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Adaptive Wiener filter super-resolution of color 
filter array images 

Barry K. Karch1,* and Russell C. Hardie2 
1Air Force Research Laboratory, AFRL/RYMT, 2241 Avionics Circle, Wright-Patterson AFB, OH 45433, USA 

2Dept. of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45459-0232, 
USA 

*barry.karch@us.af.mil 

Abstract: Digital color cameras using a single detector array with a Bayer 
color filter array (CFA) require interpolation or demosaicing to estimate 
missing color information and provide full-color images. However, 
demosaicing does not specifically address fundamental undersampling and 
aliasing inherent in typical camera designs. Fast non-uniform interpolation 
based super-resolution (SR) is an attractive approach to reduce or eliminate 
aliasing and its relatively low computational load is amenable to real-time 
applications. The adaptive Wiener filter (AWF) SR algorithm was initially 
developed for grayscale imaging and has not previously been applied to 
color SR demosaicing. Here, we develop a novel fast SR method for CFA 
cameras that is based on the AWF SR algorithm and uses global channel-to-
channel statistical models. We apply this new method as a stand-alone 
algorithm and also as an initialization image for a variational SR algorithm. 
This paper presents the theoretical development of the color AWF SR 
approach and applies it in performance comparisons to other SR techniques 
for both simulated and real data. 
©2013 Optical Society of America 
OCIS codes: (100.0100) Image processing; (100.6640) Superresolution; (100.3020) Image 
reconstruction-restoration. 
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1. Introduction 

Many commercial visible color cameras are designed using a single focal plane array (FPA) 
with a color filter array (CFA) to filter for red, green, and blue (RGB). Cameras that divide 
the focal plane by spatial filter arrays can be called division-of-focal-plane (DoFP) cameras. 
The most common CFA-based DoFP camera was developed by Bryce Bayer at Eastman 
Kodak in 1976 [1]. Figure 1 shows an example Bayer CFA pattern. The pattern is repeated 
over a 2 2× arrangement, where each 2 2× filter pattern is defined RGGB, BGGR, RGBG, or 
GRGB (R = red, G = green, B = blue). This provides color information across any image but 
two issues arise. First, color information is not captured simultaneously at the same spatial 
location for all colors. Each detector element only collects photons for one color, resulting in 
a mosaic pattern. The other two colors must be estimated at that location. Extensive research 
had gone into addressing this demosaicing challenge. Good demosaicing overviews are 
provided in [2–4]. A second issue with DoFP designs is spatial sampling. Typical grayscale 
camera designs attempt to balance detector array sampling with other factors, such as signal-
to-noise ratio (SNR). This generally results in a camera that is undersampled relative to 
Nyquist criterion, producing aliased images [5]. Spatial sampling challenges are further 

(C) 2013 OSA 12 August 2013 | Vol. 21,  No. 16 | DOI:10.1364/OE.21.018820 | OPTICS EXPRESS  18821
#188364 - $15.00 USD Received 8 Apr 2013; revised 12 Jun 2013; accepted 20 Jun 2013; published 1 Aug 2013



exacerbated by the filter mosaic. As shown in Fig. 1, the color channel sampling interval, sδ , 
is twice the sampling interval of the basic detector array. 

 
Fig. 1. Bayer CFA showing color channel and fundamental detector sampling. 

Extensive multi-frame super-resolution (SR) reconstruction research has been performed 
to increase effective sampling frequency for grayscale imaging. The fundamental concept is 
to create a high resolution (HR) image from a series of shifted low resolution (LR) aliased 
frames. Subpixel motion between each LR image is used to increase the effective image 
sampling rate. A thorough SR overview is given in [6] and a compendium of recent research 
is provided in [7]. Most SR methods include three components: multi-frame registration, 
interpolation, and image restoration. These components may be implemented separately or 
simultaneously, depending on the approach. Multi-frame registration is a critical step because 
knowledge of the relative position of each LR frame is key to utilizing multiple frames of 
data. Because SR reconstruction is generally an ill-posed inverse problem, each method will 
typically make assumptions regarding prior information of the HR image to be estimated and 
knowledge of the imaging system parameters. 

Many SR methods are based on iterative techniques and tend to be computationally-
intensive. Such methods may not be currently amenable to real-time implementation. Another 
category of methods is based on non-uniform interpolation. These tend to be computationally 
simple and provide potentially fast, possibly real-time, implementation [8–15]. The general 
concept is to register observed LR frames and notionally place all frame samples onto a 
common HR space. Unless shifts are strictly controlled, this results in non-uniform sampling. 
The samples are then used to interpolate onto a uniform HR grid. Methods typically apply a 
restoration step after interpolation to reduce the effects of the system point spread function 
(PSF). A fast adaptive Wiener filter (AWF) based SR approach for grayscale imagery was 
developed by Hardie [16]. Hardie et al., [17] extended and applied this approach to multi-
channel microgrid polarimeter data. AWF SR was extended for full affine inter-frame motion 
in [18]. AWF SR demonstrated comparable performance to more computationally-intensive 
iterative SR methods. The approach combines interpolation and restoration in a spatially-
adaptive weighted sum. This provides computational advantages and robustness to possible 
interpolation errors that might be exacerbated by an independent restoration step. 
Additionally, some non-uniform interpolation methods rely on simplifying registration and 
interpolation by quantizing observed samples onto a uniform HR grid [19,20]. In contrast, the 
AWF SR method can make full use of registration information by allowing samples to be 
located at any continuous location in a continuous common HR space. 

Color multi-frame SR is similar to demosaicing and can be viewed as a multi-frame 
extension combining demosaicing with SR. Many published approaches are variational, using 
iterative optimization methods to minimize a specific cost function. The primary difference in 
these approaches is the implementation of the data fidelity term and regularization methods 
[21–28]. Farsiu, et al. [24], use a maximum a posteriori (MAP) estimation framework to 
create a fused SR and demosaicing method called “robust super-resolution”. The method 
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minimizes a multi-term cost function that includes a data fidelity term and multiple 
regularization terms. A variation for accelerating the solution is used for the special case 
where input images are limited to translational motion and the system has a space invariant 
PSF. Results show good overall performance using this iterative method. 

In addition to variational approaches for color CFA SR, [29] proposes a single step 
reconstruction by non-uniform interpolation in the luminance and chrominance domains. The 
work in [30] develops an artificial neural network for joint multi-frame demosaicing. The 
development in [31] proposes a spatially adaptive method using partition weighted sum 
(PWS) filtering for multi-frame CFA demosaicing and grayscale SR, quantizing registration 
parameters to an HR grid. 

In this paper, we extend grayscale fast AWF SR reconstruction [16] to multi-channel color 
imaging. The proposed method employs novel parametric correlation models to exploit all 
observed data in multi-frame Bayer CFA images and includes a separate wavelength-
dependent system PSF for each of the 3 color channels. One alternative approach would be to 
apply the grayscale AWF SR method independently to each color channel. However, we 
show in Section 4 that such independent channel AWF SR processing produces inferior 
results because it does not exploit key cross-channel correlation. 

The proposed method registers multiple Bayer images to populate a common HR grid 
with samples from all color channels. The sample positions are not quantized to a finite grid, 
allowing us to exploit the full precision provided by the registration. A weighted sum of 
samples in a moving window on the HR grid forms the estimate for each output pixel in each 
channel. The minimum mean square error (MSE) weights are employed based on one of 
several proposed correlation models. We examine the benefit of placing observed samples 
onto a continuous HR space versus quantizing sample locations to the HR grid. We also show 
the potential for using the color AWF SR output as an initialization image for a simple 
variational method to improve the results. As far as we are aware, this paper represents the 
first development of AWF SR specifically for Bayer CFA cameras. 

The remainder of this paper is organized as follows. In Section 2, the demosaicing SR 
problem is formulated. We define the observation model and how it incorporates the system 
PSF with sampling. We develop the AWF SR algorithm for use with CFA cameras in Section 
3. Section 4 shows experimental results with comparison to other approaches for both real 
and simulated input data with translational inter-frame motion. Section 5 provides a summary 
and conclusions. 

2. Problem formulation 

2.1 Observation models 

We start by presenting a forward system observation model, shown in Fig. 2. We assume the 
imaging system can be represented as a linear system. A wavelength-dependent continuous 
two-dimensional (2D) scene ( , , )d x y λ  is imaged by a system that includes motion between 
frames. Three color filters are applied, creating 3 separate continuous signals. Motion is 
captured for each of P image frames, resulting in global geometric transformation of 

( , , )d x y λ , where ps contains the motion parameters for frame p  (out of P total frames). The 
output is convolved with a wavelength-dependent system PSF, represented by ( , )jh x y , 
where j designates a unique PSF for each of the color filtered image. Each of the 3 continuous 
image outputs is sampled according to the detector array CFA patterning, creating ( )pf . This 
term is in lexicographical notation and p  denotes frame number. We assume the frame 

( )pf is undersampled due to the physical detector array and CFA. Finally, additive noise 
( )pn is used to account for noise sources, resulting in the observed data ( )pg  for 

1, 2,...,p P= . 
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We desire a noiseless full 3-color output image that is not degraded by the system and is 
spatially sampled at a rate to avoid aliasing. This ideal output is shown as a 3 1MN × vector, 
z , containing the desired color pixel values. We can also view the data as an 3M N× × data 
cube, where M and N are the number of samples in the x and y directions, respectively. 

Frame
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Block “Mosaic”
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(sub-Nyquist)

Uniform Ideal
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Fig. 2. Forward observation model relating the desired continuous image to the observed data. 

To develop the AWF SR method, we employ the alternative observation model in Fig. 3. 
Here we commute the motion and PSF, allowing us to combine motion and sampling 
operations into a single non-uniform sampling block, as shown. Commutation of motion and 
PSF holds true for translational motion and spatially invariant PSF [18]. Furthermore, it also 
holds for rotational motion when the PSF is circularly symmetric and approximately for full 
affine motion if zoom and shear are limited [18]. Let us assume that with proper registration 
for translation [16], or affine motion [18], we have knowledge of the location and color for 
every pixel in a common HR space, f (and hence, = +g f n ). Accurate knowledge of system 
PSF and additive noise will also be required. 
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Fig. 3. Alternate forward observation model combining frame motion and “mosaic” sampling. 

2.2 System PSF 

The full system transfer function accounts for all imaging system effects. The effects can 
include [32], “optical aberrations, diffraction, wavefront irregularities, optical blur, finite 
sampling width, system stabilization (jitter), pointing system drift, atmospheric effects, and 
other system-specific modulation transfer function (MTF) limiters.” Here we assume 
diffraction and spatial detector integration are the primary contributors and those are the only 
two factors included in the PSF model. 
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The FPA detector element causes spatial averaging of the irradiance impinging upon it 
[33]. For a rectangular element, the detector PSF is 

 
1( , ) rect , ,d

x yh x y
ab a b

 =  
 

                                              (1) 

where a and b are the active detector dimensions in the x and y directions, respectively [34]. 
Therefore, the detector optical transfer function (OTF) is 

 2

sin( )sin( )( , ) sinc( , ) ,
( )( )d

au bvH u v au bv
au bv

π π
π

= =                                 (2) 

where ( , )u v  are the spatial frequencies in the ( , )x y  directions, respectively. 
The OTF of an unobscured circular aperture, diffraction-limited optical system is 

 

2
12 cos 1 ,

( , ) ,

0, otherwise

c
o c c cH u v

ρ ρ ρ ρ ρ
π ρ ρ ρ

−
       − − ≤     =      
   

                         (3) 

where 2 2x yρ = +  and cρ  is the optics cutoff frequency, 

 1 (cyc/mm).
#c f

ρ
λ

=                                                   (4) 

The parameter λ is the wavelength of light into the system and # of f D= is the optical f-
number, where f is the effective focal length and oD is the effective optics diameter. 

Figure 4 shows examples of the MTFs for these functions and resulting system MTF for 
0.55 , # 8.0m fλ µ= = , and 5.0a b mµ= = . The image will always be band-limited to cρ  

even though the overall shape of the system OTF, ( , )H u v , is impacted by both diffraction 
and detector OTFs. The cutoff frequency in this example is 227 cycles/mmcρ ≈  . 

2.3 Sampling, aliasing, and SR 

According to the Nyquist Sampling Theorem [35], a band-limited image can be uniquely 
determined from its discrete samples if it is sampled at 

 1 2 ,c
s

ρ
δ

≥                                                            (5) 

where sδ is the spatial sampling interval and1 sδ is the spatial sampling frequency. In the prior 
example, the Nyquist rate is 2 454 cycles/mmcρ =  , which is a sample interval of 2.20 mµ . 
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Fig. 4. MTF of the example detector, optical diffraction, and total system. 

For a single color image using a Bayer CFA, the spatial sampling pitch, sδ , is based on the 
detector pitch and CFA as shown in Fig. 1. For a 100% fill factor FPA, detector sampling is 
equal to the detector element size, anda b  , in the x and y directions, respectively. The CFA 
doubles the detector sampling for two color filters. In the example, the sampling interval for 
red and blue are 2 10a mµ= , or 100 cycles/mm  sampling frequency and 
50 cycles/mm folding frequency. Comparing the physical system and required sampling to 
avoid aliasing, the system is undersampled by a factor of 10 2.2 4.5m mµ µ ≈ . Matching 
optical f/# to the physical detector sampling to avoid any aliasing would require an f/40 
system. High f/# systems are typically undesirable because they produce lower signal energy 
at the detector than low f/# systems. In addition, if the high f/# is achieved with a large focal 
length, the field of view is reduced. For these and other reasons, lower f/# systems are 
generally preferred and some aliasing is usually tolerated in the design [5]. As seen in this 
example, single frame imaging systems are typically undersampled. Producing smaller 
detector elements is an area of on-going research, but smaller detector area reduces signal 
energy for a given integration time. Even if there is sufficiently small detector spacing to 
avoid undersampling, it may not be desirable because of signal-to-noise considerations. 

Multi-frame SR seeks to overcome these sampling issues by using multiple LR images to 
increase the effective sampling rate. A simple example might be 4 LR images shifted by 
exactly ½ the sampling interval in both spatial directions. Combining all LR image samples 
results in a single image with twice the sampling frequency in each direction. Subpixel 
motion in typical imaging applications is not as well-controlled as this example, so some 
method of subpixel registration must be used to obtain accurate knowledge of the LR inter-
frame motion. 

3. Color AWF SR algorithm 

3.1 Full 12-parameter, 3 PSF AWF SR model 

The objective of the color AWF SR algorithm is to use all the LR samples from every color 
channel within a sliding “observation” window to estimate all the HR color channel samples 
within an “estimation” window inside the observation window. Figure 5 shows an example 
for a general 4-channel DoFP camera with three LR input frames and translational motion. 
Each LR frame sample is represented by a specific shape and each color channel is by a 
specific color (red, blue, orange, green). This example may represent a Bayer CFA if the 
green channels in the CFA are divided into two separate channels (one shown as green, the 
other as orange). The HR grid is shown in blue dashed lines. In general, the LR frame 
samples will fall on continuous locations and not be constrained to lie on the HR grid. 
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Fig. 5. Example observation & estimation windows for 3 LR frames of 4-channel DoFP 
sensor. 

For multiple frames with motion between frames, the observation window contains 
samples from each color. The observation window covers byx yW W  HR grid pixels and the 
estimation window is byx yD D  HR grid pixels. We keep andx yW W  integer multiples of the 
upsampling factor, L , defined as the ratio between the desired HR grid sample spacing to any 
observed color channel sample spacing, in each spatial directions. All samples of any color 
contained in the observation window are included in the vector ,1 ,2 ,[ ]T

i i i i Kg g g=g  for 

the thi observation window, where K  is the number of LR samples (of any color) in the 
observation window. For translational motion, the observed sample pattern is periodic for 
every observation window. For P input frames, 

 2 , .x yPW W
K i

L
= ∀                                                       (6) 

We use a weighted sum of the samples in ig to estimate the HR pixels for all color channels 

within the estimation window, ,1 ,2 ,
ˆ [ ]

x y

T
i i i i D D Cd d d=d  , where C  is the number of 

color channels, such that 

 ˆ .T
i i i=d W g                                                           (7) 

The weighting matrix, iW , is of size x x yK D D C  . Each column of iW  (row of T
iW ) has the 

weights to estimate one particular HR sample of one color channel within the estimation 
window from all the observed samples of all color channels in the thi observation window. 
We need to find iW  that produces some optimal estimate for each estimation window. For 
AWF, we want to find weights that provide the minimum MSE. The additional challenge for 
color AWF is that we must consider both the spatial arrangement of observed samples and 
their respective color channel. 

It can be shown through the orthogonality principle [36] that the minimum MSE weights 
are given by 

 1 .i i i
−=W R P                                                           (8) 

Here, { }T
i i iE=R g g is the correlation matrix for the observation vector, ig , 

and { }T
i i iE=P g d is the cross-correlation between the desired vector, id , and ig . From the 
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alternate observation model, let if be the noise-free version of ig (i.e., i i i= +g f n ), where in is 
the random noise vector. We assume that in  is zero-mean, uncorrelated Gaussian noise with 
independent and identically distributed elements and variance 2

nσ . We find (see Appendix A) 

 2{ } ,T
i i i nE σ= +R f f I                                                     (9) 

where I is the identity matrix. Also (see Appendix B), 

 { }.T
i i iE=P f d                                                          (10) 

Assuming we know or can estimate 2
nσ , we need to find the elements of { }T

i iE f f  and { }T
i iE f d . 

For color AWF, we need to consider the color channel in both if  and id . The elements of 
{ }T

i iE f f  are samples of the continuous autocorrelation function, 
( , )

j kf fr x y where j and k designate the specific color channels of the samples involved. For 

clarity, we define the condition when j k=  the same-channel autocorrelation and 
when j k≠ , the cross-channel autocorrelation. In a similar manner, the elements of 

{ }T
i iE f d are samples of the continuous cross-correlation function, ( , )

j kd fr x y between the 

noise-free observation if and the desired data id . We call the condition when j k= the same-
channel cross-correlation and when j k≠ , the cross-channel cross-correlation. 

Since each color channel has a unique PSF, the correlation function development requires 
application of the appropriate channel PSF. Assuming a stationary process and linear space-
invariant system, the autocorrelation function is (see Appendix A) 

 ( , ) ( , )* ( , )* ( , ).
j k j kf f d d j kr x y r x y h x y h x y= − −                                 (11) 

Note that for symmetric and real PSFs, ( , ) ( , )
k j j kf f f fr x y r x y= . 

The cross-correlation function is (see Appendix B) 

 ( , ) ( , )* ( , ).
j k j kd f d d kr x y r x y h x y=                                           (12) 

We also determine 

 ( , ) ( , )* ( , ).
k j j kd f d d jr x y r x y h x y=                                           (13) 

Note that ( , ) ( , )
k j j kd f d fr x y r x y≠  for j k≠  (i.e., cross-channel cross-correlation). 

If we know the channel PSFs and know, or can estimate, the desired autocorrelation 
functions, ( , ), ( , )

j kd dr x y j k∀ , we can calculate the color AWF weights. These autocorrelation 
functions can be developed by multiple methods, including empirical modeling using 
representative training data. Here we use a parametric model. An autocorrelation model often 
used in image processing [37] is a radially symmetric model given by 

 
2 22

, ,( , ) ,
j k

x y
d d j k j kr x y σ ρ +=                                                (14) 

where 2
,j kσ  controls correlation between two color channels at the same spatial location and 

,j kρ controls the exponential decay with distance between the observed sample of color 
channel k  and the estimated sample of color channel j . 
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Figure 6 shows examples of the desired autocorrelation function, noise-free observed 
autocorrelation function, and cross-correlation function. Here j k r= =  (red) with 2

, 670r rσ =  
and , 0.45r rρ = . The PSF parameters are those from the PSF example of Section 4.1. We see 

how 2
,j kσ  and ,j kρ  influence the desired autocorrelation in Fig. 6(a) and the impact that the 

system PSF has on the observed autocorrelation in Fig. 6(b) and cross-correlation in Fig. 6(c). 

(b) (c)

(a)

 

Fig. 6. Examples of the continuous (a) desired autocorrelation, (b) noise-free observed 
autocorrelation, and (c) cross-correlation models. 

We have 3 color channels for the Bayer CFA, so 2
,j kσ and ,j kρ each have 6 possible 

combinations (RR, GG, BB, RG, RB, and GB). Therefore, we have 12 separate parameters in 
the desired autocorrelation function models. These 12 parameters can be selected as constants 
spatially across the entire observed image set (global statistical model) or as variables that 
change for each estimation window. The global statistical model is desirable because it, along 
with global translational motion, results in the requirement to compute only one set of 
weights for processing all observation windows in the output SR image [16]. 

Attempting to optimize 12 parameters in the global statistical model can be challenging 
for a single set of LR images. Additionally, this high number of parameters would need to be 
re-optimized as the input image sets change. It would be valuable to find simplifications to 
the autocorrelation model in order to reduce the number of parameters that need to be 
optimized for the global statistical model. These model parameter reductions rely on 
assumptions of the statistical relations involved in the autocorrelation model. 

3.2 Reduced 3-parameter, 1 PSF AWF SR model 

To assess the possibility of simplifying the correlation model in Eq. (14) while maintaining 
reasonable performance, we develop a 3-parameter model. We use a single value for ,j kρ , 

 , .j kρ ρ=                                                             (15) 

Two parameters are used for correlation of two channels at the same spatial location, 
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Basically, we assume the spatial parameter, ρ , is the same for any color pair. We use 2
corrσ to 

control maximum correlation for j k= . The term α  is a weight to reduce 2
corrσ  when j k≠ . 

This parameter is set in the range 0 to 1. When 0α = , the model assumes no correlation 
between color channels. When 1α = , the model assumes identical correlation of cross-
channel data and same-channel data. This is analogous to applying grayscale AWR SR to the 
CFA image as though it were a standard non-mosaiced array. 

As a further simplification, we assume identical PSF for all colors. This isn’t true because 
PSF is wavelength dependent, but it simplifies the algorithm and we found relatively good 
performance is maintained. Here we model PSF at a center (green) wavelength, 0.55 mλ µ= . 

3.3 Reduced 6-parameter, 1 PSF AWF SR model 

To examine potential improvements over the simpler 3-parameter AWF SR, we define a 6-
parameter 1 PSF correlation model from Eq. (14) by defining ,j kρ as: 

 ,
,

,

,

,
, R, G

.
, R, B
, G, B

corr

r g
j k

r b

g b

j k
j k
j k
j k

ρ
ρ

ρ
ρ
ρ

=
 = ==  = =
 = =

 
  
  
  

                                              (17) 

We allow the spatial decay parameter, ,j kρ , to vary depending on the ,j k pairing. We use one 
parameter for j k= (same-channel) and different parameters when j k≠ (cross-channel). We 
keep the same assumption on 2

,j kσ as the 3-parameter model in Eq. (16). Additionally, we use 
the single PSF assumption of the 3-parameter 1 PSF model. 

4. Experiments 

We present experimental results using both simulated and real data. Results of several SR 
methods are compared. The proposed color AWF SR is implemented using the full 12-
parameter 3-PSF correlation model, as well as simpler 6- and 3-parameter 1 PSF correlation 
models. We compare the performance of color AWF SR to the independent color channel 
AWF (no cross-channel correlation is exploited) and several other SR methods. Single frame 
demosaic/interpolation is applied using the built-in MATLAB “demosaic” function followed 
by cubic spline interpolation on each color channel. Demosaicing provides 2×  upsampling, 
so interpolation is performed to match the output size of the color AWF SR methods. 

A variational method using regularized least squares (RLS) is included. This is a 
multichannel extension to the method detailed in [34]. Here the only regularization parameter 
is a spatial smoothness constraint and RLS is performed independently on each color channel. 
While this method is simple, it does not fully exploit inherent cross-channel color correlation. 
Finally, we present results from two SR methods detailed in [24] and briefly described in 
Section 1. These are the one-step Shift & Add SR and Multi-Dimensional Signal Processing 
(MDSP) fast variational MAP-based SR (initialized with Shift & Add). Software for these 
methods is available from [38]. 

For the experiments, we limit inter-frame motion to only translational motion. This results 
in a non-uniform sampling pattern that is identical for every observation window. Therefore, 
we only compute one set of weights for all observation windows, increasing computational 
efficiency of AWF SR. Additionally, we compare performance with methods of [24], which 
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assume translational motion. The proposed color AWF SR can be applied to limited affine 
motion [18], but here we focus on translational motion with emphasis on exploring the 
correlation models. 

4.1 Simulation experiment #1: color AWF SR model complexity study 

To quantify and compare AWF SR performance, simulated experiments are presented. We 
use the full-color (24-bit color) Kodak lighthouse image shown Fig. 7(a). The picket fence in 
the image provides spatial structures that are beneficial to examining SR performance. 

 
Fig. 7. Image data used in simulation experiment #1. (a) Full-color (24-bit) high resolution 
image, (b) sample simulated LR Bayer CFA image, and (c) sample red color channel image. 

The image is degraded as follows. The image is convolved with distinct PSF functions for 
each color channel with the PSF parameters shown in Table 1. Based on Eqs. (4) and (5), the 
channels are undersampled by 8.6× , 10.2× , and 12.4×  for the red, green, and blue channels, 
respectively. We found good results when the SR resolution enhancement is approximately 
equal to the undersampling level, so the upsampling factor for SR is set to 8L = . 

Table 1. PSF parameters for simulation experiment #1 

Parameter f/# λ (r,g,b) 
(μm) 

Detector Active Size 
(μm) 

Native Detector Pitch 
(μm) 

Value 4.0 [0.65, 0.55, 0.45] 5.6 x 5.6 5.6 x 5.6 

We perform image shifting, decimation, and color channel mosaicing to create 10P = LR 
images simulating multi-frame Bayer CFA data. Finally, we add white Gaussian noise with a 
noise variance 2 10.0nσ = . A sample Bayer image is shown in Fig. 7(b), where the mosaiced 
grid is apparent. Figure 7(c) shows the red channel separated from the mosaic pattern for a 
single LR image. The color channel is 8L =  times smaller in each spatial direction compared 
to the original HR image. 

Table 2. Model parameters for color AWF methods 

Method 2
,r rσ  2

,g gσ  2
,b bσ  2

,r gσ  2
,r bσ  2

,g bσ  ,r rρ  ,g gρ  ,b bρ  ,r gρ  ,r bρ  ,g bρ  

12-Par. 
3-PSF 670 630 490 680 600 570 0.45 0.45 0.55 0.40 0.40 0.45 

6-Par. 
1-PSF [630 630 630] [650 650 650] [0.50 0.50 0.50] 0.45 0.40 0.45 

3-Par. 
1-PSF [700 700 700] [650 650 650] [0.70 0.70 0.70 0.70 0.70 0.70] 

Indep. 
AWF 850 730 620 - - - 0.45 0.40 0.45 - - - 

We include three color AWF reconstruction methods utilizing the global statistical model: 
12-parameter 3-PSF model, 6-parameter 1-PSF model, and 3-parameter 1-PSF model. The 12 
parameters used for each model and the independent channel AWF SR method in this 
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experiment are shown in Table 2. The brackets designate groups of parameters set to the same 
values so that the reduced parameter set is readily apparent in the 6-parameter and 3-
parameter models. The parameters for each model are found by an optimization routine to 
search for parameters producing the lowest MSE. Multiple simulations with varying random 
shift patterns are performed for each method. The mean of the best parameters are used in this 
experiment. The MDSP code requires setting 6 parameters for tuning the algorithm [24]. We 
found good visual results for 0.002β = , 0.9α = , 1P = , ' 0.01λ = , '' 150λ = , and 

''' 1.0λ = . Figure 8 shows the output of all the methods and the original HR image for 
reference. 

 

Fig. 8. Simulated data results for (a) original HR image, (b) demosaic/interpolation, (c) Shift & 
Add output, (d) MDSP output, (e) RLS with independent color channel regularization, (f) 
independent color channel AWF SR, (g) 12-parameter 3-PSF color AWF SR, (h) 6-parameter 
1-PSF color AWF SR, (i) 3-parameter 1-PSF color AWF SR. 
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Edge artifacts and a lack of sharpness are seen in single frame demosaic/interpolation. 
These effects are attenuated but still evident in the one-step Shift & Add SR method. Iterative 
MDSP shows a strong improvement in sharpness and reduced, but apparent, visual edge 
artifacts. Both RLS with independent color channel regularization and the independent 
channel AWF SR method show edge artifacts, best seen in the fence region. The proposed 
AWF SR methods appear to provide the best SR reconstruction. 

Figure 9 shows output images cropped to the picket fence region of interest (ROI). The 
demosaic/interpolation image shows large color fringing and blurring with Shift & Add 
providing some improvement. MDSP captures more high spatial frequency but shows 
residual color artifacts. This may be due to a number of factors. While a number of attempts 
have been made to determine a good set of parameters, the 6 tuning parameters may not be 
optimal. Additionally, both Shift & Add and MDSP quantize image shift estimates to the 
reference HR grid. The simulated data uses random fractional shifts, so quantizing shift 
estimates may produce additional reconstruction errors. Given the level of SR applied and 
number of input LR images, there is insufficient data to completely fill the HR grid. 
Therefore, Shift & Add performs an additional interpolation step to fill missing HR grid 
samples. 

We see RLS and independent channel AWF SR in Figs. 9(e) and 9(f) look similar, with 
good high frequency reconstruction but residual color fringing. The proposed color AWF 
methods greatly reduce color fringing while providing the best high frequency reconstruction. 
This is because the proposed methods make use of cross-channel correlation in the model. 
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Fig. 9. Region of interest from results in Fig. 9. (a) original HR image, (b) 
demosaic/interpolation, (c) Shift & Add output, (d) MDSP output, (e) RLS with independent 
color channel regularization, (f) independent color channel AWF SR, (g) 12-parameter 3-PSF 
color AWF SR, (h) 6-parameter 1-PSF color AWF SR, (i) 3-parameter 1-PSF color AWF SR. 

Simulation experiments provide a means for quantifying performance and comparing 
methods. MSE and mean absolute error (MAE) are used and results are shown in Table 3. We 
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can place results broadly into three groups. Demosaic/interpolation has the highest errors with 
Shift & Add showing a performance improvement. In the next group, MDSP reduces errors 
significantly over Shift & Add. RLS has lower MSE than MDSP, while MDSP performed 
better from an MAE perspective. Independent channel AWF SR performs slightly better. The 
best performing group is the proposed color AWF methods. Note that 12-parameter 3-PSF 
AWF SR provides nearly 30% improvement in MSE over independent channel AWF. 

Table 3. Performance results for simulation experiment #1 

Method MAE MSE MSE Improvement 
Demosaic/Interpolation 10.82 343.5 - 
Shift & Add Image 10.65 320.6 7.1% 
MDSP Iterative SR 9.44 224.9 52.7% 
RLS w/ Indep. Color Regularization 10.04 215.1 59.7% 
Independent Color Channel AWF SR 9.28 205.6 67.1% 
12-Parameter 3-PSF Color AWF SR 8.30 160.8 113.6% 
6-Parameter 1-PSF Color AWF SR 8.35 161.7 112.4% 
3-Parameter 1-PSF Color AWF SR 8.24 168.2 104.2% 

The benefit of capturing cross-channel correlation in the proposed color AWF method is 
enhanced when fewer LR input images are available. The same simulation was run using only 
4 LR input frames and we examined the fence ROI for the 12 parameter 3 PSF AWF model 
and independent channel AWF methods, shown in Fig. 10. The independent channel AWF 
method results in an MSE of 285.23 while the proposed color AWF SR produced an MSE of 
203.92, a nearly 40% improvement from including cross-channel correlation. 
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Fig. 10. Region of interest for simulated results using 4 LR input frames. (a) independent color 
channel AWF SR, (b) 12-parameter 3-PSF color AWF SR. 

The proposed color AWF SR methods provided significantly lower MSE and MAE than 
the other methods. We believe there are three major reasons for this. In contrast to the 
independent channel AWF SR approach, the proposed color AWF SR captures inherent 
cross-channel correlations to address edge artifacts and color fringing. Secondly, the proposed 
color AWF SR does not round shift estimates, so the information contained in the fractional 
shift estimates are fully used and errors should be reduced. Finally, all the observed/measured 
data within the LR image set is used. In comparison, Shift & Add SR performs a median 
operation on redundant observed data. For example, if two or more data samples are found at 
the same shift location (after rounding shifts to the nearest HR grid location), Shift & Add 
utilizes only the median intensity sample. Since MDSP is initialized with Shift & Add, it is 
impacted by this median operation. Color AWF SR fully utilizes observed data via correlation 
models and exact shift estimates to reduce reconstruction errors. 

Examining results of the proposed AWF SR methods, it appears that simplifying the 
model can impact performance. While the 3-parameter 1-PSF model has lower MAE than the 
12-parameter 3-PSF model, MSE is approximately 5% worse. We have seen different shift 
simulations that produce slightly different performance, but the proposed color AWF 
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approaches produce consistently the best results for this simulation. These methods assume a 
global statistical model which may be limiting the benefits of higher parameter and 3-PSF 
AWF models. 

4.2 Simulation experiment #2: fractional vs. quantized shift study 

To examine the benefits of fully utilizing fractional shift estimates, we constructed a second 
simulation experiment. A modified version of the 6-parameter 1-PSF color AWF SR 
approach is created. Shift estimates found with the AWF SR are rounded so that observed 
samples are located on the discrete HR grid spacing. The same AWF model is then applied to 
calculate weights with these discrete shifts. We call this the quantized color AWF SR method. 

The imaging parameters and HR image from simulation experiment #1 are used and the 
same simulated LR image set is provided to each method. Parameters for both 6-parameter 1-
PSF AWF SR and quantized AWF SR methods are the same as the 6-parameter model in 
simulation experiment #1, shown in Table 2. This keeps both AWF SR methods the same 
except for the shift estimates used in calculating AWF weights. Figure 11 shows shift 
estimates produced from both methods and the true shifts used to create the LR image set. 
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Fig. 11. True shifts, AWF shift estimates, and quantized shift estimates in experiment #2. 

We found the estimated shift error for AWF SR has an MAE = 0.035 (fractional LR grid 
spacing) while estimated shift error for quantized AWF SR gives MAE = 0.080. An example 
of this increase is seen in the lower two shifts and their respective estimates. True random 
shifts are spatially close to each other, resulting in AWF shift estimates that are very close. 
However, quantized shift estimates round the shifts to different HR grid locations, resulting in 
increased error estimates. In general, quantizing estimated shifts will increase shift errors and 
SR methods that place observed samples onto a discrete HR grid may be impacted by this 
additional error. 

Table 4 shows MAE and MSE results for each method. Using these error metrics, we see 
the benefit of using fractional shift estimates. With all other parameters being equal and using 
the same simulated LR image set, quantizing estimated shifts increases MSE by nearly 20%. 

Table 4. Performance results for simulation experiment #2, randomly shifted input 

Method MAE MSE 
6-Parameter 1-PSF Color AWF SR 8.51 170.6 
Quantized Color AWF SR 9.47 203.3 

A different simulation was created where we quantized the simulated true shifts to lie 
exactly on the HR grid. This is equivalent to randomly shifting frames of LR images but 
controlling translational shifts to lie on the discrete HR grid spacing. With quantized true 
shifts, the quantized AWF SR approach have zero estimated shift errors but the proposed 
AWF fractional shift estimates produced an MAE = 0.034 shift error. Table 5 shows 
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performance of the two methods. Quantized color AWF SR now outperforms color AWF SR 
in MSE because of the reduced estimated shift error used in the weights calculation. 

Table 5. Performance results for simulation experiment #2, quantized input shifts 

Method MAE MSE 
6-Parameter 1-PSF Color AWF SR 8.52 168.2 
Quantized Color AWF SR 8.56 161.3 

4.3 Simulation experiment #3: initializing variational SR with color AWF SR study 

We previously found the RLS variational method performed worse than AWF SR and found 
independent color regularization resulted in color fringing artifacts. The RLS method was 
initialized with an interpolated image created from one of the input LR images. Here, we 
initialize the RLS method with the color AWF SR output and examine potential improvement 
over AWF SR alone or RLS as previously implemented. This approach is similar to the 
MDSP method initialized with fast Shift & Add [24]. We use the full-color Kodak parrots 
image, shown in Fig. 12, and produce the simulated LR image set using the same approach 
and parameters as given in simulation experiment #1. We test three SR methods: 6-parameter 
1-PSF color AWF SR, baseline RLS as previously implemented, and RLS initialized with the 
6-parameter 1-PSF AWF output. AWF SR model parameters were set the same as simulation 
experiment #1, shown in Table 2. 
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Fig. 12. HR image used in simulation experiment #3 variation SR performance comparison. 

Figure 13 shows a cropped region of the images to highlight reconstruction quality. In the 
black and white region of the parrot’s face, the baseline RLS has similar color fringing to 
previous results. It also lacks the sharpness obtained in the AWF SR output, but appears to 
provide better noise reduction. Comparing to RLS initialized with the AWF output, we see 
that this approach reduces color fringing. It also improves noise reduction compared to the 
AWF SR output while maintaining sharp edges. 

Table 6 shows performance of these methods and single frame demosaic/interpolation for 
comparison. RLS initialized with the AWF SR has the lowest MSE, a nearly 20% 
improvement over color AWF SR and 40% improvement over RLS initialized with an 
interpolated image. Using the AWF SR output provides an initial image structure with 
reduced color fringing for the simple RLS implementation. Note that MAE is lowest for the 
baseline RLS method. In this particular simulation, MAE appears to favor the smoother 
output over reduced color fringing. 
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Fig. 13. ROI from Fig. 13. (a) input HR image for simulation, (b) 6-parameter 1-PSF color 
AWF SR, (c) RLS initialized with interpolated LR input image, (d) RLS initialized with color 
AWF SR result. 

Table 6. Performance results for simulation experiment #3 

Method MAE MSE 
Demosaic/Interpolation 5.72 118. 
RLS Initialized w/ Interpolated Image 4.21 69.5 
Color AWF SR 5.35 59.5 
RLS Initialized w/ Color AWF SR 4.41 50.0 

4.4 Real data experiment 

We collected a video with an Imaging Source DFK21BU04 CCD color camera that uses a 
Sony ICX098BQ CCD with 640 480× sensor and 5.6 μm square detector elements. We used a 
variable lens set to 4f . A set of 10 frames were used from a video sequence and spatially 
cropped to include the circular chirp resolution panel. Figure 14 shows an input frame and its 
red channel image. Spatial aliasing is evident in the images. We tested the following methods: 
demosaic/interpolation, Shift & Add, MDSP initialized with Shift & Add, RLS with 
independent color channel regularization, 6-parameter 1-PSF color AWF SR, and RLS 
initialized with color AWF SR. The camera parameters are the same as those used in 
simulation experiment #1, so we have the same level of undersampling. Therefore, we set the 
resolution enhancement level to 8L = . Model parameters for the AWF SR and the MDSP SR 
were set the same as those in Section 4.1. 

Two ROIs are shown in Figs. 15 and 16. Figure 15 contains a portion of the resolution 
panel and Fig. 16 shows textbooks. Qualitative performance is much the same as prior results. 
Shift & Add is better than demosaic/interpolation but appears to contain aliasing in the chirp 
pattern. MDSP sharpens the image compared to Shift & Add, but aliasing is still apparent and 
some color fringing is seen. Slight color fringing is seen in the baseline RLS but edges appear 
sharper than MDSP. Color fringing is very low in the chirp pattern of the AWF SR, although 
edges appear slightly more jagged than the baseline RLS. The RLS method initiated with 
color AWF SR output appears to provide the best reconstruction with sharp, but slightly less 
jagged, edges and little to no color fringing in the chirp pattern. The alphanumeric characters 
at the sides of the chirp pattern and the book lettering also appear to be the most readable. 
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Fig. 14. Sample input from real data experiment. (a) sample LR Bayer CFA image, (b) red 
color channel from sample LR Bayer CFA image. 
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Fig. 15. Chirp resolution chart ROI. (a) demosaic/interpolation (Media 1 left), (b) Shift & Add 
output, (c) MDSP output, (d) RLS with independent channel regularization, (e) 6-parameter 1-
PSF color AWF SR (Media 1 right), (f) RLS initialized with color AWF SR result. 
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Fig. 16. Textbooks ROI from real data experiment. (a) demosaic/interpolation (Media 1 left), 
(b) Shift & Add output, (c) MDSP output, (d) RLS with independent color channel 
regularization, (e) 6-parameter 1-PSF color AWF SR (Media 1 right), (f) RLS initialized with 
color AWF SR result. 

5. Conclusions 

In this paper, we developed a new AWF SR specifically for color CFA cameras. The color 
AWF SR relies on modeling the autocorrelation of the desired HR image. Using a global 
statistical model, it is readily adaptable to real-time implementation. The color AWF SR 
implementation captures valuable cross-channel correlations in the model. Results from both 
simulated and real data showed color AWF SR outperformed other methods tested. When 
using a global statistical assumption, certain model simplifications can be used with little 
degradation in performance. These simplifications include using a single PSF for all color 
channels and reducing the number of model parameters. Additionally, color AWF SR  fully 
utilizes fractional shift estimates and all observed data samples, leading to reduced 
reconstruction errors and better performance. We also showed improved performance of a 
simple variational SR method by using AWF SR as the initialization image.  

Appendix A: derivation of the autocorrelation functions 

The correlation matrix for the observation vector ig is derived as 
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The elements of { }T
i iE f f  are samples of the continuous autocorrelation function 
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j kf fr x y , where j and k designate the specific color channels of the samples involved. The 

autocorrelation function, given by [36] 
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is dependent on both j and k color channel PSFs. 

Appendix B: derivation of the cross-correlation functions 

The cross-correlation, iP , between the true desired vector id  and the observation vector ig , 
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The elements of { }T
i iE f d are samples of the continuous cross-correlation function, ( , )

j kd fr x y , 

between the noise-free observation, if , and the desired data, id . The cross-correlation function 
is [36] 
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Also, 
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