
University of Dayton
eCommons
Electrical and Computer Engineering Faculty
Publications

Department of Electrical and Computer
Engineering

10-2005

Partition-based Interpolation for Color Filter Array
Demosaicking and Super-Resolution
Reconstruction
Min Shao
Philips Medical Systems

Kenneth E. Barner
University of Delaware

Russell C. Hardie
University of Dayton, rhardie1@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub

Part of the Computer Engineering Commons, Optics Commons, and the Signal Processing
Commons

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at eCommons. It has been accepted
for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of eCommons. For more information, please
contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Shao, Min; Barner, Kenneth E.; and Hardie, Russell C., "Partition-based Interpolation for Color Filter Array Demosaicking and Super-
Resolution Reconstruction" (2005). Electrical and Computer Engineering Faculty Publications. 4.
https://ecommons.udayton.edu/ece_fac_pub/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232843645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/4?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Partition-based interpolation for color filter array
demosaicking and super-resolution
reconstruction

Min Shao
Philips Medical Systems
Thousand Oaks, California 91320

Kenneth E. Barner
University of Delaware
Department of Electrical and Computer

Engineering
Newark, Delaware 19716
E-mail: barner@udel.edu

Russell C. Hardie
University of Dayton
Department of Electrical and Computer

Engineering
Dayton, Ohio 45469

Abstract. A class of partition-based interpolators that addresses a vari-
ety of image interpolation applications are proposed. The proposed in-
terpolators first partition an image into a finite set of partitions that cap-
ture local image structures. Missing high resolution pixels are then
obtained through linear operations on neighboring pixels that exploit the
captured image structure. By exploiting the local image structure, the
proposed algorithm produces excellent performance on both edge and
uniform regions. The presented results demonstrate that partition-based
interpolation yields results superior to traditional and advanced algo-
rithms in the applications of color filter array �CFA� demosaicking and
super-resolution reconstruction. © 2005 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2087428�
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1 Introduction

High resolution images are often difficult to obtain due to
the limitation of physical sensors. For instance, to reduce
cost, most digital still cameras �DSCs� utilize only one
charge-coupled device �CCD� sensor, covered with a color
filter array �CFA�, to capture all three �red, green, and blue�
color channels. Figure 1 shows the most commonly used
Bayer pattern CFA, where each pixel samples one of the
three color channels, resulting in down-sampled color chan-
nels. The process to recover missing color channels at each
pixel location is called CFA demosaicking. In infrared im-
aging systems, detector elements in the focal plane array
cannot provide a sampling rate high enough to capture high
frequency components in infrared images.1 Super-
resolution reconstruction is needed to reproduce high reso-
lution images from a series of low resolution frames.

Image interpolation algorithms are widely used in appli-
cations such as image magnification �zooming� and color
filter array demosaicking, and are a critical step in super-
resolution reconstruction. The commonly used bilinear,2

bicubic,3,4 and B-spline5 interpolation methods employ a
simple weighted sum operation to estimate high resolution
�HR� pixels. Although convenient to implement, they dis-
regard local image structures and fail to effectively pre-
serve edges, introducing artifacts such as blurring. To ad-
dress this issue, edge-directed interpolation methods have
been developed to avoid interpolating across edges.6–9

Simple implementations, such as the edge-sensing method,6

utilize an ad hoc thresholding of local variance to decide
whether to average along the horizontal, vertical, or diago-
nal directions. More sophisticated methods, such as that
proposed by Li and Orchard,9 are capable of adapting

themselves to arbitrarily directed edges. This method esti-
mates the correlation between a pixel and its four neighbor-
ing pixels by applying the classical covariance method to a
local 8�8 low resolution �LR� window. Then, based on
geometric duality, the correlation is utilized to estimate pix-
els on a higher resolution grid using the observed neighbor-
ing pixels. This method, however, does not perform well in
cases where multiple structures exist in the same local
8�8 LR window.

Images, although nonstationary in nature, are generally
composed of a finite set of structures, predominantly uni-
form regions, and edges at different orientations and scales.
These structures appear repeatedly throughout an image
and can thus be exploited. Indeed, the partition-based filters
were designed to process signals comprised predominantly
of regularly, although not periodically, occurring
structures.10 Here, we apply this partition-based methodol-
ogy to image interpolation.

0091-3286/2005/$22.00 © 2005 SPIE Fig. 1 Bayer pattern color filter array.
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In this methodology, the observation space is partitioned
into a finite number of regions, where each region contains
the observation samples corresponding to a specific signal
structure. The samples within a partition are processed by a
filter designed to exploit the represented structure. This
methodology has been successfully applied to the problems
of ECG signal separation11 and image signal-to-noise ratio
�SNR� enhancement.12

The extension of the partition-based approach to inter-
polation utilizes vector quantization �VQ� to form structure
partitions. The samples within each partition have similar
statistics, which are exploited in partition-specific linear in-
terpolators. Thus, each partition is associated with a
structure-specific interpolator. This approach is similar to
that utilized by Candocia and Principe13 for image magni-
fication. Here, we formulate the interpolation problem in
the more rigorously analyzed partition-filtering framework,
which provides analysis and optimization procedures, and
apply the approach to the problems of color filter array
demosaicking and super-resolution reconstruction.

The remainder of this work is arranged as follows. Sec-
tion 2 describes the proposed partition-based interpolation
algorithm and its specific formulations for the applications
considered. Optimization procedures are given in Sec. 3.
Section 4 compares, both quantitatively and subjectively,
the performance of the proposed algorithm and others re-
ported in the literature in the applications of CFA demosa-
icking and super-resolution reconstruction. Finally, conclu-
sions are drawn in Sec. 5.

2 Partition-Based Interpolation Algorithm
Image interpolation aims to recover missing pixels from
observed pixels. Specifically, in demosaicking, color pixels
missing from a color filter ararry �CFA� sampling are esti-
mated using pixels available in the CFA. Similarly,
registration-interpolation methods are commonly used in
super-resolution reconstruction �also referred as resolution
enhancement�. In this application, LR frames are calibrated
�shifted� following registration to form a higher resolution
image with nonuniformly spaced sample points.14 Then, in-
terpolation is applied to reconstruct all the pixels on the HR
grid.

To formulate the general interpolation problem, it is
commonly assumed that a natural image source can be
modeled as a locally stationary Gaussian process.9 Thus,

there exists a linear operation that relates observed pixels
and missing pixels in a local image structure window.

Suppose there are p observed pixels and q missing pix-
els in a local observation window. �Missing pixels on the
boundary of the observation window are not considered,
because some of their surrounding pixels fall outside the
observation window.� If we form the observed pixels into a
p�1 vector x and the missing pixels into a q�1 vector y,
then this linear operation can be presented as

ȳ = Wx̄ , �1�

where W is the weight matrix of the weighted sum linear
operation and x̄ �or ȳ� is x �or y� with zeros bias, i.e., the
mean is subtracted from all elements. The mean of y must
be added back to form the final estimation ŷ. In practice,
however, the mean of y is rarely known a priori, but, as
noted earlier, is usually close to that of x. In the implemen-
tation of Eq. �1�, we thus form ȳ by subtracting the mean of
x from y. To compensate for the possible bias introduced in
this approximation, we introduce an additional bias term b,
and rewrite Eq. �1� as

ȳ = Wx̄ + b , �2�

where b is the bias between the mean of x and the mean of
y during the training process described before. Finally, this
equation can be simplified as,

Fig. 2 Partition-based interpolation scheme.

Fig. 3 �a� A 3�3 observation window for interpolating R pixels. �b�
A diamond 3�3 observation window for interpolating G pixels.
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ȳ = W̃v , �3�

where W̃ is the augmented matrix �W �b� and v is �x̄T �1�T.
The zero-mean x̄ and ȳ vectors are said to be the observed
and missing sample structures, respectively. The vectors
are mean shifted to eliminate structures that differ solely
due to DC offsets, e.g., intensity shifts. Note that the col-
lection of possible observation structures forms the obser-
vation space comprising the zero mean subset of Rp.

As it is not realistic to enumerate all local structures in a
natural image, we divide the observation space into a finite

set of partitions and assign a common linear operation W̃ to
all observation structures within a unique partition. It is
shown in Ref. 10 that VQ is an effective method for seg-
menting the observation space into representative structure-
based partitions. Moreover, VQ partitioning yields im-
proved Gaussianity for the observed structures within each
partition,10 further motivating and justifying the use of lin-
ear interpolation within a partition.

The proposed algorithm can, thus, be divided into two
steps: 1. partitioning and 2. interpolation. In the VQ parti-
tioning step, the observation space is divided into a set of
M mutually exclusive partitions, �1 ,�2 , . . . ,�M, that form
Voroni regions,

�i = �x̄ � Rp:�x̄ − Ci�2 � �x̄ − C j�2� for j = 1, . . . ,M, j � i ,

�4�

where each partition is represented by a vector Ci�Rp, the
set of which forms the codebook C= �Ci , i=1, . . . ,M�. The
codewords that form the codebook can be set as the cen-
troids of the samples within each partition,

Ci =
1

��i�
	

x̄��i

x̄ , �5�

where ��i� denotes the number of observation vectors in
the i’th partition.

In the interpolation step, a linear operation W̃i is applied
to all x̄��i,

ŷ̄ = W̃iv , �6�

where ŷ̄ is the estimate of ȳ. This relation can be alterna-
tively written as

ŷ̄ = 	
i=1

M

W̃ivI�x̄ � �i� , �7�

where

Fig. 4 Super-resolution observation model.

Fig. 5 Higher resolution image with nonuniformly spaced samples.
���� pixels from the reference frame; �*� pixels from the second
frame; ��� pixels from the third frame; �� � �� LR grids of the
reference frame; �…� HR grids of the reference frame.�

Fig. 6 An observation window for super-resolution reconstruction.
�1: pixels from the reference LR frame; 2 to 9: pixels from other LR
frames. �: pixels from available �observed� LR frames.�
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I�event� = 
0 if event is false

1 if event is true
� . �8�

Finally, since the mean of y is rarely known a priori, but is

usually close to that of x, we estimate ŷ as ŷ̄ with the mean
of x added back to its elements.

The block diagram of this partition-based interpolation
scheme is shown in Fig. 2. First, the LR observation vector
x is normalized to obtain the observation structure x̄. Next,
x̄ is assigned to one of the linear operations, based on the
results of partitioning. Finally, the mean of x̄ is added back
to form the estimated ŷ.

Note that ŷ contains multiple elements, and missing pix-
els may thus be estimated from multiple observation win-
dows. In such cases, we simply average the multiple esti-
mates to form the final result, although more sophisticated
combinations could certainly be employed. As noted in Ref.
13, if all of the multiple estimates are reliable, this averag-
ing does not produce the low pass filtering effect com-
monly associated with averaging.

This general partition-based interpolation formulation
can be customized to address the specific needs of particu-
lar applications. In the following, we present implementa-
tions specific to the applications of image color filter array
demosaicking and super-resolution reconstruction.

2.1 Demosaicking

Color filter array demosaicking is fundamentally an inter-
polation problem that can be addressed through partition-
based means. In this case, simple variations on the window
shape are introduced. Although we only discuss demosaick-
ing of the most popular Bayer pattern,15 the approach easily
lends itself to other CFA patterns.

A Bayer pattern CFA is shown in Fig. 1, where the LR
locations of the captured red, blue, and green pixels are
noted with reference to the desired HR samples. Note that
the captured R and B LR pixels represent a 2�2 down
sampling. The G pixels, however, are considered more im-
portant, and are thus captured at a higher density on the LR
grid. As mentioned in Sec. 2, the demonsaicking process
aims at recovering the missing color pixels, which in this
special case are the missing R and B pixels at G pixel
locations, and missing G and B pixels at R pixel locations.
Define L1 and L2 as the up sampling rate along the vertical
and horizontal directions, respectively. The observation
vector x is formed by the pixels in an H1�H2 LR obser-
vation window and the elements of y are the missing pixels,
on the HR grid, within this observation window.

The HR R and B pixels are obtained by a straightfor-
ward L1=L2=2 interpolation, illustrated in Fig. 3�a� for the

Table 1 PSNR of R pixel demosaicking using bilinear interpolation in the original color and color
difference space, and edge-directed and partition-based interpolation in the color difference space.

Method �color space�

Image

Bridge Lake Building Trees Parrot Yard Bike Woman

Bilinear �original� 23.72 25.33 16.70 27.95 30.72 21.51 18.84 19.99

Bilinear �difference� 29.54 30.05 22.31 21.83 30.76 26.02 25.21 25.71

Edge-directed �difference� 30.31 30.27 23.12 22.06 31.08 26.73 26.03 24.20

Partition-based �difference� 31.52 32.15 24.81 22.97 32.59 28.26 29.43 28.28

Fig. 7 Original nonmosaicked images: �a� Building �400�532�, �b� Bike �526�758�.
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R case with H1=H2=3. Specifically, the nine colored R
pixels form x, and the eight missing R pixels at the location
of colored G and B pixels form y.

The G pixels, because of their higher sampling rate, re-
quire L1=L2=�2 interpolation. To achieve this interpola-
tion, we utilize a diamond-shaped window, depicted in Fig.
3�b�, for H1=H2=3. In this case, the nine colored LR G
pixels inside the window constitute x, and the four missing
G pixels form y.

2.2 Super-Resolution Reconstruction
In super-resolution reconstruction, multiple same scene LR
image frames are used to reconstruct HR images. An obser-
vation model relating the original HR and the observed LR
images14 is shown in Fig. 4. This model is equivalent to the
true imaging process where the observed images are
formed before ADC sampling, provided that the HR images
are sampled at or above the Nyquist rate.16

During an imaging process, the original �continuous�
scene may be subject to a series of operations, including
ADC sampling, warping, blurring, down sampling, and
noise contamination.14 Warping includes rotation and other
translations, such as shifting. Blurring processes may in-
clude optical �e.g., out of focus�, motion, and sensor point
spread function �PSF� blur.14 This is a very general model
that shows that the desired HR image is related to multiple
LR observed images in a nontrivial fashion. We address a
specific realization of this model consisting of global shift
warping, a spatial averaging PSF, and additive Gaussian
noise.

The HR image in this application can be obtained
through a registration-interpolation approach, which typi-
cally involves three steps: registration, interpolation, and
restoration.1,14,17 The registration process extracts the rela-
tive motion between the LR frames and the reference LR
frame. �The reference frame is the LR image for which the
motion shift is defined to be zero.� Using the estimated
motion information, LR images can be calibrated �shifted�
and super-imposed to form a higher resolution image with
nonuniformly spaced samples,14 as illustrated in Fig. 5.
Next, an interpolation algorithm is utilized to reconstruct
missing samples on the HR grids.1,18–20 And finally, a res-
toration method, such as the Wiener filter, is employed to
reconstruct the HR image, cancelling blurring and additive
noise.

Partition-based interpolation can be readily incorporated
into the general registration-interpolation framework. In
our implementation, however, we combine the interpolation
and restoration operations into a single step. The proposed
method utilizes gradient-based registration.21

Once all the LR images are registered, they are super-
imposed to form a higher resolution image, as in Fig. 5.
Since motion shift may be fractional, we first round LR
frames to their nearest HR grid locations. If multiple frames
are rounded to the same HR grid, we take a weighted sum
of these frames. The weight applied to each LR frame in
the weighted sum operation is inversely proportional to the
distance between the LR frame and the HR grid it is
rounded to. �Note that the weights are normalized such that
their summation is one.� Once all the LR pixles are set to

Table 2 PSNR of G pixel demosaicking using bilinear interpolation in the original color and color
difference space, and edge-directed and partition-based interpolation in the color difference space.

Method �color space�

Image

Bridge Lake Building Trees Parrot Yard Bike Woman

Bilinear �original� 27.62 28.33 19.98 20.40 34.20 24.82 22.15 22.60

Bilinear �difference� 32.71 32.81 24.31 24.05 34.93 29.34 27.50 27.40

Edge-directed �difference� 34.04 32.76 24.46 23.89 35.66 29.03 27.47 26.48

Partition-based �difference� 34.72 34.02 25.80 24.77 36.02 30.56 30.08 30.83

Table 3 PSNR of B pixel demosaicking using bilinear interpolation in the original color and color
difference space, edge-directed and partition-based interpolation in the color difference space.

Method �color space�

Image

Bridge Lake Building Trees Parrot Yard Bike Woman

Bilinear �original� 24.50 25.29 16.94 18.60 32.05 21.61 18.56 20.12

Bilinear �difference� 29.45 30.06 21.26 22.22 32.29 26.02 25.13 25.59

Edge-directed �difference� 30.23 30.05 21.82 22.54 32.80 26.38 25.76 24.88

Partition-based �difference� 31.53 32.05 22.74 23.33 33.85 27.38 28.34 28.68
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their appropriate HR grid locations, they are considered as
one effective frame in the following operations. If a suffi-
cient number of frames is available to fill all the HR grids,
interpolation is not necessary. This situation, however,
rarely occurs in practice.

Note that there are totally �2L1L2 −1� possible configura-
tions of available LR frames. Usually, training of partition-
based interpolation needs to be carried out after the regis-
tration step has determined the specific configuration. Due
to the complexity of partition-based interpolation, the pro-
posed super-resolution reconstruction method is not well
suited to real-time applications, such as video processing.
For small L1 and L2 cases, however, it is possible to have
the codebooks and weights for all the configurations pre-
computed, allowing a real-time implementation of
partition-based interpolation.

As an illustrative example, consider the case L1=L2=3.
In this example, there are nine possible LR grid locations,

as shown in Fig. 6. The nine LR images have been rounded
to their closest HR grids using the previously mentioned
procedure. In this example, only frame 1 �the reference
frame� and frame 5 are available. The frames numbered 2
to 4 and 6 to 9 represents empty samples on the HR grid.

In this application, we base the observation window on
the HR image. All available LR samples in the window
form the observation vector x. Note that since we combine
interpolation and restoration into a single step, all the HR
samples constitute y. Thus, y contains the restored �de-
blurred and denoised� versions of samples at the observed
LR locations, as well as interpolated and restored samples
at the missing data locations. The samples shown in Fig. 6
can now be interpretated as a 7�7 observation window, the
observed samples within which comprise x. In this case, y
contains restored versions of the 1 and 5 frame samples as
well as interpolated and restored versions of 2 to 4 and 6 to

9 frame samples. Thus, the weight vector W̃ is optimized to
jointly perform interpolation and restoration. Last, note that
in this example p=13 and q=25.

3 Optimization of Partition-Based Interpolation
The partitioning and interpolation stages are nonlinearly
coupled. This nonlinear coupling makes global optimiza-
tion difficult. While methods have been developed to glo-
bally optimize partition-based filters,10 they are extremely
computationally intensive and slow to converge. Moreover,
a simple suboptimal procedure that performs a two-stage
optimization, first optimizing the partitioning operation fol-
lowed by filtering optimization, has been shown to produce
near optimal results.10 Thus, we adopt this simpler two-
stage approach. Specifically, the VQ codebook is generated
using the Linde-Buzo-Grey �LBG� algorithm.22 The VQ
partitioning obtained using the LBG algorithm minimizes
partitioning errors and effectively captures the underlying
spatial structures in observation signals and images.12,23

Given the defined partitioning scheme, optimization of
interpolation coefficients is carried out minimizing the
mean squared interpolation error

J = Eȳ − 	
i=1

M

W̃ivI�x̄ � �i�2

. �9�

The optimial weight matrices are obtained by setting the

gradient of J, with respect to each weight matrix W̃i, to
zero, yielding

W̃i = E�ȳvT��E�vvT��−1. �10�

Intuitively, optimizing a weight matrix for each partition
reduces to obtaining the Wiener solution24 for observation
vectors within that partition.

The determination of the weight vector in Eq. �10� re-
quires the statistics of the test image, which can be obtained
from training data if it is not known a priori. Training data
can be obtained in two ways: 1. selecting a representative
image that shares similar statistics with the test image, or 2.
utilizing the observed test image itself. We refer to these
methods as training schemes 1 and 2, respectively. Cando-
cia and Principe13 applied scheme 1 to the image zooming

applications, where W̃ needs only to represent correlations

Fig. 8 �a� G channel image and �b� KR image of Bike.
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Fig. 9 Results of demosaicking: �a� original nonmosaicked image and results of �b� bilinear method
operating in the original color space, �c� bilinear, �d� edge-directed, and �e� partition-based method
operating in the color difference space.

Shao, Barner, and Hardie: Partition-based interpolation for color filter array…

Optical Engineering October 2005/Vol. 44�10�107003-7

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 02/10/2015 Terms of Use: http://spiedl.org/terms



Fig. 10 Results of demosaicking: �a� original nonmosaicked image and results of �b� bilinear method
operating in the original color space, �c� bilinear, �d� edge-directed, and �e� partition-based method
operating in the color difference space.
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across scales. This approach does not exploit same-scale
correlations, as is required, for instance, in the super-
resolution application. Also note that in scheme 1, interpo-
lation performance is dependent on the statistics of the rep-
resentative image. This motivates the use of training
scheme 2, which utilizes geometric duality9 by assuming
the statistics remain consistent across scales. This is the
approach adopted here to address demosaicking applica-
tions. In super-resolution reconstruction, however, we

choose scheme 1 because the observed images are not
large enough to generate sufficient training data in this
application.

Note that in the super-resolution reconstruction case, the
goal is to estimate the original scene. Thus, the weight ma-
trix is trained not only to interpolate, but to also reverse
blurring and minimize noise contamination. Once the opti-
mization is complete and the method is applied to an ob-
servation image, the interpolation and restoration steps are
carried out in single matrix multiplication. This results in a
much simpler architecture and hardware implementation.

4 Simulation and Results
In this section, we demonstrate the effectiveness of the pro-
posed algorithm in the applications of demosaicking and
super-resolution reconstruction. The partition-based meth-
ods are compared with traditional and advanced algorithms
used in practice and reported in the literature.

4.1 Demosaicking
Consider first the application of demosaicking, where we
compare bilinear, edge-directed9 and partition-based inter-
polation operating on images Bike and Woman, which are
JPEG2000 test images, and images Bridge, Lake, Building,
Trees, Parrot, and Yard, which are Kodak photo samples.
The original nonmosaicked Building and Bike images are
shown in Fig. 7. All seven images are sampled using a
Bayer pattern, Fig. 1, to generate the test images.

As shown in Fig. 8, color difference images have much
less details than images in the original color space.25 Thus,

Table 4 Combination of LR frames utilized in the simulation.

r Frames selected

1 1

2 1,5

3 1,5,9

4 1,3,5,9

5 1,3,5,7,9

6 1,2,3,5,7,9

7 1,2,3,5,7,8,9

8 1,2,3,4,5,7,8,9

9 1,2,3,4,5,6,7,8,9

Fig. 11 The M=30 �a� codebook and �b� weight matrix �for the reconstruction of the black pixel in �d��.
For comparison, the bilinear weights are shown in �c�. The color map used to plot �b� and �c� is given
in �e�.
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interpolating in the color difference space, utilizing inter-
channel correlation, is more effective than interpolating in
the original color space.25 We apply the three demosaicking
algorithms to the color difference space, KR=R−G and
KB=B−G. Note that missing pixels on the right-hand side
of the formulas are obtained through bilinear interpolation
as in Ref. 25. In the color difference space demosaicking
processes, the G pixels at R pixel locations in the CFA

array are estimated as Ĝ=R−KR, while those at the B pixel

locations are estimated as Ĝ=B−KB. The R and B pixels

are recovered by R̂=KR+G and B̂=KB+G, respectively.
�Please refer to Ref. 25 for more details on interpolating in
difference color spaces.� Bilinear interpolation on the origi-
nal color space is also applied as a benchmark. Optimiza-
tion in this application, under scheme 1, requires a training
image that has color difference images representative of the
color difference in the observed image. Thus, the higher
dimensionality of the problem makes selecting a represen-
tative image for demosaicking optimization difficult. We
therefore utilize only training scheme 2 in this application.
Specifically, the observed LR image is further mosaicked
�down-sampled� by a Bayer pattern CFA. The original ob-
served LR image thus becomes the desired HR image,
whose pixels contribute to ȳ in Eq. �10�. Obviously, pixels
from the further mosaicked image form the observation
vector v. The size of the observation window is chosen as
3�3. An example of the observation window is shown in
Fig. 3. Extensive image processing applications in Ref. 10
indicate that vector quantization utilizing 30 partitions is
sufficient to capture all important underlying image struc-
tures in the 3�3 and 5�5 observation window cases. Ex-
periments in Ref. 13 also indicate that 30 partitions are an
appropriate choice for the image zooming application.
Therefore, we choose M =30 for both the demosaicking and
the super-resolution reconstruction applications.

Tables 1–3 list the PSNRs of demosaicking for each of
the compared methods. As can be seen in each table, oper-
ating in the color difference space substantially improves
demosaicking performance. Note that while edge-directed
interpolation does not always yield higher PSNR than bi-
linear interpolation, it does produce images with better vi-
sual quality �Figs. 9 and 10�. Partition-based interpolation
outperforms bilinear interpolation both quantitatively and
subjectively. In comparison with edge-directed interpola-
tion, it yields a 1 to 4 dB gain in PSNR as well as im-
proved visual quality. To aid in the visual comparison, en-
larged portions of the images are shown in Figs. 9 and 10.
As can be seen in the figures, significant visible color arti-
facts, such as the Zipper effect, are introduced by the bilin-
ear interpolator. This can be seen, for instance, along the
spokes of the bike in Fig. 10. Edge-directed and partition-
based interpolation produce images with much better visual
quality. Note that the Zipper effect is almost completely
suppressed by partition-based demosaicking, and the false
colors in the two windows at the bottom of the image are
better suppressed �Fig. 9�. The partition-based demosaicked
image is indeed very close to the original nonmosaicked
image. In the edge-directed demosaicking result, the Zipper
effect, although suppressed, is still visible.

To gain further insight into the proposed interpolation
method, the codebook and the weight matrices generated
by the partition-based interpolation of the KR image of
Bike, using training scheme 2 with M =30, are given in
Figs. 11�a� and 11�b�, respectively. Note that only the
weight matrices used to reconstruct the KR pixel shaded in
Fig. 11�d� are shown. The other pixel location matrices
have similar structures. The bilinear weights in the form of
a 3�3 weight matrix are also included for comparison
�Fig. 11�c��. As an inspection of the partitioning vectors
shows, the codebook captures underlying image structures,
including uniform regions and steps and corners oriented at

Fig. 12 Results of super-resolution reconstruction �L1=L2=3�: �a�
full-size original aerial image; �b� enlarged portions of the original
image; and that from WNN-based reconstruction in the case
�c� r=2, �e� r=4, and �g� r=9; and partition-based interpolation in the
case �d� r=2, �f� r=4, and �h� r=9.
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different directions. Inspection of the weight matrices
shows that the optimization produces weights that avoid
interpolating across edges. Bilinear interpolation takes the
average of the four top-right LR pixels. Thus, all other
elements in the 3�3 window are zero. The partition-based
interpolation, in contrast, utilizes weights tuned to the un-
derlying structure. This results, for instance, in weights
similar to the bilinear weights in the uniform regions, and
weights that, in edge regions, interpolate along, rather than
across, edges.

4.2 Super-Resolution Reconstruction
Consider now the application of super-resolution recon-
struction. Note that the proposed method combines
partition-based interpolation with the gradient-based
registration.21 It is tested using both simulated LR frames
and a true LR infrared sequence. This algorithm is com-
pared with another registration-interpolation method that
utilizes gradient-based registration, weighted nearest neigh-

bor �WNN� interpolation,1 and Wiener filtering �for resto-
ration�. WNN interpolation estimates each missing HR
pixel using a weighted sum of the three nearest frames. The
proposed algorithm is also compared with the MAP recon-
struction introduced in Ref. 26 through experiments on real
data.

Consider first the results for simulated LR sequences
generated from the aerial image in Fig. 12�a�, using the
observation model in Fig. 4. The down sampling rate is
L1=L2=3, resulting in nine LR frames, each numbered ac-
cording to Fig. 5. The partitioning and WNN-based meth-
ods are tested for the cases in which r=1,2 , . . . ,9 LR
frames are available �observed�. The combination of LR
frames utilized in each case is given in Table 4. Note that
the reference frame �frame 1� is always selected. The selec-
tion scheme guarantees that observed frames are spatially
spread apart, so that both of the algorithms achieve their
maximum performance under the same r. In the case r=1,
the problem reduces to image magnification. Conversely,

Fig. 13 Reconstruction PSNR from partition-based and WNN-based reconstruction in the case where
�a� no noise and �b� 20 dB noise is added in the observation model. *: partition-based reconstruction;
�: WNN-based reconstruction; …: upper bound of partition-based interpolation �trained by HR test
image�.

Fig. 14 �a� Result of registration. �b� Motion shift after rounding. �The numbers represent the order in
true image sequences. Shift is measured in terms of HR grids �dotted lines�.�
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when r=9, the problem becomes restoration only. For each
r, we consider the noise-free and 20-dB additive noise
cases. Also, we are constrained by the small pixel count of
the observation frames, which makes self-similarity train-
ing �scheme 2� impractical. Additionally, for the experi-
ment on simulated data, the registration step is not neces-
sary, as the motion shift information is known. Thus, we
utilize the well-known image Lena to train �scheme 1� the
partition-based interpolation and the Wiener filter weights
in the WNN-based methods. During the training of the
partition-based interpolation, the image Lena is considered
the desired HR image. It is down sampled and shifted to
form a series of observed LR images. Then, ȳ and v are

formed as described in Sec. 4, and the optimal W̃ is ob-
tained using Eq. �10�.

An example of an observation window �r=2� is given in
Fig. 6. In this case, the observation window covers a
3�3 window of pixels in the LR reference image as well
as additional observed pixels in the HR grid 7�7 window.
Thus, it is irregularly shaped. Moreover, the observation
window is populated by different samples when different
LR frames are observable. To simplify the optimization of
the partition-based interpolation, the LBG algorithm is ap-
plied to an observation space formed by the full HR 7�7
window. This is possible since, during the training step, all
samples inside the window are known. Thus, a single code-

book of size 7�7�M is obtained for all cases of r. Also,
when applying Eq. �4� to the test image in the partitioning
step, the observation vector x̄ formed by r observed
samples, rather than the HR 7�7 window, is compared
with the corresponding elements in the codewords, i.e., the
49 sample �7�7� codewords are appropriately subsampled
and compared to the r element observation window. This
simplification does not have a material impact on the inter-
polation performance, but substantially reduces the compu-
tation complexity of the training process. Note that the
training of weight matrix W in Eq. �10� is still based on x̄.

The reconstruction PSNR curves are shown, as a func-
tion of r, in Fig. 13, where the upper-bound PSNR of
partition-based interpolation is obtained by training on the
HR aerial image itself �Fig. 12�a��. As expected, increasing
r leads to improved performance of both reconstruction al-
gorithms. The partition-based algorithm produces more
than a 2-dB gain over the WNN-based method for most r
values, and is only 0.7 to 1.5 dB below the upper bound.

The reconstructed HR images for r=2, 4, and 9 are com-
pared in Fig. 12. For each r, partition-based interpolation
yields the best performance, as an inspection of uniform
and edge regions in the reconstructions shows. This is par-
ticularly true for small r values. Note that because WNN
interpolation disregards local image structures, a HR grid
point may be estimated from samples far away, especially if

Fig. 15 Results of super-resolution reconstruction: �a� nearest-neighbor and �b� bilinear method on
one LR frame; �c� overlaid LR frames; �d� nonuniform interpolation followed by Wiener filtering; �e�
MAP reconstruction; �f� partition-based interpolation.
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r is small. In contrast, the partition-based method, by ex-
ploiting local pixel correlations, is able to produce satisfac-
tory results with only a few observed LR frames.

Consider now true infrared images obtained from a star-
ing infrared imaging system. 16 LR frames are obtained,
each of size 64�64. We elect to perform a L1=L2=4 re-
construction to obtain a visually acceptable resolution. The
gradient-based registration21 is employed to calculate the
relative motion shift between each LR frame and the refer-
ence LR frame �Fig. 14�. Each LR frame is rounded to its
closest HR grid location as described in Sec. 2, after which
the 16 LR frames fill 9 of the 16 HR grids �Fig. 14�b��. In
the following, we refer to the frames rounded to the same
HR grid as one frame. Overlaying all the rounded LR
frames yields Fig. 15�c�, where the black grids represent
missing HR samples. For the purpose of display, only the
portion of the images that contain all the foreground objects
is shown. Next, partition-based interpolation is applied to
reconstruct the missing HR pixels and perform deconvolu-
tion of the system PSF, where it is assumed that no noise is
present in the images. A codebook and weight matrix
trained using the aerial image, Fig. 12�a�, are utilized. In
the WNN method, interpolation is applied on the fractional
motion shift �without rounding�. This is followed by a
Wiener filter blur removal optimized using the same image.

Nearest-neighbor and bilinear interpolation images are
shown for reference in Figs. 15�a� and 15�b�, respectively.
Both are interpolated from the LR reference frame to the
HR grid, i.e., simple zooming is performed as a reference
benchmark. A visual inspection of the HR results shows
that the partition-based interpolator yields the best results,
especially on important features such as the tank, trailers,
and wheels of the truck. Although the proposed reconstruc-
tion method does not require a separate Wiener filter, there
is an increase in computational cost associated with using
the VQ partitioning. Thus, the cost for improved perfor-
mance is a slight increase in computation complexity over
traditional registration-interpolation methods.

5 Conclusions
Partition-based nonlinear signal processing is an effective
method for processing nonstationary signals such as
images.10 The proposed partition-based interpolators cap-
ture a finite number of local image structures in images
using VQ partitioning. Next, a linear operation, optimized
for each specific structure, is utilized to obtain missing HR
pixels using their neighboring observation pixels. A conve-
nient two-stage optimization procedure is utilized to train
partition-based interpolators. By exploiting local image
structures, this optimization method adapts weights to
avoid interpolating across edges. The presented results
show that, customized to address the specific applications
of CFA demosaicking and super-resolution reconstruction,
partition-based interpolators produce superior results com-
pared with other methods reported in the literature.
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