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Abstract

A class of nonlinear �lters called rank conditioned rank selection �RCRS� �lters
is developed and analyzed in this paper� The RCRS �lters are developed within the
general framework of rank selection �RS� �lters� which are �lters constrained to output

an order statistic from the observation set� Many previously proposed rank order based
�lters can be formulated as RS �lters� The only di�erence between such �lters is in the

information used in deciding which order statistic to output� The information used by
RCRS �lters is the ranks of selected input samples� hence the name rank conditioned
rank selection �lters� The number of input sample ranks used is referred to as the order

of the RCRS �lter� Low order �lters can give good performance and are relatively
simple to optimize and implement� If improved performance is demanded� the order

can be increased but at the expense of �lter simplicity� In this paper� many statistical
and deterministic properties of the RCRS �lters are presented� Also presented is a

procedure for optimizing over the class of RCRS �lters� Finally� extensive computer

simulation results are presented which illustrate the performance of RCRS �lters in
comparison to other techniques in image restoration applications�
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� Introduction

A class of nonlinear �lters� which we refer to as rank conditioned rank selection �RCRS�

�lters� is presented and analyzed in this paper� The RCRS �lters are developed in the

general framework of rank selection �RS� �lters� RS �lters are those �lters constrained to

output an order statistic from the set of input samples� Many rank order based �lters which

have been proposed can be cast into the RS �lter framework� The di�erence between such

�lters is in the information used to select an order statistic to output� The information used

by RCRS �lters is the ranks of selected input samples� hence the name rank conditioned

rank selection �lters� The number of input sample ranks used in this decision is referred to

as the order of the RCRS �lter� The order can range from zero to the number of samples

in the speci�ed observation window� This control gives the �lters valuable �exibility� Low

order �lters can give good performance and are relatively simple to optimize and implement�

If improved performance is demanded the order can be increased� but� at the expense of

�lter simplicity� Simulation results presented in this paper show that the RCRS �lters o�er

improved performance over many other previously proposed techniques� Thus� we believe

that they represent a powerful and useful class of nonlinear �lters�

Signal restoration and �ltering have traditionally been approached from a linear frame	

work� Linear methods� however� tend to be sensitive to heavy tailed noise� They also tend

to be sensitive to non	stationarities� which are prevalent in signals such as images� Such

shortcomings have spurred the development of nonlinear �lters� One of the earliest non	

linear �lters proposed is the median �lter 
��
� The median is well known for its ability to

suppress impulsive type noise while preserving edges 
�� �� ��� ��
� For this reason the median

�lter is widely used in image processing applications� To gain improved performance� many

generalizations of the median have been proposed� These include multistage median �lters


�� �� ��
� center weighted median �CWM� �lters 
��� ��� ��� ��
� general weighted median

�WM� and weighted order statistic �WOS� �lters 
��� ��� ��
� stack �lters 
�� �� ��� ��� ��
�

and permutation �lters 
�� �
� All of these �lters can be formulated as RS �lters� The �lters

di�er� however� in the information they use to select an output order statistic� These more

sophisticated RS �lters tend to have better detail preserving characterists than the median�

The main advantages of the RS �ltering approach over linear methods are� ��� RS �lters

tend to preserve edges well� and ��� the e�ect of outliers is minimized� Edge preservation

results from the fact that RS �lters always output one of the samples in the observation

window� Thus� no new intermediate or transition points are introduced by the �ltering

�



process� This tends to keep edges sharp and crisp� The ability of the RS �lters to limit

the e�ects of outliers derives from the nature of rank ordered data� In heavy tailed noise�

outliers tend to be located in the extreme ranks of the sorted data� By not selecting output

samples from the extreme ranks� RS �lters can give a robust estimate that is insensitive to

even high levels of heavy tailed noise�

We show that the RCRS �lters� which use the ranks of selected observation samples as

the basis for selecting an output rank� have a number of very useful properties� Further�

more� extensive computer simulations reveal that the RCRS �lters perform extremely well

in comparison to other techniques in image restoration applications� In particular� they

o�er superior performance to the simple median and CWM �lter� which are subclasses of

RCRS �lters� In addition� the RCRS �lters outperform WOS �lters and stack �lters in

some applications� Finally� optimizing and implementing low order RCRS �lters is relatively

simple�

This paper is organized as follows� In Section �� we formally de�ne RS �lters and show

how several previously proposed rank order based �lters can be cast into this framework� We

then de�ne the RCRS �lters in Section � and examine the relationship between them and

other �lter classes� Also� a procedure for optimizing over the class RCRS �lters is described

in Section �� In Section 	� many statistical and deterministic properties of the RCRS �lters

are presented� Extensive computer simulation results are presented in Section 
� These

results illustrate the performance of the RCRS �lters in comparison to other techniques in

image restoration applications� A thorough quantitative analysis is presented and several

images are shown for subjective evaluation� Finally� some conclusions are drawn in Section

��

� Rank Selection Filters

In this section� the RS �lter structure is de�ned and discussed� We also examine how several

previously proposed rank order based �lters can be formulated within this framework� By

doing so� these di�erent �ltering methods can be better related�

Before the RS �lter structure is presented� the notation used in this paper is de�ned� Con�

sider the discrete sequences fd�n
g and fx�n
g� representing the desired and corrupted ver�

sions of a signal respectively� The index n is a d element vector such that n � �n�� n�� � � � � nd��

and both fd�n
g and fx�n
g are d�dimensional sequences� Also� consider a d�dimensional

window function that spans N samples and passes over the corrupted sequence in some pre�
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determined fashion� At each location n� the N observation samples spanned by the window

can be indexed and written as a vector� yielding

x�n� � �x��n�� x��n�� � � � � xN �n��� �	�

We de
ne the vector xr�n� to be the vector containing the N observation samples arranged

in increasing order� such that

x
r�n� � �x����n�� x����n�� � � � � x�N��n��� ���

where x����n� � x����n� � � � � � x�N��n�� To relate the rank of a sample to its location

within the window� we de
ne ri�n� to be the rank of the sample in window location i� i�e��

xi�n� � x�ri�n���n�� Also� let r�n� � �r��n�� r��n�� � � � � rN �n���

From the set of observation samples� we wish to form an estimate of the desired sample

at location � within the window� This estimate is denoted as �d��n�� where 	 � � � N � By

de
nition� the output �d��n� of an RS 
lter is constrained to be an order statistic from the

observation vector� For notational simplicity� the index n is assumed� and used explicitly

only when necessary for clarity� RS 
lters are formally de
ned as follows�

De�nition ��� The output of a window size N rank selection �lter is given by

FRS�x� � x�S�z��� �
�

where z is a feature vector that lies in the feature space Z� and S � Z �� f	� �� � � � � Ng�

The decision as to which sample from x
r to take as the output is based on the feature

vector z� This feature vector represents a subset of the information contained in x� In

general� the full information contained in the observation vector x is not used as the basis

for determining which ranked sample to output� Optimizing over a class of 
lters that

utilizes all the information in x is impractical� if not impossible� even for small observation

windows� Therefore� it is necessary to extract the information from x that is most relevant

for the application at hand� If a feature space with low enough dimensionality is selected�

the optimization becomes feasible�

A block diagram of the RS 
lter structure is shown in Fig� 	� The diagram shows the

observation vector x being fed into two functional blocks� One block extracts the feature

vector z� and the other produces the sorted vector xr� The output rank selector chooses the

appropriate sample from x
r to be the estimate� The choice as to which sample to output is

based on the feature vector z� and the rank selection rule S����






Ouput
Rank

Selector

Feature
Extractor

Sorter

z

x d

x

ˆ

S(z)r

Figure �� Block diagram showing the rank selection �lter structure�

From the de�nition it is clear that S��� can be considered a classi�er that partitions the

feature space Z into N regions� Each region in the partitioned space corresponds to a speci�c

rank being selected to be the output� Whenever the feature vector lies in i
th partition� the

�lter output is the ith order statistic� Given a feature space Z� the function S��� can be

found using a variety of traditional classi�cation techniques� For certain feature spaces�

optimization techniques can be derived that minimize the �lter estimate error under speci�c

quantitative distortion measures� The performance of RS �lters depends� in large part� on

the choice of feature space� Thus� the feature space must be appropriate for the job at hand�

Many previously proposed �lters can be formulated as RS �lters� The di	erence between

these �lters is in the choice of the feature space and classi�er� Perhaps the simplest �lter that

can be described in the RS framework is a �lter that outputs a single constant order statistic�

In this case� the classi�er is simply a constant and is not a function of the feature space Z�

That is S��� 
 k� Such a �lter class includes the median �lter� The median �lter has been

shown to be e	ective at suppressing heavy tailed noise while preserving edges ��� 
� ��� ����

In many applications� however� the median removes signal structure� Moreover� the median

o	ers little �exibility in the tradeo	 between detail preservation and noise smoothing�

A second class of �lters that can be formulated in the RS framework is the class of

CWM �lters� This class of �lters allows for greater control in the tradeo	 between detail

preservation and noise smoothing� A similar class of �lters� the LUM �lters ���� ��� ����

includes all rank order and CWM �lters as a subset� It is shown shortly that the feature vector

for the CWM �lter contains partial rank of the center sample in the observation window�

While the CWM �lter has been shown to perform well in image restoration applications

���� ��� ���� we show here that RCRS �lters� which use complete rank information of selected
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observation samples� give a signi�cant improvement in performance�

Stack �lters can also be cast into the RS framework� This large class of �lters contains

all order statistic and weighted order statistic operators� as well as all compositions of such

operators� as a subset ���� For stack �lters� the determination of which sample to output is

based strictly on the level crossing information ��� �	�� The feature space for a size N stack

�lter can be interpreted as the set of N � N binary arrays in which each row and column

contains� at minimum� a single one� In addition� the rows of the arrays in the feature space

are constrained to obey the stacking property� Through an appropriate partitioning of the

space consisting of such arrays� where the allowable partitions are governed by the stacking

constraint �	
�� any stack �lter can be realized as an RS �lter� By operating on level crossing

information only� stack �lter estimates are robust and e�ective at smoothing heavy tailed

noise� However� the feature space of the class of stack �lters grows rapidly with the window

size� This rapid growth makes large window size stack �lters� e�g�� N � �	� impractical�

Thus� it is useful to explore other RS �lters which can be implemented with larger window

sizes�

As a �nal example� consider permutation �lters �
� ��� This class of �lters naturally lends

itself to the RS framework� For this class of �lters� the feature vector is r� the vector relating

the rank order and temporal order of each sample in the window� By relating the rank and

temporal order of each sample� the permutation �lter feature vector allows for the design of

highly specialized �lters� This choice of feature vector has shown to be particularly e�ective

in applications where frequency selection is required� The drawback of using r as the feature

vector is the rapid growth of the feature space as a function of window size� The cardinality

of the permutation �lter feature space grows as N 
� making the use of windows that contain

more than nine samples currently impractical� The proposed class of RCRS �lters is an

e�ective link between simple order statistic �lters ��th order RCRS �lter�� and permutation

�lters �N th order RCRS �lter�� By using a feature vector of lower dimension� the window

size of RCRS �lters can be increased beyond that of permutation �lters� The focus of the

presentation here is on the lower order RCRS �lters� Through computer simulations we

show that lower order RCRS �lter have performance superior to many previously proposed

�ltering methods� While the simulations focus on the lower order cases� the properties of

RCRS �lters are derived under the general case�






� Rank Conditioned Rank Selection Filters

In this section� the RCRS �lters are de�ned� The remainder of this paper focuses on these

�lters� The relationship between RCRS �lters and other �lter classes is also examined in

this section� Finally� optimization methods are discussed�

A Filter De�nition

The feature vector for the RCRS �lters consists of the the ranks of selected samples in

the observation vector x� The selected samples can be placed in a vector� yielding x
� �

�x��� x��� � � � � x�M �� where M is referred to as the order of the RCRS �lter� and � � M �

N � The respective ranks of these samples comprise the feature vector� yielding z � r
� �

�r��� r��� � � � � r�M �� The feature space is given by Z � 	M � where 	M � f �i�� i�� � � � � iM � 


ij � f�� �� � � � � Ng and ij �� ik � j �� kg� Thus� the feature space contains all combinations of

ranks excluding those in which any two are equal� since those combinations can not occur�

The RCRS �lters are de�ned speci�cally as follows�

De�nition ��� The output of an M th�order RCRS �lter with window size N is given by

FRCRS
x� � x�S�r���� 
��

where r� � �r��� r�� � � � � � r�M �� � � M � N and S 
 	M �� f�� �� � � � � Ng�

The order of the �lter and location of the samples chosen for x� depend on the application�

For M � �� the �lter operation is relatively simple to implement and optimize� We show

that for many applications� this �lter does a good job� If greater performance is demanded�

then additional rank information can be added to the feature vector� The following theorem

speci�es the number of unique �lters in the RCRS �lter class�

Theorem ���� The cardinality of the M th�order RCRS �lter class with window size N is

N �N ���N�M���� 
��

where � � M � N �

Proof� First note that the cardinality of the feature space 	M � denoted as j	M j� is j	M j �

N
N ���
N ��� � � � 
N �M ��� � N ��
N �M��� For each r
� � 	M � the domain of S
r�� is

f�� �� � � � � Ng� Thus� for each r
� � 	M � there are N distinct choices for S
r��� Consequently�

the number of distinct �lters is N j�M j� which is equivalent to 
��� �

�
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Figure �� The function S�r�� corresponding to the RCM �lter with parameter k�

For M � 	 there are NN RCRS �lters� This number grows rapidly with the �lter order�

If M � N 
 the RCRS �lters are equivalent to permutation �lters
 and the number of �lters

within the class grows to NN � ��
 
�� It is currently impractical to implement permutation

�lters with large window sizes� In this paper
 we focus on the simpler RCRS �lters where

M is small compared to N �

Although it is not necessary
 it is generally useful to include x� as an element in x
� since

this is the sample at the location of the estimate� The input sample x� generally provides the

most relevant information with which to form the estimate �d�� Let us consider an example of

an RCRS �lter whereM � 	 and x
� � x�� The feature vector is then r

� � r� and the �lter is

characterized by the function S�r��� Figure � shows an example of one such function� This

particular �lter outputs the sample x� if k � r� � N � k � 	� Otherwise the �lter outputs

the median� Thus
 we refer to this �lter as a rank conditioned median �RCM� �lter�

Plotting the function S�r�� for M � 	 and M � � can be a powerful aid in analyzing

the operation of RCRS �lters� For example
 from Fig� � it is clear that the RCM �lter is

e�ective at suppressing heavy tailed noise� If x� lies in the middle ranks
 it is unaltered�

However if it lies in the extreme ranks
 the RCM �lter outputs the median� Finding the

optimal S��� under a speci�ed quantitative error measure is discussed later in this section�

�



B Relationship Between RCRS Filters and Other Filter Classes

Let us now examine the relationship between RCRS �lters and several other rank order based

�lters� First� we consider their relationship to the CWM �lter� The output of the CWM

�lter is de�ned to be the median over an extended set containing multiple center samples�

This operation can be written as

FCWM�x� � medianfx�� � � � � w� � x�� � � � � xNg� ���

where � is a replication operator� x� represents the center sample in the window and N

is assumed to be odd� The center sample is repeated w� times� where w� is non	zero odd

positive integer� When w� � 
� the operator is a median �lter� and for w� � N � the CWM

reduces to an identity operation� It has been shown in �
�
 that the CWM �lter operation

is equivalent to

FCWM�x� � medianfx�k�� x�� x�N�k

g

where k N w for w N and k for w N

A more general lter i s the simply w eigh ted order statistic SW OS lter de ned a s

F

S W O S

x r a n k v f x w x x

N

g

The S W O S lter selects the v

t h

rank from the extended set I t has b e e n sho w n i n that

S W O S lter i s equiv alen t t o

F

S W O S

x median f x

k

x x

l

g

where k l N The o p e r a t o r i n w a s rst prop osed a s the asymmetric LUM

smo other i n The relationship b e t w een the parameters i n and those i n i s

giv e n b y v l and w l k The follo wing theorem relates S W O S lters t o R CRS

lters

Theorem Simply weighted order statistic �lters are a subclass of RCRS �lters and are

characterized by the function

S r S r

���
��

l if l r

r if k r l

k if r k

where k l N �

Pro of F rom i t follo w s that for x suc h that r k F

S W O S

x x

k

I f x i s suc h that

l r then F

S W O S

x x

l

I f x i s suc h that k r l then F

S W O S

x x x

r �

T h us the rank selection o p e r a t i o n o f the S W O S lter i s s p e c i e d b y �
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Figure �� The function S�r�� corresponding to the CWM �lter with parameter k�

From Theorem ��� it is clear that SWOS �lters use partial rank information about x��

The output rank is determined by which rank range x� lies in� The performance of the �lter

can be improved by utilizing the full rank information contained in r�� The function S�r��

corresponding to the CWM �lter with parameter k is shown in Fig� �� Like the RCM �lter	

the CWM does not alter x� if k � r� � N � k
�� If r� � k	 the output of the CWM is x�k��

Similarly	 if N � k 
 � � r�	 the output is x�N�k����

The class of weighted order statistic �WOS� �lters is de�ned by relaxing the SWOS

constraint that only a single sample be weighted� The output of a WOS �lter is given by

FWOS�x� � rank�v�fw � xg� ����

where w is a N element vector of weights 
���� The ith element in this vector	 wi	 is the

weight applied to the sample xi� As in the SWOS �lter	 the output is the vth ranked element

in the expanded set� By weighting each sample in the window	 WOS �lters can emphasize

certain observation samples while deemphasizing others� Although this weighting scheme

o�ers �exibility in �lter design	 and some overlap exists between the WOS and RCRS �lter

classes	 many of the most interesting RCRS �lters can not be realized as WOS �lters� For

instance	 the RCM �lter can not be realized as a WOS �lter� This is proved in the following

discussion on stack �lters	 which contain WOS �lters as a subset� But �rst	 since RCRS

and WOS �lters are compared through computer simulations in Section �	 the number of

�



operations required to form an estimate for each �lter type is given�

Both RCRS and WOS �lters require the observation data to be rank ordered� In addition

to the operations required to rank the data� a WOS �lter performs� on average� N�� additions

and comparisons to form an estimate� The additional operations required to form a RCRS

�lter estimate depend on the order of the �lter� not the window size� For an order M RCRS

�lter� an additional M � � multiplies and M�M � ���� comparisons are required� These

operations are necessary� in the RCRS �lter case� to generate the appropriate index in the

N 	��N �M�	 entry look
up table that stores S���� Thus� low order �M � �� �� RCRS �lters

are� in general� simpler to implement thanWOS �lters� As the �lter order increases� however�

the number of operations required to form an RCRS �lter estimate grows beyond that of the

WOS �lter� and the number of entries in the look
up table can become prohibitively large�

The next class of �lters we consider is the class of stack �lters� While stack �lters are

a large class of �lters containing many other rank order based �lters as subclasses� they do

not contain RCRS �lters as a subclass� Stack �lters� however� are contained in the order

N RCRS �lters �which are equivalent to permutation �lters� �
� ��� The following property

speci�es �lters common to both stack �lters and order one RCRS �lters�

Theorem ���� Any stack �lter FS��� that can be expressed as an order one RCRS �lter is

of the form

FS�x� � median
n
x�k�� x�� x�l�

o
� ����

where � � k � l � N � or

FS�x� � x�

�j� ����

where � � j � N � �� The order statistic x�

�j� is the jth ranked sample from the vector x��

which contains all the samples in x excluding x��

Proof� Any stack �lter FS��� is uniquely de�ned by a positive Boolean function ����� This

unique positive Boolean function can be expressed in a sum of products form as

f��� �
mX
i��

�i� ����

where each �i is a product term �i � xi�xi� � � �ximi
� The sum of products expression can be

split into two sums� one over the �i terms containing x�� and the other over the remaining

product terms�

f��� �
X

i�x� ���i

�i �
X

i�x���i

�i ��
�

�
X

i�x� ���i

�i � x�
X

i�x���i

��

i� ����

��



where the ��i�s in ���� indicate that x� has been factored out� An order one RCRS �lter

makes no distinction between temporal locations of samples other than that indexed by ��

That is	 all temporal locations other than � are considered equivalent �permuting them has

no e
ect on the output�� Since the product terms in the summations in ���� do not contain

x�	 they are not functions of temporal location� Thus	 the two sum of products must realize

rank order operations over the N�� samples xi i �� �� Let x� be a vector containing the N��

observation samples from x excluding x�	 and take x��k��� and x��l� to be the order statistics

de�ned by
P

i�x� ���i
�i and

P
i�x���i

��i respectively� The function realized by the stack �lter

can now be written as

FS�x� � max
n
x��k����minfx�� x

�

�l�g
o
� ����

Consider �rst the case k � l� Then FS�x� � x��k���	 which is independent of x�	 and equal to

��
� for j � k � �� Now consider the case l � k� An examination of the three possibilities

x� � x��k��� � x��l�	 x
�

�k��� � x� � x��l�	 and x��k��� � x��l� � x�	 shows that in terms of the

order statistics from x	 FS�x� � max
n
x�k��minfx�� x�l�g

o
	 which is equivalent to ����� �

The order one RCRS function corresponding to ���� is that of an SWOS �lter	 and is

given by ����� The order one RCRS function corresponding to ��
� is given by

S�r�� �

�
j if j � r�
j � � if j � r�

� ����

Thus	 the only order one RCRS �lters that can be described as stack �lter are SWOS �lters	

and those de�ned by ����� As is demonstrated shortly	 these are not optimal RCRS �lters

in many cases� The following example illustrates the fact that RCRS �lters �order one or

greater� are not a subset of stack �lters� The particular RCRS �lter used in this example is

the RCM �lter	 which is not a SWOS �lter nor described by �����

Example ���� Consider the window size � RCM �lter with k � �� This �lter outputs the

median observation sample if the center sample is either the minimum or maximum sample

in the window� In all other cases the output is the center sample� To illustrate that this

is not a stack �lter	 let x � ��� 
� �� �� ��� The output of the RCM �lter operating on x

is 
 since the center sample is the minimum sample in the observed set� Using threshold

decomposition and stable sorting to �nd the �lter output at each threshold level and then

��



adding the results yields�
� � � � � � �� �
� � � � � �
	 	 	 	 � 	
	 	 	 � � 	
	 � 	 � � 	
� � 	 � � �
� � � � � �

� 
���

which produces a result di
erent than that obtained by operating on the multi�level data�

Thus� the RCM �lter does not possess the threshold decomposition property and conse�

quently is not contained in the class of stack �lters� This result� of course� is predicted by

the previous theorem� �

C Optimization

Optimization over the class of RCRS �lters is now addressed� The procedure described here

closely follows that described in ��� ��� There� optimization under the mean absolute error


MAE� and the least L� normed error 
LNE� were detailed for the permutation �lter� While

both the MAE and LNE methods can be modi�ed to perform the optimization over the class

of RCRS �lters� we detail only the deterministic LNE method here�

In order to implement LNE optimization method� the feature vectors comprising the

feature space must be indexed� By doing so� the feature space can be expressed as

�M � fr�� r�� � � � � rj�M jg� 
�	�

In the foregoing development it is useful to write the observation vectors as sequence� in�

dexed in the order that they are utilized� Also� let the indexed sequences exclude all par�

tial observation vectors resulting from border e
ects� In this fashion� the observation vec�

tors can be written as x
n���x
n��� � � � �x
nK�� and the corresponding desired estimates as

d
n��� d
n��� � � � � d
nK�� For the RCRS �lter de�ned by S
��� the LNE over the K element

training sequence is

KX

i��

j d
ni�� FRCRS
x
ni�� j
� �

KX

i��

j d
ni�� x�S�r��ni��� j
�� 
���

The classi�er� that minimizes 
��� is referred to as the optimal classi�er and is denoted as

Sopt
���

�In instances where more than one classi�er satis�es the optimality criteria� a tie breaking rule must be

employed to de�ne a single optimal classi�er�

��



The LNE in ���� can be partitioned according to the observation feature vectors� Let

�i be the index of the feature vector in �M corresponding to observation vector x�ni�� such

that r�i
	 r

��ni�� and de
ne �j�K 	 fi � f�� �� � � � �Kg � �i 	 jg� The total LNE incurred

over the training sequence by estimating the desired signal with the kth order statistic� given

that the feature vector rj is observed� can be written as

Ej�k� 	
X

i��j�K

j d�ni�� x�k��ni� j
�� ����

If for some j � f�� �� � � � � j�M jg �j�K 	 �� then de
ne Ej�k� 	 
 for k 	 �� �� � � � � N � The

LNE of the RCRS 
lter de
ned by S��� can now be written as a sum of errors� partitioned

according to feature vector� yielding

KX

i��

j d�ni�� FRCRS�x�ni�� j
� 	

j�M jX

j��

Ej�S�rj��� ����

It is easy to show that the LNE in ���� is minimized if and only if each of the Ej�S�rj�� error

sums is minimized� Thus� the optimal RCRS 
lter classi
er is given by

Sopt�rj� 	 k � Ej�k� � Ej�l� � l �	 k ����

for j 	 �� �� � � � � j�M j� If there is not a unique minimum error for some j� then a tie breaking

rule must be employed� For example� a tie between two values satisfying ���� may be broken

by choosing the order statistic corresponding to one of the minimum errors that is closest

in rank to the median� In most practical cases� however� ties are unlikely given a su�cient

number of training samples�

The optimization can also be performed recursively� The function Sopt��� can be updated

as new training vectors become available� To do so� de
ne the cumulative partitioned error

as

Rj�k�m� 	
X

i��j�m

j d�ni�� x�k��ni� j
�� ����

The cumulative partitioned error termRj�k�m� contains the total error incurred by outputting

the kth order statistic� given the feature vector j is observed� up to index m in the training

sequence� These cumulative error terms can be written as a vector yielding

Rj�m� 	

�
�����

Rj���m�
Rj���m�

���
Rj�N �m�

�
�����
� ����

��



The optimal function at index m in the training sequence is determined by the minimum

element in Rj�m�� and is given by

Sm
opt�rj� � k � Rj�k�m� � min �Rj���m�� Rj���m�� � � � � Rj�N �m��� ����

for j � 	� �� � � � � j
M j� Again� if there is not a unique minimum element in the vector Rj�m��

then a tie breaking rule must be employed�

The iterative optimization procedure goes as follows� The optimal function is set to

some initial value� such as the median yielding S�
opt�rj� � �N � 	���� and Rj�k�
� � 
 for

j � 	� �� � � � � j
M j and k � 	� �� � � � � N � The index m is set to one and the feature vector

index �m is determined� Then� the cumulative error vector R�m�m� is updated according to

R�m�m� � R�m�m� 	� �P�m�� ����

where P�m� is a vector that contains the L� normed di�erence between the desired signal

d�nm� and each of the order statistics in the observation vector� Speci�cally� P�m� is given

by

P�m� �

�
�����

jd�nm�� x����nm�j
�

jd�nm�� x����nm�j
�

���
jd�nm�� x�N��nm�j

�

�
�����
� ����

The optimal function Sm
opt�r�m� is updated according to

Sm
opt�r�m� � k � R�m�k�m� � min �R�m���m�� R�m���m�� � � � � R�m�N �m��� ��
�

The indexm is incremented� and the procedure repeats until the end of the training sequence

is reached� or such a time that the �lter has been determined to be su�ciently trained�

The recursive training algorithm is summarized in Table 	� Advantages of this deter�

ministic training procedure are� �	� the training process always returns the globally optimal

�lter for the training set and ��� there is freedom to choose an error norm� In addition� an

exponential �forgetting� factor can easily be added to the sum of L� normed estimate errors

to accommodate training data with changing statistics ��� ���

Several examples of optimized functions are shown in Figs� ���� The training data used

is the �	� � �	� image �Lena�� which is shown in Fig� 	��a�� For all of the optimized

functions� a � � � window is used and � is the index of the center sample� Figure � shows

optimal �rst order �lter functions Sopt�r�� for the image corrupted by impulsive noise with

various impulse probabilities� Notice that each of the functions has a linear region in which

	�



Table �� Recursive least L� normed error training algorithm�

�� Set m � �� S�
opt�rj� �

N��

�
and Rj�k�	� � 	� for j � �� 
� � � � � j�M j and

k � �� 
� � � � � N �


� Determine the feature vector index �m�

�� Update R�m�m� according to R�m�m� � R�m�m� �� 
P�m��

�� Set Sm
opt�r�m� � k � R�m�k�m� � min �R�m���m�� R�m���m�� � � � � R�m �N�m���

�� If m � K or �lter is su�ciently trained� stop� else increment m and go to 
�

the input rank equals the output rank� However� when r� is in the extreme ranks� the output

is a rank closer to the median� This provides the impulse rejection� Note that the break

point moves in as the impulse probability increases�

Figure � shows several Sopt�r�� functions for �Lena� corrupted by various levels of additive

Gaussian noise� In this case� the optimal functions are approximately linear� with slope

inversely proportional to the noise level� For no noise� the optimal function has a slope

of one� representing an identity �lter� For very high noise levels� the slope of the optimal

function approaches zero� reducing the �lter to a median�

Figure � shows several optimal functions for �Lena� corrupted by additive contaminated

Gaussian noise� We denote the contaminated Gaussian noise probability density function as

����� ��� ��� With probability � � �� a noise sample is normally distributed with zero mean

and variance ��
�
� and with probability �� a noise sample is normally distributed with zero

mean and variance ���� In general� �� � �� and � represents the �contamination� probability�

Figure ��a� shows several Sopt�r�� functions for the image corrupted by ���� �		� �� contami�

nated Gaussian noise� Notice that there is a linear region like in the Gaussian noise case and

a cut o� region like in the impulsive noise case� Figure ��b� shows several Sopt�r�� functions

for �Lena� corrupted by ���	� �		� �� contaminated Gaussian noise� Here the slope of the

linear regions are lower due to the higher level of background noise�

Figure � shows two optimal second order functions for a � � � window� where r� �

�r�� r����� The index � represents that of the center sample and � 
 � is the index of the

sample immediately to the right of center� In these plots� the height of the mesh represents

��
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the output rank for the given feature vector� Figure ��a� shows Sopt�r�� for �Lena� corrupted

by impulsive noise� Note that for a �xed r���	 the shape of the curve along the r� axis is

similar to that of the �rst order function� However	 as r��� is increased	 the function is biased

to output higher order statistics� For lower values of r���	 the function is biased to output

lower order statistics� The additional information provided by r��� allows the second order

�lters to have more sophisticated decision rules and gives them improved performance over

the order one �lters� Figure ��b� shows Sopt�r
�� for the image corrupted by 
��� �

� 
����

contaminated Gaussian noise� Again	 the e�ect of both ranks r� and r��� in selecting the

output rank can be seen�

� Properties of the RCRS Filter

In this section	 statistical and deterministic properties of the RCRS �lters are developed�

All properties are derived for the general case of order M RCRS �lters� Through the study

of these properties	 the design and analysis of RCRS �lters is aided�

A Statistical Properties

The �rst statistical property considered is the impulsive noise breakdown probability	 intro�

duced in ����� The breakdown probability is the probability of a �lter outputting an impulse	

given a certain probability of impulses appearing in the observed signal�

Consider the case of an i�i�d� signal corrupted by independent impulsive noise where

a signal sample is replaced by �� with probability p	 otherwise it is unaltered� Let the

probability of negative impulse be p�� and the probability of a positive impulse be p���

Given this	 the breakdown probability for RCRS �lters is de�ned in the following property�

Property ��� �Breakdown probability� The breakdown probability for an RCRS �lter

characterized by S��� is given by

Pr�FRCRS�x� � ��� �
�N �M��

N �

X

i��M

�
� NX
l�S�i�

�
N

l

��
p

�

�l �
��

p

�

�N�l
� ����

NX
m�N�S�i���

�
N

m

��
p

�

�m �
��

p

�

�N�m�A � ����

Proof� The probability of an RCRS �lter outputting an impulse is given by

Pr�FRCRS�x� � ��� �
X

i��M

Pr�x�S�r��� � �� j r� � i� Pr�r� � i� ����

��
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X

i��M

	Pr	at least S	i
 samples out of N � ��
 �

Pr	at least N � S	i
 � � samples out of N � ��

 � 	��


Summing these sets of binomial probabilities yields 	��
� �

Selected breakdown probabilities are plotted in Fig� � for the RCM and CWM �lters�

Notice that the breakdown probabilities for the RCM �lter are less than those of the CWM

�lter with the same parameter� This is because the RCM �lter outputs the median rather

than rank k and N � k � � if r� is outside the range of k and N � k � �� The median is less

likely to be a corrupted sample than the samples with rank k and N�k�� for k � 	N��
���

Another important statistical property of the RCRS �lters is the probability that the

output is x�� In other words� the probability that the RCRS �lter performs the identity

operation� The probability of identity operation can be written as the ratio of set cardi�

nalities when r� is included in the RCRS feature vecor� which is the case in most practical

applications�

��



Property ��� �Probability of identity operation� For an RCRS �lter where r� is con�

tained in r� and the input samples are i�i�d� with a continuous distribution� the probability

that the output is equal to x� is given by

Pr�FRCRS�x� � x�� � j�j
N �

�N �M��
� ����

where � � fi � 	M 
 S�i� � r�g�

Proof � For an RCRS �lter operating on input samples from a continuous distribution�

Pr �FRCRS�x� � x�� �

�

 if r� � �
� otherwise

� ����

If the input samples are also i�i�d�� then Pr�r� � �� � j�j�j	M j� Substituting for the

cardinality of 	M yields ����� �

It is also informative to know the cumulative distribution function �cdf� of RCRS �lter

output samples� Let the cdf of the input and output samples be denoted by �X��� and �Y ���

respectively� Assuming i�i�d� input samples and given S���� the cdf of the output samples is

given in the following property�

Property ��� �Output distribution� The cdf of the output samples of an RCRS �lter

characterized by S��� in the case of i�i�d� input samples is given by

�Y �y� �
�N �M��

N �

X
i��M

NX
j�S�i�

�
N

j

�
�j
X�y��
��X�y��

N�j� ����

Proof� The cdf of the output samples of an RCRS �lter is given by

�Y �y� � Pr�FRCRS�x� � y� ����

�
X

i��M

Pr�x�S�r��� � y j r� � i� Pr�r� � i� ��
�

�
X

i��M

Pr�x�S�i�� � y� Pr�r� � i� ����

�
�N �M��

N �

X
i��M

Pr�x�S�i�� � y� ����

�
�N �M��

N �

X
i��M

Pr� At least S�i� samples out of N are � y�� ����

These probabilities can be found as a sum of binomial probabilities yielding ���� �

�




The probability density functions �pdfs� can be found from ���� by means of di�erentia�

tion� Selected pdfs are plotted in Fig� � for the RCM and CWM 	lters� From the plots
 it

is clear that the variance of the output samples of both 	lters decreases as the parameter k

is increased� Notice that some of the pdfs for the CWM 	lter are bimodal� This is because

the output of the CWM is often x�k� or x�N�k���
 which lie on di�erent sides of the median�

This does not occur with the RCM 	lter�

B Deterministic Properties

In this subsection
 deterministic properties of the RCRS 	lters are presented� The 	rst

deterministic property
 which relates to the generalizability of a 	lter class
 is scale and bias

invariance�

Property ��� �Scale and bias invariance� RCRS �lters have the property of scale and

bias invariance� Speci�cally if y � ax� b�� where � is an N�vector of ones� then

FRCRS�y� � aFRCRS�x� � b �
��

for a � � and �� � b ��� If the function S�r�� has the symmetry S�r�� � N � S�N��

r� � �� � �� then ���	 is valid for �� � a� b ���

Proof� The sorted elements from the vector y
 where a � �
 are

ax��� � b � ax��� � b � � � � � ax�N� � b� �
��

Each element in x remains in the same relative rank in the linearly transformed vector y�

Thus
 if x�i has rank r�i in x
 then y�i has rank r�i in y� Consequently


FRCRS�y� � y�S�r��� � ax�S�r��� � b � aFRCRS�x� � b� �
��

If a � �
 then the sorted elements in the vector y are

ax�N� � b � ax�N��� � b � � � � � ax��� � b� �
��

In this case
 if x�i has rank r�i in x
 then y�i has rank N � r�i � � in y� So if S�r�� �

N � S�N�� r� � �� � � then

FRCRS�y� � y�S�N��r����� � y�N�S�r����� � ax�S�r��� � b � aFRCRS�x� � b� �
��

The case where a � � is trivial� �

��
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Thus� the RCRS �lters are not be sensitive to changes in scale and bias� This is improtant

because these parameters often vary from image to image�

We now focus attention on root signal analysis� A root signal of a �lter is one which is

unchanged by the �ltering operation� Root signal analysis has proven to be a useful tool for

evaluating nonlinear �lters ��� �� �	
� By investigating root signals� one can gain insight into

the performance of a given �ltering algorithm� Root signals can also aid in �lter design�

Property ��� �Root signals� su�cient conditions� A signal is a root of an RCRS �lter

characterized by S��� if r��n� � fi � 
M � S�i� � r�g for all n�

Proof� For a signal such that r��n� � fi � 
M � S�i� � r�g for all n� the output of an RCRS

�lter characterized by S��� is given by

FRCRS�x�n�� � x�S�r��n����n� � x�r���n� � x��n� ����

for all n� Thus� such a signal is root of the RCRS �lter� �

Necsessary conditions for signals to be roots of an RCRS �lter are de�ned in the following

property�

Property ��	 �Root signals� necessary conditions� Let the signal fx�n�g be a root of

the RCRS �lter characterized by S���� If for all n xk�n� �� x��n� for k � f�� �� � � � � Ng� k �� ��

then r��n� � fi � 
M � S�i� � r�g for all n�

Proof� If fx�n�g is a root signal� then for all n

FRCRS�x�n�� � x�S�r��n��� � x��n�� ����

Also� if for all n xk�n� �� x��n� for k � f�� �� � � � � Ng� k �� �� then

FRCRS�x�n�� � x�S�r��n��� � x��n� � x�r���n� ����

for all n� This can only occur if r��n� � fi � 
M � S�i� � r�g for all n� �

From Property ��� and ���� it follows that a signal with samples that derive from a

continuous distribution is a root of an RCRS �lter characterized by S��� i� r��n� � fi �


M � S�i� � r�g with probability �� The following property gives su�cient conditions for a

signal to be a root of two RCRS �lters�

��



Property ��� �Shared root signals� Let fx�n �g b e a signal such that for a l l n xk�n � ��

x��n � wher e k � f�� �� � � � � Ng� k �� � I f this signal i s a r o o t o f a size N o r der M R CRS lter

char acterize d b y S���� then i t i s also a r o o t o f a size N o r der M R CRS lter char acterize d

b y S���� i f fi � �M � S��i � � r�g � fi � �M � S��i � � r�g

Pro of If a signal fx�n �g is such that for all n xk�n � �� x��n � for k � f�� �� � � � � Ng� k �� �

and is a root of a size N order M RCRS �lter characterized by S����	 then by Property 
��

r

��n � � fi � �M � S��i � � r�g for all n � If a second size N orderM RCRS �lter characterized

by S���� is such that

fi � �M � S��i � � r�g � fi � �M � S��i � � r�g� �
��

then r

��n � � fi � �M � S��i � � r�g for all n � Thus	 by Property 
�
	 fx�n �g is a root of the

RCRS �lters characterized by S����� �

For example	 consider a signal fx�n �g in which for all n xk�n � �� x��n � for k � f�� �� � � � �

Ng� k �� �� If this signal is a root of the CWM �lter of size N with parameter k	 then by

Property 
�� this signal is also a root of the RCM �lter of size N with parameter k�

� Experimental Results

The proposed �lters can be used in a variety of signal restoration applications� Here we

consider the application of these �lters to the restoration of an image corrupted by impulsive

noise and contaminated Gaussian noise� Quantitative error results are presented and several

�ltered images are shown for subjective evaluation� The RCRS �lter are compared to the

median	 CWM	 WOS	 and �where possible� stack �lters�

The RCRS �lters discussed in this section have the following parameters� for M � �	

�� � � where � is the index of the center sample in the window� for M � �	 �� � � and

�� � � � � where � � � is the index of the sample to the right of center� for M � �	 �� � �	

�� � � � � and �� � � � � where � � � is the index of the sample to the left of center� The

training procedure used to obtain the following simulation results for the RCRS �lters is the

LNE �L�� algorithm presented in Section �C� The optimal CWM �lter is found by means

of an exhaustive search over the parameter k as de�ned in ���� The WOS and stack �lter

training procedures used are those described in ��
� and �����

In the following results	 the �lters are operating on the image �Lena� and have been

trained using the image �Albert�� Both images �Lena� and �Albert� are shown in Fig� ���

�




Notice that the two images are quite di�erent in structure� The reason the �lters have been

trained using an image which is di�erent from the one being �ltered� is to present a more

realistic scenerio� Using training data which has statistics that are very similar to that of

the data being �ltered generally gives the best results� We illustrate this idea later in this

section�

Figure �� shows the mean absolute errors �MAE	 for RCRS �lters operating on the

image 
Lena� corrupted by impulsive noise with impulse probability p� The impulses take

on positive and negative values with equal probability �p��	� Figure ���a	 shows the MAE

for �lters with a 
� 
 window� In this plot� the CWM� WOS �lter and stack �lter estimate

errors are approximately equal� The reason the WOS �lter and stack �lter produces a higher

estimate error in a few cases is due to the fact that each �lter was optimized for the image


Albert�� not 
Lena�� As the �gure shows� the RCRS �lters give the best results� The order

three �lter gives the lowest error followed by the order two and order one �lter respectively�

Also note that for high noise probabilities� the CWM� WOS �lter and stack �lter errors are

approximately equal to that of the median� while the RCRS �lters give signi�cantly lower

errors�

Figure ���b	 shows the MAEs for �lters with a ��� window� For this window size� stack

�lters are impractical to implement� thus� these results can not be shown� Figure ���b	

shows that the RCRS �lters give signi�cantly lower errors than the CWM and WOS �lters�

Also� note the the errors for the �� � RCRS �lters are lower than those of the 
� 
 RCRS

�lters�

Figures �� and �� show pairs of MAE curves for each �lter type� One of the error

curves corresponds to the speci�ed �lter trained on 
Lena� operating on 
Lena�� The other

corresponds to the speci�ed �lter trained on 
Albert� operating on 
Lena�� These results

illustrate the generalizability of the �lters� Figure �� shows the MAEs for the �lters operating

on 
Lena� corrupted with impulsive noise� Figure ���a	 shows the results for �lters with

a � � � window� Figure ���b	 shows the results for �lters with a � � � window� In both

cases� the RCRS �lters give the best results� The �lters which have been trained on 
Lena�

have a slightly lower error than those trained on 
Albert�� as would be expected� The loss

in performance due to training on a 
Albert�� as opposed to 
Lena�� is comparable for the

CWM� WOS and RCRS �lters� The fact that the di�erence in performance for the �lters

trained 
Albert� and 
Lena� is very small� indicates that the �lters generalize extremely

well for this type of corruptive process�

Figure �� shows the MAEs for the �lters operating on 
Lena� corrupted by ���� ���� �	

��
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Figure ��� MAE for the RCRS �lters and others operating on the image �Lena� corrupted
by impulsive noise with impulse probability p	 Each �lter was optimized using the image
�Albert	� The results using a 
 � 
 window are shown in �a� and the results using a � � �
window are shown in �b�	
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Figure ��� MAE for the RCRS �lters and others operating on the image �Lena� corrupted
by impulsive noise with impulse probability p� Each �lter was optimized using the image
speci�ed in the key �either �Lena� or �Albert��� The results using a 	�	 window are shown
in �a� and the results using a 
� 
 window are shown in �b��
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Figure ��� MAE for the RCRS �lters and others operating on the image �Lena� corrupted
by 	�
� ���� �� contaminated Gaussian noise� Each �lter was optimized using the image
speci�ed in the key �either �Lena� or �Albert��� The results using a 
�
 window are shown
in �a� and the results using a �� � window are shown in �b��
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contaminated Gaussian noise� Figure ���a� shows the results for �lters with a �� � window�

Figure ���b� shows the results for �lters with a 	� 	 window� Here the WOS �lters give the

lowest error� This is probably due to the fact that WOS �lters use some information about

all the samples in the window
 whereas low order RCRS �lters
 use more detailed informaion

about fewer samples� Using spatial information which is spread out within the window

appears to give better results in this application� Improved results can be obtained with the

RCRS �lter by increasing the order and using information from more samples� Again
 note

that those �lters trained on �Lena� have a lower error than those trained on �Albert�� The

WOS �lter appears to have a greater loss in performance as a result of training on �Albert�

for the low contamination probability cases than the other �lters�

Since it is di
cult to judge the performance of image processing algorithms based solely

on quantitative analysis
 we show several �ltered images for subjective evaluation� The

original images �Lena� and �Albert� are shown in Figs� ���a� and ���b� respectively� Figure

���c� shows the image �Lena� corrupted with impulsive noise where p � ����� The image

restored using a � � � CWM �lter trained on �Albert� is shown in Fig� ���a�� The image

restored using a �� � WOS �lter trained on �Albert� is shown in Fig� ���b�� Figures ���c�

and ���d� show the image restored using �rst and second order RCRS �lters respectively�

Both RCRS �lters use a �� � window and were trained on �Albert��

While the CWM and WOS �lters do a fairly good job
 the edges appear to be cleaner

on the images �ltered with the RCRS �lters� The second order RCRS �lter appears to have

removed more of the impulses than the order one �lter
 resulting in a high quality restoration�

Note that with the L� norm
 there tends to be less penalty for allowing impulses to pass

than with higher normed error measures� If an L� norm is used
 the resulting CWM and

RCRS �lters would tend to suppress the impulses better
 but at the expense of image detail�

Next
 images restored using a larger window size are shown� Figure ���a� shows the

image restored using a 	� 	 CWM �lter trained on �Albert�� Figure ���b� shows the image

restored using a 	 � 	 WOS �lter trained on �Albert�� Figures ���c� and ���d� show the

image restored using �rst and second order RCRS �lters respectively� Both RCRS �lters use

a 	�	 window and were trained on �Albert�� Here
 the CWM �lter suppresses the impulses

well
 but causes signi�cant distortion at edges� On the other hand
 the WOS �lter preserves

detail fairly well
 but leaves many impulses� The RCRS �lters appear to both preserve

image detail and remove most of the impulses� Again
 the second order �lter appears to

have removed more impulses than the �rst order �lter while providing the same level of

detail preservation�

��



� Conclusions

A new class of nonlinear �lters� RCRS �lters� has been introduced� These �lters are developed

under the framework of RS �lters� RS �lters are all �lters constrained to output a sample

from the set of rank ordered input samples� Many previously proposed rank order based

�lters can be formulated as RS �lters including the median �lter� CWM �lter� stack �lter

and permutation �lter� Each of these �lters� however� uses di�erent information in selecting

an output order statistic� The RCRS �lters use the rank of selected input samples as the

basis for the output rank selection� A deterministic optimization procedure is described

here� This optimization guarantees the optimal �lter for the given training data with any

L� normed error� Also� the properties developed here can aid in the design and analysis of

the RCRS �lters� The simulation results show that for some image restoration applications�

the RCRS �lters outperform the median �lter� CWM �lter� and stack �lter �under the MAE

criteria�� In addition� the low order RCRS �lters can be implemented with much larger

window sizes than stack �lters or permutation �lters� Finally� the operation of the low order

�lters is straight forward and intuitive�
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�a�

�b�

Figure ��� Original ���� ��� � bit	pixel grey scale images
 The image �Lena� is shown in
�a� and the image �Albert� is shown in �b�
 The image �Lena� corrupted by impulsive noise
where p 
 ���� is shown in �c�
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�a�

�b�

Figure ��� The impulse corrupted image restored using an �a� � � � CWM �lter �b� � � �
WOS �lter �c� �� � RCRS �lter with M � � and �d� a �� � RCRS �lter withM � 	
 Each
of the �lters has been optimized using �Albert
�
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�a�

�b�

Figure ��� The impulse corrupted image restored using an �a� � � � CWM �lter �b� � � �
WOS �lter �c� RCRS �lter where M � � and �d� an RCRS �lter where M � 	
 Each �lter
has been optimized using �Albert
�
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