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Modern Trends and Applications of Super-resolution Imaging

ABSTRACT
In many undersampled imaging systems, spatial integration from the individual detector ele-

ments is the dominant component of the system point spread function (PSF). Conventional focal
plane arrays (FPAs) utilize square detector elements with a nearly 100% fill factor, where fill
factor is defined as the fraction of the detector element area that is active in light detection. A
large fill factor is generally considered to be desirable because more photons are collected for a
given pitch, and this leads to a higher signal-to-noise-ratio (SNR). However, the large active area
works against super-resolution (SR) image restoration by acting as an additional low pass filter
in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to incre-
ase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element
shape and fill factor on SR. A detailed modulation transfer function analysis is provided along
with a number of experimental results with both simulated data and real data acquired with a
midwave infrared (MWIR) imaging system. We demonstrate the potential advantage of low fill
factor detector elements when combined with SR image restoration. Our results suggest that
low fill factor circular detector elements may be the best choice. New video results are presen-
ted using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR
imaging system with both high and low detector element fill factors.
Keywords: Super-resolution, focal plane array, fill factor, active area, detector element, midwave infrared

1 INTRODUCTION

Image acquisition is subject to a variety of phenomena that cause degradations in the signal. All images
are impacted by blurring from the system point spread function (PSF) and noise from a range of sources.
Additionally, many imaging systems are designed with focal plane arrays (FPAs) having a pixel pitch (i.e.,
space between detector elements) that does not meet the Nyquist criterion for sampling with regard to the
optical cutoff frequency. Such undersampling may lead to aliasing artifacts and reduced image utility.
Designing imaging systems for specific applications entails navigating a complex tradespace and involves
balancing factors such as optical resolution, field of view, aliasing, signal-to-noise ratio (SNR), integration
time, frame rate, as well as size, weight, and power [1]. Similar considerations are involved in the design
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of microscopy systems [19]. The inclusion of image processing algorithms, such as super-resolution (SR),
can influence the selection of many of these system parameters.

It is the goal of SR processing to restore the blurred, noisy, and undersampled imagery acquired from
a given imaging system [18, 12, 14, 17]. With multi-frame SR, a sequence of frames with inter-frame
motion is used to form the SR image estimate [18, 12, 14, 17]. In order to deconvolve the linear blur
from the PSF, the PSF must be defined on a sampling grid that meets the Nyquist criterion. SR image
restoration, which must occur on this grid, generally requires that the observed imagery be upsampled
prior to any deconvolution. Sampling diversity provided by multiple input frames makes this upsampling
more accurate than with a single frame. Note that the system PSF generally has two main components:
diffraction from the optics [6], and spatial detector integration within each detector element [7, 3]. At the
observed resolution, the span of the spatial detector integration will not exceed the pixel pitch. Howe-
ver, on the upsampled SR grid, where the PSF is defined, the spatial integration from each detector can
now span multiple high resolution samples. In fact, in many undersampled imaging systems, the spatial
detector integration becomes the dominant component of the system PSF [7, 10, 9, 3]. Thus, the detector
element shape and size (relative to the pixel pitch) can play a significant role in image sampling and SR
restoration. Conventional FPAs utilize square detector elements with a nearly 100% fill factor, where fill
factor is defined as the fraction of the detector element area that is active in light detection. A large fill
factor is generally considered to be desirable because more photons are collected for a given pitch, and
this leads to a higher SNR. However, the large active area works against SR image restoration by acting
as an additional low pass filter in the overall PSF when modeled on the SR sampling grid [2]. A high fill
factor also tends to increase blurring from pixel cross-talk [2, 20].

In this paper, we study the impact of FPA detector-element shape and fill factor on SR image restoration.
We provide a detailed modulation transfer function (MTF) analysis along with a number of experimental
results with both simulated data and real data from a midwave infrared (MWIR) imaging system. We show
that there can be significant advantages to low fill factor detectors, when state-of-the-art SR processing
is employed. In particular, our results show that circular active area detectors, with an MTF zero at the
optical cutoff frequency, provide some of the best results in our tests. The low fill factor detectors trade
signal-to-noise ratio for a more favorable overall system MTF that can be exploited by SR restoration.
These results have implications for imaging sensor design for both grayscale and division of FPA sensors
(e.g., color, multiband, and polarization) [21, 13, 11].

The organization of the remainder of this paper is as follows. The observation model is presented in
Section 2. The primary analysis of detector element active area and shape is presented in Section 3. In
Section 4, we describe the robust adaptive Wiener filter (AWF) [9] SR method used here. Experimental
results are presented in Section 5. These results include a detailed quantitative performance analysis using
simulated data, and new video results using a commercial MWIR imaging system with both high and low
detector element fill factors. Finally, conclusions are offered in Section 6.

2 OBSERVATION MODEL

The observation model used here is shown in Fig. 1. It begins with a continuous-space desired image
d(x, y), where x, y are continuous spatial variables. We shall define ideal sampling as sampling at or
above the Nyquist rate, relative to the optical cutoff frequency, with no PSF blur (other than an ideal
band-limiting filter at the optical cutoff frequency) or noise. The discrete image formed by ideal sampling
will be represented using lexicographical notation as the vector z = [z1, z2, ...zN ]T . In practice, z is not
available. Rather, the observed data include PSF blurring, potentially sub-Nyquist sampling, and noise.
Blurring from the system PSF is modeled as

f(x, y) = d(x, y) ∗ h(x, y), (1)

where h(x, y) is the continuous space PSF and ∗ represents linear convolution. Modeling the PSF is
addressed in detail in Section 2.1. The nonuniform sampling block produces a set of samples from f(x, y)
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Figure 1. Observation model block diagram.

that may, in general, be nonuniformly distributed spatially. In multiframe SR, these samples are collected
from multiple frames and registered onto a common grid. The spatial distribution of these samples will
depend on the interframe motion [7]. Let the set of nonuniform sample values be represented in lexico-
graphical notation as f = [f1, f2, ..., fM ]T . Note the use of bold formatting for the lexicographical vector
f , to distinguish it from the parent continuous-space function f(x, y). Using multiple frames with subpi-
xel interframe motion allows one to obtain a more dense sampling of f(x, y) than may be possible with
a single image. The resulting samples may or may not meet the Nyquist criterion. However, unless the
interframe motion is carefully controlled, the samples will be nonuniformly distributed. An example of
the nonuniform samples resulting from three translationally shifted frames is shown in Fig. 2. Here the
native detector array is square with a detector pitch of 30 µm.

The order of operations shown in Fig. 1 effectively assumes that the PSF blurring occurs prior to any
interframe motion. This is valid for translational interframe motion for any PSF. It is also valid for rotatio-
nal motion for a circularly symmetric PSF. In the case of modest affine motion and typical PSF parameters,
this model holds in an approximate sense, as analyzed in [10]. The noise in Fig. 1 is assumed to be Poisson-
Gaussian noise, with both a signal-dependent and signal-independent component [15, 16]. Incorporating
the noise gives rise to the observed pixels, denoted g = [g1, g2, ...gM ]T . The details of the noise model are
desribed in Section 2.2. The SR restoration problem is to estimate z from the observed g. This inverse pro-
blem requires deconvolving h(x, y), and addressing noise and nonuniform sampling. The approach taken
by nonuniform-interpolation based SR methods is to estimate a uniform set of samples of f(x, y) from g,
and then apply some form of image restoration to deconvolve the PSF blur and reduce noise [18]. Note
that the AWF SR method that we employ here performs this nonuniform interpolation and restoration in a
single weighted sum operation [7]. However, the main focus of this paper is not on the internal workings
of any specific SR method, but rather on the imaging sensor used to acquire the data. In particular, our
focus is on the detector element active area size and shape and its impact on the overall MTF and SR
results.

2.1 PSF MODEL

A critical component of the observation model is the PSF, and its Fourier transform, the optical transfer
function (OTF) [1]. For this, we shall follow the approach in [7, 11, 10] and model diffraction limited
optics and blurring from the spatial integration of the detector elements. In this case, the overall OTF is
given by

H(u, v) = Hdif(u, v)Hdet(u, v), (2)

where u and v are the horizontal and vertical spatial frequencies in cycles per millimeter, Hdif(u, v) is
the OTF from the diffraction-limited optics, and detector integration is modeled with Hdet(u, v). For a
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Figure 2. Nonuniform sampling grid comprised of the registered collection of three translationally shifted frames, each with a pixel spacing of 30 µm.

circular pupil function we have [6]

Hdif(u, v) =

{
2
π

[
cos−1 (ω)− ω

√
1− ω2

]
ω < 1

0 else
, (3)

where ω =
√
u2 + v2/ωc, the optical cutoff frequency is ωc = 1/(λF ), and F is the f-number of the

optics. Note that f-number is defined as the ratio of the focal length of the optics to the effective aper-
ture [1]. The wavelength of light is represented by λ. An example of Hdif(u, v) is shown in Fig. 3 for a
MWIR imaging system with F = 3.33 and λ = 4.5 µm. Note that this is a bandlimiting OTF with cutoff
given by ωc = 66.66 cycles/mm. The detector OTF,Hdet(u, v), is determined by the active area of a single
detector on the FPA. More will be said about this in Section 3.

Let us define the detector pitch of a native sensor to be p mm. The sampling frequency associated with
this sensor is then given by 1/p cycles/mm. To guarantee the absence of aliasing, the Nyquist theorem
requires that 1/p > 2ωc = 2/(λF ), or equivalently p < λF/2. Because of the complex tradespace associ-
ated with imaging systems design, the pitch in most imaging systems does not meet this requirement. To
characterize the level of undersampling in an imaging system, we shall use the parameter Q = λF/p [4].
Note that the undersampling factor is given by 2/Q, such that Q = 2 corresponds to a Nyquist sam-
pled system, and Q = 1 corresponds to a system undersampled by a factor of 2. Note that many imaging
systems are designed forQ ≈ 1, as this tends to be a good compromise between aliasing and other factors,
such as signal-to-noise ratio [4]. This level of undersampling provides the opportunity for a significant
resolution boost using SR post processing. Figure 4 shows how the pitch p and the f-number impact the
Q value for a MWIR imaging system with center wavelength of λ = 4.5 µm.

Now consider Eq. (2) in the spatial domain. The continuous-space system PSF is given by
h(x, y) = ICSFT{H(u, v)} = hdif(x, y) ∗ hdet(x, y), (4)

where hdif(x, y) is the diffraction PSF, hdet(x, y) is the PSF associated with the detector, and ICSFT{·}
is the inverse continuous-space Fourier transform. We may define a valid impulse-invariant discrete-space
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Figure 3. Diffraction OTF, Hdif(u, v) , for MWIR system with F = 3.33 and λ = 4.5 µm.

PSF, hii(n1, n2) by sampling h(x, y) at or above the Nyquist rate. This gives

hii(n1, n2) = ∆x∆yh(n1∆x, n2∆y), (5)

where ∆x,∆y < λF/2. We approximate this discrete PSF directly using the frequency sampling filter
design method based on the analytic expression for the OTF in Eq. (2) and Nyquist rate sample spacings
of ∆x,∆y. With this discrete PSF, we are able to accurately model the continuous PSF blurring using
discrete convolution. Furthermore, the discrete PSF is used to design the AWF SR restoration filters.

2.2 NOISE MODEL

Consider a Poisson-Gaussian noise model that accounts for the photon arrival distribution as well as noise
in the electronics [15, 16]. Applying this model, the observed data are given by

g = αp + β1 + η, (6)

where p ∼ P ((f − β1)/α) is an iid Poisson random vector with mean of (f − β1)/α. The random
vector p models the observed signal in the presence of shot noise, prior to any camera gain or offset.
The parameter α is a camera gain, β is a camera offset, and 1 is an M × 1 vector of ones. Since the
variance of a Poisson random variable equals its mean, the covariance matrix of p is given by P =

diag
(
f1−β
α , f2−βα , . . . , fM−βα

)
. The vector η ∼ N(0, σ2ηI) is an iid Gaussian random vector modeling

the electronics noise terms. Note that the mean of g in Eq. (6) is f , and the covariance is given by
G = α2P + σ2ηI. Also, note that G is diagonal and the i’th diagonal element is given by α(fi − β) + σ2η .
For high mean values, a Poisson distribution is known to be well approximated by a Gaussian. In this case,
we can approximate g as a heteroskedastic Gaussian random vector, such that g ∼ N(f ,G) [15, 16]. This
is equivalent to an additive Gaussian noise with a signal dependent variance, given by g = f + n, where
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Figure 4. Sampling relationship between pitch and f-number for λ = 4.5 µm. Three Q values curves are shown where Q = λF/p.

n ∼ N(0,G). For generating all of the simulated data in Section 5, we will use the noise model in Eq.
(6). However, the AWF SR algorithm is based on additive signal independent noise. For the purposes
of AWF SR processing we shall assume the heteroskedastic model and use constant noise variance of
σ2n = α(f̄ − β) + σ2η , where f̄ = E{fi}.

Now, consider the impact of a changing signal level on this Poisson-Gaussian noise. In particular, let the
incoming signal be scaled by s as a result of integration time change or ambient signal level changes. The
noise variance associated with the average scaled signal level is σ2n(s) = α(sf̄ −β)+σ2η . However, a gain
of 1/s is needed to bring this scaled image back to the original level for comparison. Thus, the effective
noise level of the scaled signal, relative to the s = 1 system, is

σ2e(s) =
1

s2
σ2n(s) = α

(
1

s
f̄ − 1

s2
β

)
+

1

s2
σ2η. (7)

If β = 0, which is the case for most cameras, we get the following relationship

σ2e(s) =
1

s
αf̄ +

1

s2
σ2η. (8)

Thus, we see that the noise variance due to the signal dependent Poisson component scales with 1/s,
while the signal-independent additive Gaussian noise component scales with 1/s2. This has important
ramifications for the detector active area analysis. A photon limited system, with very low σ2η , will have
a 1/s increase in noise from a reduced signal level (i.e., s < 1) that might come from a reduced detector
active area. However, a system dominated by thermal noise will have a 1/s2 increase in effective noise.
For the simulation results in Section 5.1, we shall use 8 bit image data to represent the true scene. Thus,
we use camera model parameters typical of commercial cameras operating in an 8 bit dynamic range, that
is 0-255 digital units (DUs). The parameters we use are α = 0.02, β = 0.00, and σ2η = 0.50. This gives
us the effective noise variance relationship shown in Fig. 5, based on Eq. (8).
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Figure 5. Effective noise variance, σ2
e(s), as a function of signal scaling s, for three values of f̄ for α = 0.02, β = 0.00, and σ2

η = 0.50.

3 ANALYSIS OF DETECTOR SHAPE

In this section, we focus on how the detector active area shape impacts the overall system PSF and OTF.
We first show exactly how the detector PSF model relates to the active area of an element of an FPA in
Section 3.1. Next, in Section 3.2, we examine rectangular and circular active area detectors. In Section
3.3, we provide a detailed system MTF analysis by combining the diffraction and detector components of
the MTF model. Finally, in Section 3.4, we examine variable response detectors and their MTFs.

3.1 DETECTOR PSF

Consider the image on the focal plane resulting from diffraction limited optics with no spatial integration
from the detector elements. This image is given by

d̄(x, y) = d(x, y) ∗ hdif(x, y). (9)

If we define the active area of a single detector element centered at (0, 0) as a(x, y), then we have

fi =

∞∫
τ1=−∞

∞∫
τ2=−∞

d̄(τ1, τ2)a(τ1 − xi, τ2 − yi)dτ1dτ2, (10)

for i = 1, 2, ...,M , where xi, yi are the spatial coordinates of the detector element for sample i. This
models the spatial integration associated with the detector active area. Allowing for a continuum of
detector positions, we obtain

f(x, y) =

∞∫
τ1=−∞

∞∫
τ2=−∞

d̄(τ1, τ2)a(τ1 − x, τ2 − y)dτ1dτ2. (11)
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Figure 6. Representation of FPAs with rectangular (left) and circular (right) active area detector elements.

This represents a deterministic correlation operation between d̄(x, y) and a(x, y). If we define hdet(x, y) =
a(−x,−y), then we have

f(x, y) =

∞∫
τ1=−∞

∞∫
τ2=−∞

d̄(τ1, τ2)hdet(x− τ1, y − τ2)dτ1dτ2. (12)

Note that this equivalent to the convolution operation f(x, y) = d̄(x, y)∗hdet(x, y). Thus the detector PSF
is simply a reflected version of the active area, hdet(x, y) = a(−x,−y). If the active area is symmetric,
then we have hdet(x, y) = a(x, y).

3.2 RECTANGULAR AND CIRCULAR DETECTORS

We focus on two basic active area shapes, rectangular and circular. Figure 6 shows representations of
FPAs with rectangular and circular detector active areas. The detector spacings, or pitches, are given by
p1 and p2 in the horizontal and vertical dimensions, respectively. For the rectangular detectors shown in
Fig. 6 (left), we have

hdet(x, y) = rect

(
x

a1
,
y

a2

)
, (13)

where

rect(x, y) =

{
1 |x|, |y| < 0.5
0 otherwise . (14)

The spatial frequency response associated with this detector shape is given by the CSFT such that

Hdet(u, v) = CSFT{hdet(x, y)} = a1a2 · sinc (a1u, a2v) , (15)

where

sinc(u, v) =
sin(πu) sin(πv)

(πu)(πv)
. (16)

The detector MTF for a square detector element with a = a1 = a2 = 30 µm is shown in Fig. 7. Note
that in general, the spatial frequency response in Eq. (15) has zeros every integer multiple of 1/a1 in u,
and 1/a2 in v. We shall see that these zeros are particularly consequential when performing SR on an
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Figure 7. Square detector MTF for detector element width a = a1 = a2 = 30 µm.

upsampled grid (i.e., sample spacing less than p1, p2). Consider a square sampling FPA with p = p1 = p2.
For a 100% fill factor detector (i.e., a = a1 = a2 = p), the zeros occur at integer multiples of 1/p in u and
v. The optical cutoff frequency can be expressed in terms of Q as ωc = 1/(pQ). Thus, for a system with
Q < 1, the 100% fill factor detectors put a zero within the spatial frequency pass band of the diffraction
limited optics OTF. This means that spatial frequency information that is potentially restorable via SR,
would be completely eliminated. If instead of 100% fill factor, we set a = a1 = a2 = pQ for systems
with Q < 1, the detector zero will occur at the optical cutoff frequency, preventing a detector zero from
entering the diffraction OTF pass band. Thus, systems with Q < 1 may benefit from a reduced fill factor
detector (i.e., a < p) to move the detector zero out towards or beyond the optical cutoff frequency. It
should be noted that systems with a low Q also have the most to gain from SR because of the high level
of undersampling.

For the circular detectors, shown in Fig. 6 (right), we have

hdet(x, y) = circ

(
x

b1
,
y

b2

)
, (17)

where

circ(x, y) =

{
1
√
x2 + y2 < 0.5

0 otherwise
. (18)

The spatial frequency response associated with the circular detector shape is
Hdet(u, v) = CSFT{hdet(x, y)} = b1b2 · jinc (b1u, b2v) , (19)

where
jinc(u, v) = J1 (πω)/(2ω) , (20)

ω =
√
u2 + v2, and J1 is an order one Bessel function of the first kind. The zeros of this frequency

response do not occur at regular intervals like the rect function. However, the very important first zero
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Figure 8. Circular detector MTF for detector element diameter b = b1 = b2 = 30 µm.

occurs at approximately 1.22/b1 on the u axis and approximately 1.22/b2 on the v axis. To align the
circular detector first zero with the optical cutoff frequency for the case of a square grid of pitch p, we
require b = b1 = b2 = 1.22pQ. The detector MTF for a circular detector element with b = b1 = b2 = 30
µm is shown in Fig. 8.

In division of FPA sensors like Bayer pattern color sensors, multiband, and polarimetric imagers, a
single FPA uses detector elements of different types in alternating patterns. An example of a polarimetric
division of FPA array is shown in Fig. 9 [21, 11]. Thus, the active area of a given detector element
type must be less than the pitch between like-elements (to make room for the other element types). It is
interesting to note that this naturally gives the kind of reduced active area discussed above. If the system
is designed for a Q = 0.5 for one channel, and the patterns is like that shown in Fig. 9, then the active
area for each channel is the prescribed a = a1 = a2 = pQ when using the full FPA area. Thus, if one
does wish to employ reduced active area detectors for enhanced MTF purposes, the “lost” area can be put
to good use by employing a division of FPA design [21, 11]. Another good use for the “lost” active area
is to serve as a guard band to greatly reduce diffusion of charge carriers from one detector element to the
other. Such diffusion leads to parasitic low pass spatial filtering of the imagery, causing an additional loss
of resolution [2].

3.3 MTF ANALYSIS

The overall MTF, combining diffraction and detector integration, is shown in Fig. 10 for the case of
F = 3.33, λ = 4.5 µm, and a = a1 = a2 = 30 µm. Note that the first zeros from the detector MTF
impact the overall MTF within the spatial frequency passband of the optics. A cross section of this MTF
and component MTFs is shown in Fig. 11. For a detector pitch of 30 µm (i.e., 100% fill factor), this
system would have a native Q = 0.5. The folding frequency (i.e., one half of the sampling frequency) is
shown on Fig. 11 along with the SR folding frequency for an upsampling factor of L = 4. Notice how
the detector MTF zero is right in the middle of the diffraction MTF pass band. Without SR processing,
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Figure 9. Example of a division of FPA detector array with four polarimetric channels.

this zero would be above the folding frequency and would be in the band of aliased frequencies. Thus,
the lost information from the zero would not be consequential. However, if SR is being performed and we
are seeking to recover valid spatial frequency content out to the SR folding frequency, the detector zero
is highly undesirable. Similar plots are shown in Figs. 12 and 13, but for 25% fill factor square detectors
with a = a1 = a2 = 15 µm. Note that here the detector zero aligns with the optical cutoff frequency,
allowing for the potential recovery of all spatial frequencies afforded by the optics.

It is important to note that the MTFs are normalized to have a peak value of 1. While the curves in Figs.
10-13 clearly show how the detector zero changes, the reduction in signal level from the reduced fill factor
is not shown. Note that the signal level is proportional to the active area, and signal gain is reduced when
decreasing active area. Therefore, the big question is this: is the loss in overall signal level justified by a
favorable detector zero location? To help answer this question, consider the plot in Fig. 14. This shows the
relative gain as the detector zero is moved from 1/p cycles/mm (for a 100% fill factor) to 1/pQ cycles/mm
(where the first detector zero is aligned with the optical cutoff frequency). The red curve on the bottom
is for a square detector, and the blue curve on top is for a circular detector. This shows the reduction in
signal as the active area is reduced and the detector zero is pushed towards the optical cutoff frequency. It
also shows that the circular detector is more efficient than the rectangular one in this regard. The circular
detector provides more signal for a given zero location. Note that the relative gain, designated G here, can
be thought of as the factor s is Eq. (8), with direct consequences on the effective noise variance and SNR.

When the gain is incorporated with the MTF, we get the scaled MTFs shown in Fig. 15. The 100%
fill factor MTF is normalized to 1. The scaled MTFs for reduced fill factor detectors are also shown for
direct comparison. Note that the loss of signal is seen as a global scaling, reducing the MTFs relative to
the 100% fill factor configuration. However, the reduced fill factor architectures do not have the zero at
33.33 cycles/mm. It should be noted that a reduction in gain is quite different than a complete signal loss.
Conventional signal processing has no reliable means to recover lost frequency components. However,
attenuated spatial frequency content can be amplified with techniques such as Wiener filtering. Thus,
we argue that the reduction in signal gain is justified by the potential to recover all spatial frequency
components below the optical cutoff frequency. A similar plot to that in Fig. 15 is shown Fig. 16, but for
F = 4, Q = 0.6, and SR upsampling of L = 3. This additional plot is shown because it matches the
MWIR systems used in the experimental results in Section 5.2. Because Q is slightly higher in Fig. 16,
the detector zero is moved less to reach the optical cutoff frequency. This means we have somewhat larger
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Figure 10. Overall system MTF for the diffraction OTF in Fig. 3 (F = 3.33, λ = 4.5 µm), and the detector MTF in Fig. 7 (square with a = 30 µm). Note
the zeros from the detector impact the overall MTF within the spatial frequency passband of the optics.

active area detectors and less signal attenuation. Of course, we still have the advantage of no detector
zeros below SR folding frequency and optical cutoff frequency.

To illustrate how the detector active areas need to be altered to match the detector zero to the optical
cutoff frequency, we have included a number of cases in Table 1. This table shows a set of MWIR ima-
ging system parameters for a pitch of p = 30 µm, λ = 4.5 µm, and a variety of f-numbers. Note that
as f-number goes down, the optical cutoff frequency goes up. For a fixed p = 30 µm, this means the
undersampling goes up. To make the first detector zero align with the increasing optical cutoff frequency
requires decreasing a for the square active area detectors and decreasing b for the circular active area dete-
ctors. In particular, we require that a = pQ and b = 1.22pQ, as described in Section 3.2. The reduction
of a and b creates a lower fill factor, and lower relative signal gain. However, with the smaller active area
systems, we do not have a detector zero in the middle of the optical pass band. Note that the fill factor
for the circular detector is larger than that of the corresponding square detector by a factor of 1.222π/4.
For example, consider Row 4 in Table 1. With Q = 0.5, the rectangular detector fill factor is 25% and the
circular fill factor is 29.22%. Since b cannot be larger than p on single FPA, we do not show values for the
circular detector for Q = 0.90 and 1.00.

3.4 VARIABLE RESPONSE DETECTORS

In addition to active areas that are binary, we also consider variable response active area detectors. Note
that these are akin to signal window functions, in that they must taper from zero to some maximum
sensitivity and back to zero in a finite length (in this case p = 30 µm). Cross-sections of the window
functions considered are shown in Fig. 17. Cross-sections of the detector MTFs corresponding to 2D
separable versions of the shapes in Fig. 17 are shown in Fig. 18. Cross-sections of the detector MTFs
corresponding to 2D circularly symmetric versions of the shapes in Fig. 17 are shown in Fig. 19. The
conclusion we reach from this analysis is that the variable response detectors do not appear to provide
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Figure 11. Cross section of the MTF for Fig. 10. The diffraction and detector component of the overall MTF can be clearly seen. The native folding frequency
for p = 30 µm (100% fill factor, Q = 0.5), is shown along with the L = 4 SR folding frequency.

Table 1. Imaging system parameters where a and b are sized so as to produce their first MTF zero at the
optical cutoff frequency, ωc. The pitch is assumed to be p = 30 µm and λ = 4.5 µm.

Rect Circ
Q F Undersampling ωc (cyc/mm) a (µm) Fill Factor b (µm) Fill Factor

0.20 1.33 10.00 166.67 6.00 4.00% 7.32 4.68%
0.30 2.00 6.67 111.11 9.00 9.00% 10.98 10.52%
0.40 2.67 5.00 83.33 12.00 16.00% 14.64 18.70%
0.50 3.33 4.00 66.67 15.00 25.00% 18.30 29.22%
0.60 4.00 3.33 55.56 18.00 36.00% 21.96 42.08%
0.70 4.67 2.86 47.62 21.00 49.00% 25.62 57.28%
0.80 5.33 2.50 41.67 24.00 64.00% 29.28 74.82%
0.90 6.00 2.22 37.04 27.00 81.00% N/A N/A
1.00 6.67 2.00 33.33 30.00 100.00% N/A N/A

more favorable MTF’s than the simple binary versions. Furthermore, they would undoubtedly come with
significant manufacturing challenges, and would not be as suitable for division of FPA sensors as their
binary counterparts.

4 SUPER-RESOLUTION

For the results presented here, we employ the robust AWF SR method proposed in [9] which is based
on that in [7, 8]. A brief review of that method is provided here for the reader’s convenience. The basic
methodology is shown in Fig. 20. The output high resolution (HR) image, relative to a low-resolution
(LR) frame, is increased by a factor of L in both the horizontal and vertical dimensions. We use a moving
temporal window of K frames to estimate each output frame. Global registration that is robust to small
amounts of local motion is employed to get precise subpixel registration parameters for the bulk of the
imagery. Local motion is detected based on an inconsistency with the estimated global motion parameters.
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Figure 12. Overall system MTF for the diffraction OTF in Fig. 3 (F = 3.33, λ = 4.5 µm), and a square detector MTF with a = 15 µm (i.e., 25% fill
factor). Note the zero from the detector does not impact the overall MTF within the spatial frequency passband of the optics.

In particular, we register the K frames globally, apply a low pass filter to attenuate aliasing artifacts
and noise, and then we compute the temporal range at each pixel. Thresholding is used to detect large
variations at a given spatial location. The pixel in these areas are labeled as invalid because accurate
registration is not available [9]. Note that the most recent frame is designated as the reference frame and
all pixels from the reference frame are labeled as valid.

Given the registration information as well as the local pixel labels, the samples from all K frames are
placed on a common HR grid. A moving window centered about HR output pixel i is used and the valid
sampled spanned by this window are placed into the observation vector gi = [gi,1, gi,2, . . . , gi,Gi

]T . The
AWF SR output is given by

ẑi = wT
ψ(i)gi, (21)

for i = 1, 2, ..., N , where ẑi is the estimate of the i’th pixel in z. The parameter ψ(i) is the population
index for window i. This is an integer that uniquely specifies the spatial pattern of observed valid pixels
for the given observation window position. The AWF filter weights for the particular population index are
specified in wψ(i) = [wψ(i),1, wψ(i),2, ..., wψ(i),Gi

]T .

The minimum mean squared error (MSE) Wiener weights are used for the AWF method [7, 9]. These
are given by

wψ(i) = R−1
ψ(i)

pψ(i), (22)

where Rψ(i) = E{gigTi |Ψ = ψ(i)} is the autocorrelation matrix, pψ(i) = E{zigi|Ψ = ψ(i)} is the
cross-correlation vector, and Ψ is a random variable representing the population index. The correlations
are found based on a parametric model that considers the distances between all of the samples in each
observation window and the distances of these samples to the desired HR pixel. The correlations are

This is a provisional file, not the final typeset article 14



Hardie et al. Impact of detector-element active-area shape and fill factor

Figure 13. Cross section of the MTF for Fig. 12. The native folding frequency for p = 30 µm is shown along with the L = 4 SR folding frequency.

based on an assumed autocorrelation function for d(x, y), which is given by

rdd(x, y) = σ2dρ
√
x2+y2 , (23)

where x and y are continuous spatial coordinates measured in HR pixel spacings, σ2d is the variance of the
desired signal, and ρ is the one HR pixel step correlation value. Using the observation model in Fig. 1, it
can be shown that the cross-correlation function between d(x, y) and f(x, y), can be expressed in terms
of rdd(x, y) [7] as

rdf (x, y) = rdd(x, y) ∗ h(x, y). (24)
Similarly, the autocorrelation of f(x, y) is given by

rff (x, y) = rdd(x, y) ∗ h(x, y) ∗ h(−x,−y). (25)

Sampling the autocorrelation function in Eq. (25) at x, y values corresponding to the displacement
between samples in gi yields E{fifTi |Ψ = ψ(i)}, where fi is the noise-free version of gi. In the
case of independent additive white Gaussian noise of variance σ2n, it is straightforward to show that
Rψ(i) = E{fifTi |Ψ = ψ(i)}+ σ2nI. A similar apporach used to obtain the needed pψ(i). Here we evaluate
Eq. (24) based on the displacements between the samples in gi and zi.

In this paper we consider translational interframe motion. In areas with no local motion, the sampling
pattern on the HR grid is therefore periodic. This means that a relatively small number of unique popula-
tion patterns are observed. Thus, we can easily precompute the weights and use a lookup table, as shown
in Fig. 20, to allow for fast processing [7]. Where local motion impacts an observation window, we weight
only the reference frame samples, giving a single frame AWF estimate in those areas. This allows for fast
processing, even in the presence of some local motion.

One key thing to note here is that the system PSF, h(x, y), governs the statistics used to form the
weights. Thus, the detector element model that impacts h(x, y), impacts the AWF SR weights. In practice
the correlations in Eqs. (24) and (25) are evaluated on a high resolution discrete grid using an impulse
invariant version of the systems PSF and a sampled version of Eq. (23). The correlation values for any
x, y values are obtained by interpolating these discrete correlation signals.
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Figure 14. Detector integration gain versus the detector zero frequency. The gain plotted relative to a 100% fill factor detector with a = 30 µm having a zero
at ω = 1/p. Note that to move the detector zero out towards the optical cutoff frequency, a and b must be decreased for rectangular and circular detectors,
respectively. The resulting reduction in fill factor causes a lowering of the gain. Interestingly, the circular detector can achieve the higher detector zero with a
somewhat larger area.

5 EXPERIMENTAL RESULTS

In this section, we present results using simulated data for quantitative performance analysis. We also
present results using real data from a MWIR imaging system.

5.1 SIMULATED DATA

For the simulations, we use a grayscale chirp image and 8 uncompressed images from the Kodak lossless
true color image suite [5]. The Kodak images have been converted to grayscale for our purposes. All of
the original images are 8 bit grayscale images. All of the simulation results are based on the observation
model with F = 3.33, Q = 0.5, λ = 4.5 µm, and p = 30 µm (i.e., the 4th row in Table 1). The
noise comes from the Poisson-Gaussian noise model with α = 0.02, β = 0.00, and σ2η = 0.50. The SR
processing uses K = 16 frames with L = 4 and assumes noise of σ2n = α(f̄ − β) + σ2η .

The first image results are for a region of interest (ROI) from the full chirp image and are shown in Fig.
21. The high resolution truth image is shown in Fig. 21(f). The average value for simulated 100% fill
factor detectors is f̄ = 127.4 (σn = 1.75 DU). Bicubic interpolation images from a single low resolution
noisy frame generated with 100% fill factor (a = 30 µm) and 25% fill factor (a = 15 µm) are shown in
Figs. 21(a) and (b), respectively. Notice the extra aliasing artifacts in the low fill factor detector image,
especially near the perimeter of the outer circle. Also notice the increase in effective noise (lower SNR).
The outputs of AWF SR using 100% and 25% fill factor input images are shown in Figs. 21(c) and (d),
respectively. Notice the aliasing is greatly reduced in both images due to the SR processing. However, the
image obtained from the 25% fill factor images shows increased high spatial frequency content. Finally,
the AWF SR output using simulated circular detectors with 29.22% fill factor (b = 18.3 µm) is shown
in Fig. 21(e). This result is very similar to that obtained with the reduced fill factor square detectors,
although there is slightly less noise with the circular detectors. Note that the fill factors for the 25%
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Figure 15. Cross-section of the MTF for Fig. 12 scaled by the detector Gain from Fig. 14. Here one can compare the overall system MTF employing a 100%
fill factor with a gain adjusted MTF for the systems with the detector zeros shifted out to the optical cutoff frequency. Note that even though the gain is much
lower, the overall transfer function for the frequency band between 30 and 40 cyc/mm is higher using the smaller detectors, because of the detector zero.

Figure 16. Cross-section MTF plot similar to that in Fig. 15, except here we have an f-number of F = 4 (Q = 0.6) and L = 3 for SR. This represents the
set up for the experimental results for the infrared imaging system in Section 5.2.

rectangular detector and the 29.22% circular detector were were chosen so that the first detector MTF
zero is located at the optical cutoff frequency for both.

A similar set of results is shown in Fig. 22 for a natural image of a motocross scene (kodim05.png).
Here, f̄ = 82.65 for the 100% fill factor image (σn = 1.47 DU). The truth image is shown in Fig.
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Figure 17. Cross-sections of separable active areas for a pitch of p = 30 µm based on standard window functions. These correspond to variable response
detectors, in contrast with binary active area detectors.

Figure 18. Detector magnitude frequency response of the separable active areas in Fig. 17 scaled relative to the DC gain of a 100% fill factor detector.

22(f). As with the chirp image, note the increased aliasing using the low fill factor detector in Fig. 22(b)
compared with 100% fill factor in (a). Also note the improvement in the AWF SR image using the low
fill factor detector in Fig. 22(d) compared with (c). In particular, notice the detail on the front fork shock
absorber cover in the center of the image for the 25% fill factor image that is not present with the 100%
fill factor. As with the chirp result, the circular detector image in Fig. 22(e) is very similar to the reduced
fill factor square detector image, but with a very slight reduction in noise.
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Figure 19. Detector magnitude frequency response of circularly symmetric versions of the active areas in Fig. 17 scaled relative to the DC gain of a 100% fill
factor detector.

Figure 20. Robust AWF SR. A weighted sum of sampled from all registered frames are used for each observation window. In areas where local motion is
detected, only samples from the reference frame are used.

To illustrate the impact of signal level on the SR processing with various detectors, peak signal-to-noise
(PSNR) results are plotted in Fig. 23 for the motocross image scaled to simulate various integration times.
Note that for very low signal scaling s (short integration times), noise is the predominant degradation, and
the maximum fill factor is beneficial. However, as s increases (simulating longer integration times), the
PSNR goes up for all methods, but most significantly for the small fill factor detectors. When little noise
is present, the MTF benefit of the reduced fill factor far outweighs the extra signal-to-noise ratio of the
large fill factor detectors. The result in Fig. 24 shows the PSNR for the motocross image as a function of
the detector zero. This result suggests that the optimum zero location for the rectangular detectors is close
to the optical cutoff frequency. For the circular detectors, the optimum appears to be slightly above the
optical cutoff for these data.
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Table 2. PSNR results for AWF SR with K = 16 frames and L = 4 using a variety of 8 bit test images
with a simulated MWIR imaging system with Q = 0.50 from Table 1.

Image PSNR
Name 100% Fill Factor Rect (a = 15.00 µm) Circ (b = 18.30 µm)

Bicubic AWF SR Bicubic AWF SR Bicubic AWF SR
Chirp (Fig. 21) 11.8745 15.2495 11.8735 19.3619 11.8843 19.3508
kodim05.png (Fig. 22) 21.1634 25.1547 21.3748 26.8084 21.3788 26.8360
kodim08.png 19.0177 22.5758 19.0918 24.3093 19.1035 24.3610
kodim13.png 20.3078 22.8358 20.3585 24.1589 20.3720 24.1701
kodim19.png 23.1418 26.9054 23.1200 28.1787 23.1472 28.2746
kodim21.png 23.9201 27.0373 23.9628 28.2626 23.9877 28.3251
kodim22.png 26.0118 28.8053 25.9628 29.6678 26.0027 29.7678
kodim23.png 28.7221 32.1974 28.6590 32.3456 28.7234 32.5606
kodim24.png 23.0289 25.7770 23.0741 26.9917 23.0947 27.0324

To see the effect of signal level (integration time) and detector width for square detectors jointly, a PSNR
surface plot is shown in Fig. 25. This shows the PSNR for AWF SR for the motocross image. Here it can
be seen that lower signal levels favor larger detectors. As the scaling s (signal level) increases, small
detectors are favored. Interestingly, even for relatively small signal levels, detectors with fill factor less
than 100% are still favored. To see the impact on the number of frames used in the SR processing with
s = 1, we present the results in Fig. 26. Using a small number of frames favors the larger active area
images. However, for K > 2, the 25% fill factor images yield higher PSNR results with SR processing.
With more frames, the SR processing can better exploit the improved MTF of the small fill factor detectors
and can also exploit any redundancy for noise reduction.

To show that the benefits of reduced fill factor detectors is not limited to the two images tested thus far,
we have included additional quantitative results in Table 2. This tables shows the PSNR for 8 of the Kodak
images [5] and the chirp image with 100% fill factor square detectors, 25% fill factor square detectors, and
29.22% fill factor circular detectors. For all of these simulated detectors, we show the PSNR for single
frame bicubic interpolation and for multiframe SR processing. The reduced fill factor circular detectors
generally provided the highest PSNR values, as might be expected from our analysis. It is interesting to
know that even with bicubic interpolation of a single frame (no SR processing), the reduced fill factor
detectors are still favored here in most cases. Note that for the results in Table 2, we are using s = 1 and
we have a relatively high native SNR.

5.2 REAL MWIR VIDEO

In this section, we present results using an L-3 MWIR camera equipped with F = 4 optics, a native
detector pitch of p = 15 µm, and center wavelength of λ = 4.5 µm. The camera is mounted on a tripod
and moved with a device to induce small look vector angle variations. This provides translations shifts
between frames for SR processing. We employ a high frame rate of 240 fps, to help in minimizing local
motion. The robust AWF SR processing detects any local motion and performs single frame restoration
in those areas.

In order to compare detector types we have downsampled the imagery by a factor of 2 in each dimension,
yielding an effective pitch of p = 30 µm and Q = 0.6. By simply downsampling, we are obtaining square
detectors with effective fill factors of approximately 25%. To simulate 100% fill factor square detectors,
we average sets of 2 × 2 native pixels prior to downsampling. This averaging lets us obtain pixel values
similar to what a single larger active area detector would produce. In this way, we can compare large and
small fill factor detectors using an identical scene, optics, read-out electronics, and camera motion. All of
the MWIR SR results use K = 16 and L = 3.
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The first set of MWIR results is shown in Fig. 27. The imagery shows a resolution pattern. The top set
contains decreasing 3-bar patterns horizontally and vertically oriented. The scaling is such that moving 6
groups to the right corresponds to a doubling of spatial frequency. The bottom patterns are 4-bar patterns
horizontally and vertically oriented. Here, every 4 patterns corresponds to a doubling of spatial frequency.
The native p = 15 µm image is shown in Fig. 27(f), and an ROI of this image is shown in Fig. 27(e).
An L = 3 bicubic interpolation of a single simulated 100% fill factor detector image at p = 30 µm is
shown in Fig. 27(a), and the corresponding 25% fill factor image is shown in Fig. 27(b). Again, increased
aliasing artifacts are evident in Fig. 27(b). In both of these interpolated images, the last discernible 3-bar
pattern in both orientations is 14 patterns from the right. For the 4-bar target, the last discernible pattern
appears to be 10 from the right. The AWF SR results for the 100% and 25% fill factor images are shown
in Figs. 27(c) and (d), respectively. With SR, the last discernible 3-bar pattern is 9 from the right for the
100% fill factor, and 7 from the right for 25% fill factor. The last discernible 4-bar pattern with SR is
7 from the right for the 100% fill factor, and 5 from the right for 25% fill factor. Thus, we see that the
SR processing provides an approximately 2× increase in objective resolution, and the reduced fill factor
provides an objective boost in resolution compared with 100% fill factor.

The final set of results is in Fig. 28 and shows bleachers at Great American Ball Park in Cincinnati. The
native p = 15 µm image is shown in Fig. 28(f), and an ROI is shown in Fig. 28(e). An L = 3 bicubic
interpolation of a single simulated 100% fill factor detector image at p = 30 µm is shown in Fig. 28(a),
and the corresponding 25% fill factor image is shown in Fig. 28(b). Again, increased aliasing artifacts are
evident in Fig. 28(b). The AWF SR results for the 100% and 25% fill factor images are shown in Figs.
28(c) and (d), respectively. Note that the horizontal bleacher rows are far more discernible in the SR image
with 25% detectors, compared with 100%. There is a slight increase in noise, as expected, with the 25%
detectors. However, the boost in resolution is very noticeable.

6 CONCLUSIONS

In this paper, we have analyzed the impact of detector element active area shape and size on sampling
and SR post processing. For 100% fill factor detectors in an imaging system with Q < 1, the detector
MTF includes a zero in the band of spatial frequencies that are potentially recoverable using multiframe
SR. The basic idea is that reduced fill factor detectors sacrifice signal level, but provide a more favorable
overall MTF by pushing the detector MTF zero out towards or beyond the optical cutoff frequency. Post-
processing with multi-frame SR can then exploit this expanded spatial frequency content for resolution
enhancement. The results in Section 5 show that when a relatively high SNR is available, by virtue of high
ambient signal levels and suitable integration times, we can trade some of the high SNR for an improved
detector MTF using low fill factor detectors. In a high SNR environment, the optimum detector size is
found to be one where the first detector MTF zero is close to the optical cutoff frequency. Thus, our
recommendation is that the design of detector active areas be guided by the Q value for the sensor, if SR
is to be used. In particular, for rectangular detectors on imaging systems with Q < 1, we recommend
active area dimensions of approximately a1 = p1Q and a2 = p2Q to put the first detector zero at the
optical cutoff frequency. Circular detectors appear to have a slight advantage over rectangular detectors.
For circular active area detectors, the first detector MTF zero is located at optical cutoff frequency for
b1 = 1.22p1Q and b2 = 1.22p2Q. In this way, the active area of circular detectors is 1.222π/4× larger
than that of corresponding square detectors. For an imaging system with Q ≥ 1, the first 100% fill
factor detector MTF zero is not within the SR folding frequency. Thus, for such systems, there may be
no compelling reason to employ reduced fill factor detectors. When reduced active area detectors are
used, the extra real estate on the FPA can be used for division of FPA sensing, used as a guard band to
minimize diffusion (pixel cross-talk), and/or to allow for opaque electronics. A final note of caution is
that with reduced active area detectors we see an increase in aliasing in the observed raw frames. This
is due to a decreased low pass filtering effect from detector integration. This can increase the difficulty
of discriminating true local scene motion from aliasing artifacts for robust SR [9]. As always, a suitable
balance is needed based on the priorities of the sensor application.
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SUPPLEMENTAL DATA

A video showing the MTFs in Figs. 11 and 13 with variable fill factor ranging from 100% to 0% is
provided in 132384 Hardie Video 2.MOV. This video shows how the zero of the detector MTF moves
to higher spatial frequency as the fill factor is reduced. Thus, the overall MTF is more favorable. A
similar video showing the MTF from Fig. 15 with scaling relative to 100% fill factor detectors is provided
in 132384 Hardie Video 3.MOV. Here the gain relative to the 100% fill factor detector is incorporated.
Thus, as the detector zero moves to higher spatial frequency, the overall system gain goes down. However,
for a system with a high SNR, this trade can be beneficial.

A video showing the MWIR results for Great American Ball Park from Fig. 28 is provided in the
file 132384 Hardie Video 1.MOV. The upper left hand corner is 100% fill factor single frame bicubic
interpolation and the upper right hand corner is the robust AWF SR output using 100% fill factor detectors
(when the red box appears). The lower left hand corner is 25% fill factor single frame bicubic interpolation
and the lower right hand corner is the robust AWF SR output using 25% fill factor detectors (when the
red box appears). The increase in resolution is apparent with the 25% fill factor detectors, but also an
increased in noise. Note also that the robust AWF SR processing is allowing for the local motion of the
pedestrians [9].
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Figure 21. AWF SR results for the 8 bit chirp image using simulated MWIR system with Q = 0.50 from Table 1 with K = 16 frames and L = 4. (a)
Bicubic interpolation of a single frame with 100% fill factor detectors (a = 30 µm); (b) bicubic interpolation of a single frame with 25% fill factor square
detectors (a = 15 µm); (c) AWF SR using 100% fill factor detectors; (d) AWF SR using 25% fill square factor detectors; (e) AWF SR using 29.22% fill
circular detectors (b = 18.3 µm); (f) truth image.
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Figure 22. AWF SR results for the 8 bit motocross image (kodim05.png) using simulated MWIR system with Q = 0.50 from Table 1 with K = 16 frames,
L = 4, and (a) Bicubic interpolation of a single frame with 100% fill factor detectors (a = 30 µm); (b) bicubic interpolation of a single frame with 25% fill
factor square detectors (a = 15 µm); (c) AWF SR using 100% fill factor detectors; (d) AWF SR using 25% fill square factor detectors; (e) AWF SR using
29.22% fill circular detectors (b = 18.3 µm); (f) truth image.
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Figure 23. PSNR for K = 16 multiframe AWF SR for the 8 bit motocross image (kodim05.png) with f̄ = 82.65 versus signal scaling parameter s. Note
that s governs the effective noise variance as shown in Eq. (8). The system parameters are the Q = 0.50 row in Table 1. For all but the lowest signal levels,
the reduced fill factor detectors produce the highest PSNR results after SR processing. A similar trend is seen with all of the images tested.

Figure 24. PSNR for K = 16 multiframe AWF SR for the 8 bit motocross image (kodim05.png) versus the detector zero frequency. The system parameters
are the Q = 0.50 row in Table 1, except a and b are changed to control the detector zero location here. The detector zero frequency ranges from 1/p to
1.5/(pQ). Note that the peaks occur very close to the optical cutoff frequency 1/(pQ) = 66.67 cyc/mm.
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Figure 25. PSNR forK = 16 multiframe AWF SR for the 8 bit motocross image (kodim05.png) versus square detector width a, and signal scaling parameter
s. The system parameters are theQ = 0.50 row in Table 1. Note that for high signal levels (larger s), the optimum a is close to 15 µm (with zero at the optical
cutoff frequency 66.67 cyc/mm). However, for very low signals levels (small s), larger active areas are preferred.

Figure 26. PSNR for multiframe AWF SR for the 8 bit motocross image (kodim05.png) versus the number of frames K. Shows is the result for a 100% fill
factor detector, as well as 25% rectangular and 29.22% circular detectors with zeros at the optical cutoff frequency. Bicubic interpolation of a single frame is
also shown for reference. Note that the reduced fill factor detectors benefit more from a larger K as this can help to compensate for the lower SNR.
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Figure 27. ROI from real MWIR sensor data of resolution chart. (a) L = 3 bicubic interpolation of simulated 100% fill factor detector image at p = 30 µm;
(b) bicubic interpolation of simulated 25% fill factor detector image at p = 30 µm; (c) K = 16 and L = 3 AWF SR using 100% fill factor detectors; (d)
K = 16 and L = 3 AWF SR using 25% fill factor detectors; (e) native sensor image with p = 15 µm; (f) larger native sensor ROI.
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Figure 28. ROI from real MWIR sensor data of bleachers at Great American Ball Park in Cincinnati. (a) L = 3 bicubic interpolation of simulated 100% fill
factor detector image at p = 30 µm; (b) bicubic interpolation of simulated 25% fill factor detector image at p = 30 µm; (c) K = 16 and L = 3 AWF SR
using 100% fill factor detectors; (d) K = 16 and L = 3 AWF SR using 25% fill factor detectors; (e) native sensor image with p = 15 µm; (f) larger native
sensor ROI.
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