for K = 1 frame, P = 4 channels, Wx = Wy = 10 observation
window, Dx =Dy = 2 estimation window and L= 2 upsampling (single frame demosaicing
with restoration). The weights correspond to estimating the pixel location with the red plus
sign. The columns from left to right correspond to polarization angles of θ = 0o, 45o, 90o

and 135o, respectively. The rows from top to bottom correspond to α = 0, 0.7, 1.0.

we control the weight given to samples with polarizations different than the polarization being
estimated relative to those of like polarization. When multiple frames are present, the picture
is more intricate as samples of various polarizations are distributed potentially nonuniformly
throughout the observation window. However, the principle is the same where α balances spa-
tial correlation with polarization correlation.

We have found that in some cases we can improve the microgrid AWF results by prepro-
cessing the microgrid to compensate for disparate local statistics of the individual channels.
In particular, if we subtract the local means and divide by the local standard deviations of the
individual channels, they tend to exhibit greater correlation. This allows us to use a larger α
and better exploit the spatial sampling diversity provided by the microgrid as shown in Fig. 1.
To better describe this method, let a(i, j) represent a sample from the microgrid array, where
i = 1,2, . . . ,M is the 2× 2 super-pixel index and j is the polarization sample index within the
super-pixel. Let j = 1,2,3,4 correspond to θ = 0o,45o,900,135o, respectively. Local means,
denoted ā(i, j), are estimated by deinterlacing the channels and applying a Gaussian low-pass
filter with standard deviation of σ pixels. Local standard deviations, denoted ã(i, j), are esti-
mated by subtracting the local mean and then using a Gaussian low-pass filter on the squared
difference, and taking the square root of the result. In terms of these variables, the preprocessing
step is expressed as

b(i, j) =
a(i, j)− ā(i, j)

ã(i, j)
. (39)

After SR processing, the local means and standard deviations are interpolated, shifted appropri-
ately to match the HR grid, and reintroduced to the SR result to restore the estimated channels
to their proper dynamic range. Even without SR processing, we have found that a local statis-
tics fusion (LSF) method can be useful as a stand-alone demosaicing approach. In that case, the
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output is given by

b(i, j,k) =

{
a(i, j) j = k

ã j(i,k)
a(i, j)−ā(i, j)

ã(i, j) + ā j(i,k) otherwise
. (40)

Here b(i, j,k) is the output for super-pixel i= 1,2, . . . ,M, position j = 1,2,3,4 within the super-
pixel, and with polarization index k = 1,2,3,4. The variables ā j(i,k) and ã j(i,k) are the mean
and standard deviation, respectively, for super-pixel i and polarization k repositioned through
interpolation to align with spatial position j. Note that the low-pass nature of the statistic images
make them more suited to interpolation than the raw data. This method works best when there
is high correlation between the polarimetric channels, but perhaps a scale and bias difference.

5. Experimental results

In this section, we present a number of experimental results to compare and contrast the perfor-
mance of the AWF and RLS microgrid SR methods with each other and with other single frame
methods. The first set of results are from the LWIR microgrid polarimetric imager described in
Section 2. We also consider data from a visible polarimetric sensor, where we simulate micro-
grid sampling. These data allow for quantitative error analysis.

5.1. LWIR microgrid polarimetric data

The first set of results are shown in Fig. 7 and continue in Fig. 8. A single raw LWIR microgrid
image is shown in Fig. 7(a). The sensor has a number of bad pixels including a stripe of bad
pixels near column 120. The bad pixel map is shown as a red contour in Fig. 7(a). The remaining
images in Figs. 7 and 8 are various estimates of p0 for L = 4. In particular, the result of using
single-frame channel-independent bicubic interpolation is shown in Fig. 7(b). The output using
the single-frame frequency-domain method by Tyo et al [3], which is built upon the work in [2],
is shown in Fig. 7(c). The output for the single-frame LSF method from Eq. (40) with σ = 1 is
shown in Fig. 7(d). The microgrid AWF SR method using only a single frame with ρ = α = 0.7
and σ = 1 produces the result shown in Fig. 7(e). The microgrid RLS SR method using only
a single frame with σ2

n = 1, σ2
s0
= 100, and σ2

s1
= σ2

s2
= σ2

r = 10 produces the result shown
in Fig. 7(f). The selection of the cost function parameters has been informed by quantitative
analysis using simulated data as well as subjective evaluation. Note that the bicubic image is
quite blurred and shows aliasing artifacts. These artifacts are most pronounced on the starboard
wing and vertical stabilizer of the aircraft. Here the leading edges of these surfaces appear
jagged. The Tyo and LSF methods do appear to reduce some of the more obvious aliasing
artifacts. They do this by exploiting the sampling diversity of all polarizations on the microgrid
array. The AWF and RLS outputs using a single frame appear to show further improvements as
they also provide some deconvolution of the system PSF.

To see the impact of α on the microgrid AWF SR method, we show the single frame result
using α = 0.0 and α = 1.0 in Figs. 8(a) and 8(b), respectively. Note that for α = 0.0, the
polarimetric channels are treated independently [8] and the result is similar to that of bicubic
interpolation. Using α = 1.0, the AWF treats all polarimetric channels as being the same. While
this method can sometimes produce a reasonable {s0, j} image, the {s1, j} and {s2, j} Stokes
images are zero or have only low spatial frequency content from the local statistics processing in
Eq. (39). Note that cross-hatching artifacts can be seen in Fig. 8(b), especially near the cockpit
window at the front of the aircraft. These types of artifacts tend to become significantly more
pronounced with α = 1.0 when more input frames are used. The single-frame RLS algorithm
operating on the polarimetric channels independently [5] is shown in Fig. 8(c). Again, the
output looks similar to bicubic interpolation as only samples of one polarization are used. Using
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the independent-channel RLS with 20 input frames gives rise to the output shown in Fig. 8(d).
Here the results are much better. Given a large number of input frames, one can often get
a good result using only samples of polarization matching that of the output. The 20 frame
microgrid AWF output with ρ = α = 0.7 and σ = 9 is presented in Fig. 8(e). Finally, the 20
frame microgrid RLS output with σ2

n = 5, σ2
s0
= 100, and σ2

s1
= σ2

s2
= σ2

r = 10 are shown in
Fig. 8(f). The noise variance term is increased here to add robustness to possible registration
errors. These multiframe results appear to show the best detail on the roofs of the buildings in
the foreground. Many diagonal lines that appear in these images look aliased in most of the
other images.

To illustrate the typical convergence behavior of the microgrid RLS algorithm, the cost func-
tion and its components are shown in Fig. 9 for the single frame LWIR result in Fig. 7(e). Note
that the total cost decreases smoothly with gradient-descent iteration. The observation model
(or data) term also declines with iteration. The Stokes regularization terms actually increase
with iteration. This is because the image estimate becomes sharper than the interpolated start-
ing image as the iterations progress. These terms help keep the final estimate from becoming
overly noisy. Note that the constants in the cost function can be modified to give more or less
weight to any of these components in order to shape the characteristics of the final solution.

The DoLP images calculated from various estimates of p are shown in Fig. 10. Since DoLP
involves all of the polarimetric channels, these results reveal characteristics of the estimates in
all channels. DoLP also tends to expose sampling errors rather dramatically because it is made
up of image differences, as can be seen in Eq. (2). The DoLP images for bicubic interpolation,
the Tyo method, and the LSF method are shown in Figs. 10(a)-10(c), respectively. The DoLP
image for the independent channel RLS method [5] using 20 frames is shown in Fig. 10(d).
Finally, the DoLP images for 20 frame microgrid AWF SR and 20 frame microgrid RLS SR
are shown in Figs. 10(e) and 10(f), respectively. Based on subjective analysis, we believe that
the multiframe microgrid AWF and RLS methods appear to produce the sharpest results with
the least aliasing.

5.2. Visible polarimetric data with simulated microgrid sampling

To allow for quantitative analysis with truth imagery, we use a visible imaging system equipped
with a linear polarization filter. The camera is an Imaging Source DMK 21BU04. This is a
640× 480 8-bit grayscale camera with a Sony ICX098BL CCD sensor with 5.6μm detectors.
The camera is fitted with a Computar 5mm F/1.4 lens. Full frames at each of the four polariza-
tion angles are acquired of an outdoor scene containing two vehicles. The polarization filter is
rotated in 45o increments between acquisition to provide the four full-frame polarization im-
ages. We define these data to be the true p. These data are then put through the observation
model with L = 4 and a noise variance of 1. We use a set of randomly generated shifts and the
PSF in Fig. 4 to create 20 simulated microgrid images. The Stokes intensity image results for
these data are shown in Fig. 11. In particular, one of the simulated microgrid images is shown
in Fig. 11(a). The corresponding true {s0, j} Stokes image is shown in Fig. 11(b). Bicubic inter-
polation yields the result presented in Fig. 11(c). Note that the bicubic interpolation result looks
blurred relative to the true image. Since {s0, j} is an average of the four polarimetric channels,
some of the aliasing artifacts that are more clearly seen in the individual polarimetric channels
are reduced here. The output of the Tyo method is shown in Fig. 11(d) and the 20 frame mi-
crogrid AWF output with ρ = α = 0.7 and σ = 9 is shown in Fig. 11(e). Finally, the 20 frame
microgrid RLS output with σ2

n = 1, σ2
s0
= 100, and σ2

s1
= σ2

s2
= σ2

r = 10 is shown in Fig. 11(f).
Cross-sections of the true image {s0, j} from Fig. 11 as well as several of the corresponding

estimate images along Row 234 and about Column 67 are shown in Fig. 12. These cross-
sections are centered about a dark line in the sidewalk concrete, providing us with approximate
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Fig. 7. LWIR microgrid imagery results. (a) Raw microgrid image with bad pixel mask
shown in red. Estimates of p0 using an upsampling factor of L= 4 are shown for (b) bicubic
interpolation of polarimetric channel g0(1) (c) Tyo et al method from [3] (d) LSF method
(e) single frame AWF with correlation model parameters of ρ = α = 0.7 (f) single frame
RLS.
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Fig. 8. LWIR microgrid imagery results continued. (a) Single frame AWF with α =
0.0 (b) single frame AWF with α = 1.0 (c) independent-channel single-frame RLS (d)
independent-channel 20 frame RLS (e) 20 frame microgrid AWF SR with ρ = α = 0.7 (f)
20 frame microgrid RLS SR.
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Fig. 9. Microgrid RLS SR algorithm cost function and its components for the single frame
LWIR result in Fig. 7(e).

line spread functions. These provide some insight into the resolution characteristics of the vari-
ous image estimates. Here it appears that the microgrid RLS provides the narrowest line spread,
followed closely by the microgrid AWF. The single frame methods clearly have much broader
line spread functions. This is to be expected as these methods do not include any deblurring.
It is interesting to note that the Tyo method does appear to have a more favorable line spread
function than bicubic interpolation.

The corresponding DoLP images for the key methods operating on the simulated microgrid
data are provided in Fig. 13. The true DoLP image is shown in Fig. 13(a). The DoLP generated
with bicubic interpolation is shown in Fig. 13(b). Here, the aliasing artifacts are exposed, espe-
cially along edges in the scene content. The DoLP images for Tyo and LSF are shown in Figs.
13(c) and 13(d), respectively. The DoLP image for the 20 frame microgrid AWF is shown in
Fig. 13(e) and the DoLP image for the 20 frame microgrid RLS is shown in Fig. 13(f). Based on
subjective analysis, we believe that the multiframe AWF and RLS methods appear to provide
the best estimates of the true Stokes intensity image and DoLP image.

The MSEs between the true Stokes image and the various estimates are shown in Fig. 14 as
a function of the number of input frames. In particular, the MSEs for {s0, j}, {s1, j}, and {s2, j}
are shown in Figs. 14(a)-14(c), respectively. Note that the Tyo and LSF methods do outperform
bicubic interpolation, as expected. Furthermore, the single-frame microgrid AWF with α = 0.7
and the microgrid RLS methods do better yet. We believe this is in part due to the fact that these
methods incorporate knowledge of the PSF and perform some deblurring. As more input frames
are used, the microgrid AWF and RLS SR estimates improve, with diminishing returns as the
sampling grid gets well populated by numerous shifted frames. Note also that the α = 0.7 result
outperforms the independent channel AWF (α = 0.0). The multichannel RLS also outperforms
its independent channel counterpart [5]. It is also interesting to note that the AWF with α = 1.0
provides a relatively low MSE on {s0, j}, but does a poor job with {s1, j} and {s2, j} that does
not improve with input frames. This is because with α = 1.0, the {s1, j} and {s2, j} estimates
are nearly zero, save for the impact of the local statistics processing beginning with Eq. (39).
These results suggest that when estimating {s0, j} with a relatively small number of frames, it
is beneficial to assume more correlation between channels (i.e., use a higher α) to more fully
exploit the spatial sampling diversity offered by the different channels. However, this comes
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Fig. 10. DoLP images for LWIR microgrid data. (a) Bicubic interpolation (b) Tyo et al (c)
LSF method (d) independent-channel 20 frame RLS (e) 20 frame microgrid AWF SR with
ρ = α = 0.7 (f) 20 frame microgrid RLS SR.
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Fig. 11. Visible polarimetric data with simulated microgrid sampling. (a) Simulated micro-
grid frame (b) true {s0, j} image for an upsampling factor of L= 4 (c) estimate using bicubic
interpolation (d) Tyo et al method (e) 20 frame microgrid AWF SR with ρ = α = 0.7 (f)
20 frame microgrid RLS SR.
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Fig. 12. Cross-sections of the true image {s0, j} and corresponding estimates along Row
234 and about Column 67 from Fig. 11. These plots represent approximate line spread
functions and provide some insight into the resolution of the various estimates.

at the expense of the polarization content in {s1, j} and {s2, j}. We also see that when enough
frames are available, the benefit of multichannel processing is somewhat reduced, due to the
abundance of spatial samples of each polarization.

On whole, the MSE results show that the RLS outperforms the AWF. We believe this is
in part due to the finite window size of the AWF as well as the natural way in which the
RLS incorporates the redundancy constraint in the cost function. However, the AWF offers a
significant computational savings and yields a very competitive result with similar MSE. To
illustrate the computational savings, consider the following run times using MATLAB on a PC
with an Intel Core i7 CPU with 3.07GHz processor. For the 20 frame AWF, the run time was
0.31s per output frame. For the 20 frame RLS, the run time was 82.46s per output frame. For
reference, the run times per output frame were 0.093s, 0.071s, and 0.133s for bicubic, Tyo, and
LSF, respectively.

Finally, the MSE results in Fig. 15 show how the α parameter impacts the MSE performance
of the microgrid AWF filter on the three Stokes images. These results are for the 20 frame
microgrid AWF output with ρ = 0.7 and σ = 9. Note that the MSE on {s0, j} is minimized with
an α close to, but distinctly less than, one. The MSE on the other Stokes images is obtained
with an α near 0.5. Again, this shows us that if one assumes too much correlation between
channels (i.e., high α), the pure polarimetric content in {s1, j} and {s2, j} is degraded. On the
other hand, assuming too little correlation predominantly hurts our estimate of {s0, j}. We have
found a good compromise in the value used in our earlier results of α = 0.7.

6. Conclusions

Microgrid imaging systems are likely to suffer from undersampling to a greater extent than
their single-channel counterparts. We have presented two new SR algorithms designed for the
restoration of microgrid polarimetric data in the presence of aliasing, blur and noise. These are
the microgrid RLS and microgrid AWF algorithms. We have also presented the simple LSF
demosacing algorithm based on local statistics. Each in their own way, the new microgrid SR
methods exploit the sampling diversity offered by the microgrid pattern and correlation between
different polarization channels. Unlike simpler independent-channel methods, the new micro-

#147072 - $15.00 USD Received 6 May 2011; revised 1 Jun 2011; accepted 2 Jun 2011; published 20 Jun 2011
(C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS  12957



50 100 150 200 250 300

50

100

150

200

(a)

50 100 150 200 250 300

50

100

150

200

(b)

50 100 150 200 250 300

50

100

150

200

(c)

50 100 150 200 250 300

50

100

150

200

(d)

50 100 150 200 250 300

50

100

150

200

(e)

50 100 150 200 250 300

50

100

150

200

(f)

Fig. 13. DoLP images for simulated microgrid data. (a) True DoLP image (b) bicubic in-
terpolation (c) Tyo et al method (d) LSF method (e) 20 frame microgrid AWF SR with
ρ = α = 0.7 (f) 20 frame microgrid RLS SR.
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Fig. 14. MSE versus number of input frames for the Stokes images from the simulated
microgrid imagery (a) {s0, j} (b) {s1, j} (c) {s2, j}.
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Fig. 15. MSE versus α for the 20 frame microgrid AWF output with ρ = 0.7.

grid algorithms use samples from all polarizations to estimate each output at each polarization.
This allows the new microgrid algorithms to outperform their independent channel counter-
parts. By using multiple frames, when available, we further exploit sampling diversity provided
by relative motion between the scene and the FPA. Even with a single frame, the AWF and RLS
provided lower MSE than the other single frame methods tested here. As the number of input
frames increases, the algorithms perform even better. We did observe that independent-channel
SR processing can do reasonably well when a large number of input frames are available. How-
ever, the microgrid approach using all the polarizations is critical to combatting aliasing with
a relatively small number of input frames. Operating with a small number of input frames is
desirable in many applications because we are less likely to encounter scene motion, motion
parallax, or other changes that make registration more difficult. Finally, the microgrid AWF SR
method has a low computational complexity for translational motion. It is much faster than the
RLS in that case, but enjoys a very similar performance, as seen in the subjective and quantita-
tive results presented here.

Acknowledgments

This work was sponsored under AFRL contract FA8650-10-7028. The authors would like to
thank Dr. Kenneth Barnard at AFRL for assisting in getting this project underway. We would
also like to thank Ernie Atkins at DRS Sensors and Tracking for providing the LWIR data.
Finally, thanks to Charles LaCasse for providing the MATLAB implementation of the Tyo et al
polarimetric demosaicing algorithm used here.

#147072 - $15.00 USD Received 6 May 2011; revised 1 Jun 2011; accepted 2 Jun 2011; published 20 Jun 2011
(C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS  12960


	University of Dayton
	eCommons
	7-2011

	Super-Resolution for Imagery from Integrated Microgrid Polarimeters
	Russell C. Hardie
	Daniel A. LeMaster
	Bradley Michael Ratliff
	eCommons Citation


	untitled

