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RESEARCH Open Access

Multiframe adaptive Wiener filter super-resolution
with JPEG2000-compressed images
Barath Narayanan Narayanan*, Russell C Hardie and Eric J Balster

Abstract

Historically, Joint Photographic Experts Group 2000 (JPEG2000) image compression and multiframe super-resolution
(SR) image processing techniques have evolved separately. In this paper, we propose and compare novel processing
architectures for applying multiframe SR with JPEG2000 compression. We propose a modified adaptive Wiener filter
(AWF) SR method and study its performance as JPEG2000 is incorporated in different ways. In particular, we perform
compression prior to SR and compare this to compression after SR. We also compare both independent-frame
compression and difference-frame compression approaches. We find that some of the SR artifacts that result from
compression can be reduced by decreasing the assumed global signal-to-noise ratio (SNR) for the AWF SR method. We
also propose a novel spatially adaptive SNR estimate for the AWF designed to compensate for the spatially varying
compression artifacts in the input frames. The experimental results include the use of simulated imagery for quantitative
analysis. We also include real-video results for subjective analysis.

Keywords: Super-resolution; JPEG2000 compression; Adaptive Wiener filter; Spatially adaptive

1 Introduction
Multiframe super-resolution (SR) is a post processing
technique designed to reduce aliasing and enhance re-
solution for detector-limited imaging systems [1]. As
described in [2,3], SR methods generally fuse a set of low-
resolution (LR) frames with a common field of view to
form a high-resolution (HR) image with reduced aliasing.
SR methods assume the presence of motion between the
frames that can be estimated or known with sub-pixel ac-
curacy. The motion allows each frame to capture certain
unique samples of the scene, effectively increasing the
sampling frequency of the imaging sensor. SR can be ap-
plied to produce a single output frame or produce video
output by employing a moving temporal window of
frames [4]. SR techniques have proven to be highly suc-
cessful in providing meaningful resolution enhancement
for images and videos under appropriate conditions.
SR research has grown significantly in recent years [1].

However, the majority of SR research focuses on the use
of raw uncompressed image data obtained directly from
an imaging sensor. But in many practical imaging appli-
cations, the acquired video frames must be stored using

limited file size or compressed in order to be transmitted
through a band-limited channel. One such powerful com-
pression method is Joint Photographic Experts Group
2000 (JPEG2000) compression [5]. Recently, studies have
shown that JPEG2000 is a good choice for high-quality
and high-resolution videos [6]. In 2004, the motion pic-
ture industry, specifically Digital Cinema Initiatives, an-
nounced JPEG2000 as the standard for digital delivery of
all motion pictures [7]. In light of this, as well as the emer-
gence of some important new classes of SR algorithms,
important questions are raised regarding how to best in-
corporate the benefits of both SR and JPEG2000 image
compression. For example, how does compression before
SR compare to compression applied after SR? Also, how
does SR performance degrade with compression ratio
using JPEG2000? What can be done to improve the per-
formance of SR methods with JPEG2000? We shall at-
tempt to address these and other questions here.
In previous work, some SR techniques have been ap-

plied to compressed imagery and video signals. For video
signals, most of the work focuses on processing LR im-
agery that has been compressed using Moving Picture
Experts Group (MPEG) and H.26x methods. In [8,9], a
compression method of sub-sampling video prior to
MPEG4 compression and SR-applied post decompression
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shows signal-to-noise ratio (SNR) improvement over merely
MPEG4 compressing the original full resolution signal. In
[10], P- and B-frames in an H.264 compression technique
are sub-sampled prior to compression. At the decompres-
sion end, SR is used to resolve the P- and B-frames using
the I-frames as the training samples. In addition to com-
pressed video, SR techniques have been applied to inde-
pendently compressed images. In [11], SR is applied to
imagery after JPEG compression and shows degradation
to the SR performance when compression is high. In
[12,13], SR techniques designed to be robust to JPEG
compression artifacts are described. A downsampling-
based video coding method is proposed in [14]. There, SR
is used to restore the downsampled frames to their ori-
ginal resolutions. An SR algorithm specifically for video
with atmospheric turbulence and MPEG-4 compression is
described in [15]. In [16,17], SR techniques are applied in
the transform domain as part of compression/decompres-
sion. Finally, the work in [18] describes an SR technique
designed to restore details in imagery that have been de-
graded due to JPEG2000 compression. With the exception
of [18], the combination of SR and JPEG2000 has not been
widely studied. We believe this is an important area to
investigate.
In this paper, we provide a novel study of the perform-

ance of SR with JPEG2000 compression. We employ
relatively new SR technique based on the adaptive
Wiener filter (AWF). The AWF is a computationally ef-
ficient SR method, suitable for real-time implementation,
with generally good performance [4]. This method has
been selected because of its computational simplicity
and best-in-class performance, as demonstrated in [4].
Here, we investigate several architectures for combining
AWF SR with JPEG2000 compression. These include
systems that apply compression prior to SR and com-
pression after SR processing. We also investigate the use
of individual-frame compression, as well as motion-
compensated difference-frame compression. We study
how SR performance is impacted by a wide range of
compression ratios (CRs). Based on our findings, we
make some practical and important recommendations
and observations regarding the joint use of JPEG2000
and SR. We also show that by modifying the SNR
present in the correlation model used by the AWF SR
method, the compression artifacts can be better toler-
ated. Furthermore, a novel spatially varying SNR model
is proposed and demonstrated to specifically target the
adverse effects of spatially varying compression artifacts.
Applications that we believe are well suited to the joint

use of SR and compression include airborne and satellite
imaging [19-22]. In these applications, the dominant
inter-frame motion is the result of camera platform mo-
tion. Thus, the motion can be well modeled with a global
motion model. This allows for accurate sub-pixel motion

estimation for super-resolution. There is also a strong
need for compression in these applications, in order to
store and transmit the acquired data through band-limited
channels. We have observed that a video that is well suited
to multiframe SR is also likely a good candidate for
difference-frame compression. In this case, the correlation
between registered frames is exploited for compression,
and the high-frequency differences are exploited for SR.
The remainder of this paper is organized as follows.

Section 2 presents the basic AWF SR algorithm along
with the proposed spatially varying SNR estimation
method. Several architectures for combining AWF SR
and JPEG2000 compression are presented in Section 3.
The experimental results are provided in Section 4. Fi-
nally, conclusions are offered in Section 5.

2 AWF SR algorithm
The AWF SR method is introduced in [4]. We provide
some of the key algorithm details here for the reader's
convenience. We begin with the observation model and
then describe the AWF SR algorithm.

2.1 Observation model
The AWF SR method is based on the observation model
depicted in Figure 1. Here, we have P LR frames that are
related to the desired continuous scene, d(x, y), through
a shift, point spread function (PSF) blur, and sampling
with additive noise as shown. In the case of translational
motion, the shift and PSF models commute, allowing us
to equivalently use the observation model in Figure 2.
Here, we have switched the motion and PSF blocks and
combined the motion and sampling steps into a single
nonuniform sampling operation. The details on the com-
mutation of the motion and PSF blur are addressed in [20].
The PSF blur in Figure 2 yields the intermediate image

f x; yð Þ ¼ d x; yð Þ � h x; yð Þ; ð1Þ

where h(x, y) is the PSF and * is 2D convolution. This
blurred image is assumed to be sampled nonuniformly
based on the motion parameters and the detector pitch of
the focal plane array (FPA) as described in [4]. These sam-
ples are represented in lexicographical notation as f = [f1,
f2, … fN]

T. With additive noise, these samples are given by
g = f + n, where n is an N × 1 array of noise samples. The
noise will be assumed to be zero-mean independent and
identically distributed Gaussian noise with a variance of σ2n.
To model the PSF, we follow the approach in [23] that

models diffraction and detector integration. For diffraction-
limited optics, the spatial cut-off frequency is ωc = 1/(λ × f‐
number). Here, λ is the wavelength of light, and f-number
is the ratio of the focal length to the effective diameter of
the optics. Another critical parameter for an imaging sys-
tem is the detector pitch, p, for the focal plane array. The
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pitch is the spacing between the detector elements, and
one divided by the pitch is the sampling frequency. The
Nyquist criterion dictates that to avoid aliasing, we must
have 1/p > 2ωc. However, due to a complex trade space in
imaging system design, many imaging systems do not
meet the Nyquist criterion. This issue is addressed well in
[24]. Resolution in such undersampled imaging systems
may be thought of as limited by the detector array, rather
than optically limited [2]. These systems may benefit from
multiframe SR processing, such as the AWF SR method.

2.2 AWF SR processing
The AWF SR processing of the observed data to pro-
duce an HR image estimate is illustrated in Figure 3. Let
the resulting HR image be upsampled by a factor of L in
each spatial dimension relative to the LR input frames.

Registration is used to populate a common HR grid
using samples from all of the LR frames, forming the
HR array g. The AWF SR algorithm then uses a moving
window that passes over the HR grid of nonuniformly
sampled data in g. Let the samples in the small moving
observation window about the i'th HR output pixel be
denoted gi. The output of the AWF is an estimate of the
desired HR image and is given by a weighted sum for
each HR pixel as follows:

d̂ i ¼ wT
i gi; ð2Þ

where wi is a vector of weights. The minimum mean
squared error (MSE) weights are employed and these are
given by

wi ¼ R−1
i pi; ð3Þ

Figure 1 Observation model relating 2-D continuous scene, d(x, y), with a set of corresponding LR frames.

Figure 2 Alternative observation model replacing the motion and combining of LR frames.
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where Ri ¼ E gig
T
i

� � ¼ E f if
T
i

� �þ σ2nI is the autocorrel-
ation matrix for the observation vector, and pi = E{digi} =
E{difi} is the cross-correlation vector between the desired
sample and observation vector.
The correlations employed are model-based, and they

vary with the spatial distribution of the samples in gi. In
particular, the continuous desired image autocorrelation
is assumed to be

rdd x; yð Þ ¼ σ2dρ
ffiffiffiffiffiffiffiffiffi
x2þy2

p
; ð4Þ

where σ2d is the desired image variance, and ρ controls
the drop in correlation as a function of distance. From
this, it can be shown that the other key correlation func-
tions can be computed as follows:

rdf x; yð Þ ¼ rdd x; yð Þ � h x; yð Þ ð5Þ
and

rff x; yð Þ ¼ rdd x; yð Þ � h x; yð Þ � h −x;−yð Þ: ð6Þ
Based on the distances between the observed samples in

gi as they appear on the HR grid, we evaluate Equation 6
to populate Ri. Similarly, given the distances between the
desired sample position and the observed samples, we
evaluate Equation 5 and populate the vector pi. This
allows us to compute wi using Equation 3. Note that by
estimating the HR image in this fashion, the AWF is sim-
ultaneously performing nonuniform interpolation, decon-
volution, and noise reduction, all with a single weighted
sum operation. This sets it apart from other fast SR

methods that perform nonuniform interpolation and res-
toration as independent processing steps. The combined
approach of the AWF has computational and performance
robustness advantages [4].

2.3 Spatially varying SNR model
The AWF SR correlation model tuning parameters
impacting performance are ρ and the SNR given by σ2d=

σ2n . We will show that by decreasing the assumed global
SNR, we are able make the AWF SR more robust to the
effects of compression. However, the compression arti-
facts tend to be spatially varying. For example, ringing ar-
tifacts are often produced in flat areas adjacent to strong
edges. To better mitigate the impact of this kind of
spatially varying artifact on AWF SR, we propose employ-
ing a correlation model with a spatially varying SNR.
Here, we estimate this local SNR in a novel manner.

We first align the LR observed frames based on the SR
registration and then average the frames. We then esti-
mate the local variance using a Gaussian weighting func-
tion and treat this as the signal variance. Note that the
frame averaging tends to reduce compression artifacts
and noise, preventing those factors from falsely increas-
ing the local signal estimate. We assume the noise vari-
ance is a global constant that is used as a tuning
parameter. The ratio of estimated local signal variance
to noise variance allows us to form a preliminary local
SNR estimate. The final step is to filter this SNR array
with a 5 × 5 2D minimum filter. This minimum filter

Figure 3 Overview of AWF SR algorithm.

Figure 4 Overview of SR after JPEG2000 compression.
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step tends to lower the SNR estimate in flat areas near
edges that are most vulnerable to ringing artifacts from
compression. Areas of dense texture and detail tend to
maintain the high SNR.
The estimated local SNR is then used with Equations 3

and 4. To keep the computational complexity low for
the spatially adaptive AWF SR, we quantize the local
SNR value estimated to K = 20 levels. The K distinct cor-
relation models give rise to K sets of filter weights.
These weights may be pre-computed prior to processing
video frames. At each spatial location, the local SNR is

computed and the appropriate filter weight vector is
applied.

3 Architectures for SR with JPEG2000 compression
There are number of ways to combine SR algorithm with
JPEG2000 compression. One way is to apply AWF SR
after performing compression on the LR input frames. We
also consider performing AWF SR first and then compres-
sing the resulting SR images. When using compression on
multiple input frames, we consider both individual- and
difference-frame methods as described below.

Figure 5 Difference-frame method of compression.

Figure 6 Difference-frame method of decompression.
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3.1 SR after JPEG2000 compression
The most common scenario is that the imagery from the
sensor is compressed for storage and/or transmission
immediately after it is acquired. Access to the raw un-
compressed imagery for SR may not be possible. In this
case, SR can only be applied after the compression, as il-
lustrated in Figure 4. Thus, understanding the robust-
ness of SR operating on such compressed imagery is an
important problem.

3.1.1 Individual-frame method
Perhaps the most straightforward method for treating
the multiframe input with compression is to compress
each frame individually and independently. This allows
each frame to be decompressed independently, providing
an advantage over MPEG-X (1, 2, and 4), for example.
We shall refer to this as the individual-frame method.
All processing here is done using MATLAB (The Math-
Works, Inc., Natick, MA, USA), and JPEG2000 is achieved
by using the 9/7 transform, no quantization, and optimal
truncation for rate control.
It should be noted that SR is most beneficial for sig-

nificantly undersampled imaging systems where aliasing
is present. For such an imaging system, the individual
LR observed frames may not compress well because of
high spatial frequency content. However, since a set of

frames suitable for SR must overlap in the field of view,
these frames are also likely to exhibit inter-frame correl-
ation. Thus, we also consider compression of registered
difference frames, as described in the following sub-
section.

3.1.2 Difference-frame method
The difference-frame compression method is illustrated
in the block diagram in Figure 5. Imagery suitable for
multiframe SR is likely to exhibit a great deal of tem-
poral correlation after registration. The global registra-
tion used for SR can also serve to aid in compression.
Thus, we are proposing global difference-frame com-
pression in this case, rather than the block matching op-
tical flow vectors used in traditional video compression.
In this method, the last (i.e., most recent) observed LR
frame is considered to be the reference image, denoted
as r. Note that this reference frame is g(P) as shown in
Figure 1. After JPEG2000 compression and then decom-
pression, the reference frame is denoted �r and r̂, respect-
ively. We set the CR for the reference image to be 1/Q
times the CR used for the difference frames, where Q is
a tuning parameter. Here, we have found Q = 8 to be a
good choice.
Next, the decompressed reference frame is shifted to

match each of the remaining P − 1 LR frames, and P − 1

Figure 7 Overview of SR before JPEG2000 compression.

Figure 8 Kodak parrot image used as the ideal HR image for simulation results.
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difference frames are computed and compressed. The
shifts are estimated from the LR frames the same way
they are for SR [4]. The difference frames are denoted as
e(k) for k = 1, 2, …, P − 1. After compression, these dif-
ference frames are denoted as �e kð Þ. To be stored and/or
transmitted from this compression stage, we have the
compressed reference, �r , along with the compressed dif-
ference frames �e kð Þ and shifts s(k), for k = 1, 2, …, P − 1.
The process of decompression for the difference frame

method is illustrated in Figure 6. The process begins by
decompressing the reference and difference frames as
shown. Next, the decompressed reference is added to
the decompressed difference frames to recover the indi-
vidual frames. This is given by ĝ kð Þ ¼ ê kð Þ þ r̂, for k = 1,
2, …, P − 1. Finally, note that the last image is simply the
reference and is given by ĝ Pð Þ ¼ r̂.

3.2 JPEG2000 compression after the application of SR
The final architecture considered here applies JPEG2000
compression after SR. This is shown in Figure 7. In this
mode, AWF SR is applied directly to the raw uncom-
pressed imagery from the sensor. The resulting SR image
is then compressed with JPEG2000 and later transmit-
ted/stored. This mode would be most practicable when
SR processing can be done in real time at the sensor. It
is also possible to use this mode if SR is applied forensic-
ally to stored uncompressed data, the results of which
are later disseminated in compressed format.
While the pixel dimensions of the SR image are in-

creased, the aliasing is reduced, making the SR image
generally easier to compress. Furthermore, the SR
process gets the benefit of working on data with no
compression artifacts. In our experiments, we combine

Figure 9 Simulated LR reference frame. This is after individual-frame JPEG2000 compression (CR = 8) and then L = 4 bicubic interpolation.

Figure 10 AWF SR with L = 4 is applied on the individually compressed LR images with CR = 8. The optimum SNR of 67.40 is used and ρ = 0.7.
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16 LR frames to produce a single SR image with upsam-
pling in each dimension of L = 4. In a video-to-video ap-
plication, the SR video frame rate may be the same as
the LR video rate. In this case, we have L2 the number of
SR pixels as we do input pixels. However, the possibility
of difference-frame compression on the SR video exists
for enhanced compression of the SR video.

4 Experimental results
In this section, we present the experimental results that
include simulated LR data and a real-video sequence.
The simulated data allow for quantitative analysis, while
the real data allow for a subjective comparison in a real
application. In addition to comparing the architectures
described in Section 3, we also examine the use of the

spatially varying SNR model, as described in Section 2.3,
to treat the compression artifacts more robustly.

4.1 Simulated video data
In this section, we begin by presenting and describing
the subjective image results and then we present the
quantitative results.

4.1.1 Image results
The first set of simulated data is based on 8-bit parrot
image from the Kodak database (Rochester, NY, USA)
[25], which is shown in Figure 8. This grayscale image
contains 512 × 768 pixels stored at 8 bits per pixel (bpp).
We artificially degrade this image to simulate the observa-
tion model in Figure 1. In particular, we simulate P = 16

Figure 11 AWF SR with L = 4 is applied on the individually compressed LR images with CR = 8. Spatially varying SNR is used and ρ = 0.7.

Figure 12 AWF SR with L = 4 is applied on the difference frame-compressed LR images with CR = 8. The optimum SNR of 315.67 is used
and ρ = 0.7.
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LR frames with random translational shift, blur, and noise.
The simulation PSF model is based on parameters match-
ing the real-video data used in Section 4.2. The modeled
f-number of the optics is 4, and the detector pitch in the
both horizontal and vertical directions is 5.6 mm. We as-
sume a 100 % fill factor [20] and wavelength is 0.55 μm.
The downsampling factor, relating the LR and SR
image sizes, is L = 4. Finally, white Gaussian noise with
a variance of 1 digital unit (DU) is added to simulate
low-level electronics noise. Image results are shown in
Figures 9,10,11,12,13,14, and quantitative results can
be found in Figures 15,16,17 and in Tables 1,2,3.
We report compression level here using the CR value,

which is defined as the ratio of input image file size to
the output compressed file size. A higher value implies a

smaller file size and reduced image quality. Figure 9
shows the LR reference frame compressed with a CR = 8
and then L = 4 bicubic interpolation. This is one of the
P = 16 LR frames generated using the individual-frame
compression method as described in Section 3.1.1. The
result of applying AWF SR with L = 4 on the individually
compressed LR frames is shown in Figure 10. Here, ρ =
0.7 and the SNR used is 67.40, which maximizes the
peak-signal-to-noise ratio (PSNR) [4]. The SR image
looks notably sharper than the image in Figure 9. How-
ever, some artifacts are still present in the image. We
have observed that the individual LR images are rather
hard to compress due to aliasing. As a result of the shifts
between LR frames, the compression artifacts tend to
vary somewhat from frame to frame. This can lead to an

Figure 13 AWF SR with L = 4 is applied on the difference frame-compressed LR images with CR = 8. Spatially varying SNR is applied and ρ = 0.7.

Figure 14 Individual-frame compression with CR = 8 applied after AWF SR with L = 4 is applied on LR images. The optimum SNR of 67.40
is used and ρ = 0.7.
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SR image with artifacts as seen in Figure 10. Of course,
one way to reduce these artifacts is to use a lower CR.
Another approach is to use the spatially varying SNR
model as described in Section 2.3. Figure 11 shows the
AWF SR output image obtained using this spatially vary-
ing model. This result has lower error and, perhaps
more importantly, tends to have visually reduced com-
pression related artifacts.
The next result, shown in Figure 12, is for AWF SR

applied to LR frames compressed with the difference-

frame compression described in Section 3.1.2. Note that
in the difference-frame compression method, the group
of P = 16 LR frames is set to have an overall CR of 8, to
match the individual-frame method. The optimum SNR
of 315.67 is used along with ρ = 0.7. This result appears
far superior to that obtained using individual-frame
compression (for the same overall CR). Here, the redun-
dancy between LR frames is exploited by the difference-
frame compression. At the same time, the differences
among the LR frames are exploited by SR. We believe

Figure 15 Registration MAE in pixels versus CR for individual- and difference-frame methods using Kodak parrot image.

Figure 16 PSNR versus CR for various SR/compression methods. The PSNR optimum SNR is used for the AWF SR with ρ = 0.7.
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this is perhaps the best way to combine compression
and SR. Image data suitable for multiframe SR is prob-
ably well suited for difference-frame compression, due
to overlapping field of view. Figure 13 shows the result
obtained using the spatially adaptive correlation model
AWF SR applied after difference-frame compression. As
is the case for the individual-frame compression, this re-
sult has lower error and visually reduced compression
artifacts.
The image obtained using compression after SR, as ex-

plained in Section 3.2, is shown in Figure 14. Again, a
CR = 8 is used along with an optimum SNR of 67.40.
This result also appears to be much better than SR after
individual-frame compression. Since we chose P = 16
and L = 4, the SR image has the same pixel count as the
set of LR frames. In a video-to-video application with in-
put and output frame rates that are the same, this ap-
proach would face the challenge of an uncompressed
throughput increase of 16×. Note that difference-frame
compression could be applied to the resulting SR video
to help deal with the increase. Figure 18 shows a region
of interest (ROI) for the original and various processed
images, to facilitate close inspection of image detail.

4.1.2 Quantitative results
Let us now turn our attention to the quantitative results
for the simulated data. The first quantitative experiment
examines the impact of compression on registration,

since sub-pixel registration is a key element of SR. Regis-
tering formerly compressed images may be necessary
when compression is done prior to SR. Figure 15 shows
registration error versus CR for both individual- and
difference-frame compressions using the parrot image.
The registration error is reported in mean absolute error
(MAE) in units of pixels. These results show that regis-
tration error is small, even at large compression ratios
here. We attribute this to the fact that registration is
able to exploit knowledge of the global motion model,
and estimation process is highly overdetermined with
global motion. Registration based on difference frame-
compressed images appears almost unaffected by com-
pression. With individual-frame compression, the regis-
tration error does go up, but is still relatively small, even
at a CR of 35.
In the next quantitative experiment, we compare the

AWF SR method to two other benchmark methods for

Figure 17 Comparative plot. This plot compares the optimum SNR for the first CR, optimum SNR for each CR, and spatially varying SNR.

Table 1 PSNR obtained using various SR/compression
methods

SR techniques SR after compression SR before
compressionIndividual-frame

method
Difference-frame

method

AWF SR 31.73 33.07 33.15

WNN SR 30.13 30.46 29.67

Delaunay SR 30.53 30.98 30.20

This is for JPEG2000-compressed Kodak parrot image with CR = 8 using ρ = 0.7.
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the different architectures proposed in Section 3. The
results are shown in Table 1. The benchmark methods
are Delaunay SR [26] and weighted nearest neighbor
(WNN) SR [27]. These methods are nonuniform
interpolation-based SR methods with a computational
complexity similar to that of AWF SR. We use the
Kodak parrot image with CR = 8, and the optimum glo-
bal SNR is employed for each method. The PSNR results
in Table 1 show that AWF SR provided the highest
PSNR results for these data. The remainder of the quan-
titative results focuses on the AWF SR method. How-
ever, we have observed the same basic trends using the
benchmark methods.
Figure 16 shows PSNR as a function of CR for AWF

SR with the different architectures described in Section
3 using the Kodak parrot image. The AWF SR method
here uses a global SNR model. The plots clearly show
that SR is still beneficial with compression, even out to
high CRs. Individual-frame compression prior to SR is
very good at low CRs but degrades quickly. The
difference-frame compression performance is consider-
ably better than individual frame for higher CRs. SR
after compression provides the highest PSNR here. But
again, for video-to-video applications, the issue of data
throughput must be considered in this approach.
Figure 17 shows how adjusting the SNR in the AWF

SR correlation model can improve results as CRs in-
crease. The curves in Figure 17 show PSNR performance
as a function of CR for the individual LR frame com-
pression before AWF SR using three different SNR
methods. The bottom curve is using a fixed SNR value

of 249.74 for all CRs. While this is the optimum SNR for
CR = 4, it does not produce the best results at higher CRs.
The middle PSNR curve in Figure 17 uses the optimum
SNR for each CR and provides significantly better results.
Further improvement is obtained using the spatially vary-
ing SNR method, described in Section 2.3.
To provide a more comprehensive performance ana-

lysis, four additional images are processed. These add-
itional images are also from the Kodak dataset [25] and
are shown in Figure 19a,b,c,d. Table 2 lists the MAEs
calculated between the true HR image and various proc-
essed images for CR = 8. The corresponding PSNR
values are shown in Table 3. These results show that SR
prior compression consistently produces the lowest error
followed by difference-frame method (using spatially
varying SNR) before AWF SR. The spatially varying SNR
method provides good results for both individual- and
difference-frame methods when compared to a global
SNR. Note also that even using individual-frame com-
pression prior to SR, we still obtain a higher PSNR than
using bicubic interpolation in all cases tested.
In a final simulated data experiment, we apply AWF

SR after MPEG compression for the Kodak parrot image
sequence with a CR of 8. The resulting MAE value is
3.53, and the PSNR is 32.26. Comparison of these values
to the corresponding values in Tables 2 and 3 shows that
the JPEG2000 difference-frame compression provides
better results here than MPEG. We attribute this in large
part to the ability of the global difference-frame method
to better exploit the global motion than the block-based
motion estimation of MPEG.

Table 2 MAE obtained using various AWF SR/compression methods

Input image Bicubic after
compression

(individual frame)

SR after individual-frame compression SR after difference-frame compression SR before
compressionOptimum SNR Local SNR Optimum SNR Local SNR

Parrot 4.60 3.77 3.49 3.25 2.89 2.62

Propeller plane 5.71 4.65 4.43 4.17 3.82 3.50

Lighthouse 9.84 8.19 8.08 6.92 6.70 6.59

Mountain stream 18.49 16.76 16.61 13.74 13.59 13.36

Girl 5.65 4.76 4.59 4.03 3.80 3.51

This is for JPEG2000-compressed images with CR = 8 using ρ = 0.7.

Table 3 PSNR obtained using various AWF SR/compression methods

Input image Bicubic after
compression

(individual frame)

SR after individual-frame compression SR after difference-frame compression SR before
compressionOptimum SNR Local SNR Optimum SNR Local SNR

Parrot 28.42 31.73 32.02 33.07 33.40 33.15

Propeller plane 26.34 29.17 29.36 30.27 30.42 30.27

Lighthouse 23.56 25.43 25.48 27.00 27.08 26.71

Mountain stream 19.70 20.62 20.67 22.24 22.30 22.10

Girl 27.72 29.99 30.13 31.61 31.78 31.56

This is for JPEG2000-compressed images with CR = 8 using ρ = 0.7.

Narayanan et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:55 Page 12 of 18
http://asp.eurasipjournals.com/content/2014/1/55



4.2 Real-video data
In this section, the algorithms are demonstrated for a
real-video sequence. Figure 20 shows a single frame in
the real-video sequence captured using an Imaging
Source DMK 21BU04 visible camera (Charlotte, NC,
USA). The camera acquires 640 × 480 8-bit grayscale im-
ages with a Sony ICX098BL CCD sensor with 5.6-mm

pitch detectors (New York, NY, USA). The camera is fit-
ted with an F/4 lens with a focal length of 5 mm. The
central wavelength is assumed to be λ = 0.55 μm. Note
that this imaging system is theoretically 5.09× under-
sampled. In practice, we find that there is very little re-
sidual aliasing using L = 4, so we believe this is a good
choice for SR processing with this sensor. In all of the

(a) (b)

(c) (d)

(e) (f)

Figure 18 ROI of Kodak parrot image. All the SR/compression methods are performed using L = 4 and ρ = 0.7. All the compressed images
have a CR = 8. (a) Kodak HR image (uncompressed). (b) Bicubic interpolation on individually compressed LR frame. (c) AWF SR on the individually
compressed LR images with globally optimum SNR of 67.40. (d) AWF SR on the individually compressed LR images using spatially varying SNR.
(e) AWF SR on the difference frame-compressed LR images using an optimum SNR of 315.67. (f) Individual-frame compression after AWF SR with
a globally optimum SNR of 67.40.
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SR results, we use L = 4 and assume an SNR of 40 and
use ρ = 0.7 in the AWF correlation model. For results in-
corporating compression, a CR of 8 is used in all of the
results in this section.
Figures 21 and 22 show results for ROIs from Figure 20

centered on the 2D chirp pattern and book titles, re-
spectively. The true chirp pattern is made up of concen-
tric circles with increasing spatial frequency moving
away from the center. The SR results with no compres-
sion are shown in Figures 21a and 22a. These images
provide good representations of the true images. The
images formed using L = 4 bicubic interpolation after
individual-frame compression are shown in Figures 21b

and 22b. Here, moire patterns are clearly visible on the
chip due to aliasing, and the lettering on the book titles
is degraded. These images are also noticeably blurrier
than in Figures 21a and 22a in both cases. The results
for AWF SR after individual-frame compression using
the optimum global SNR are shown in Figures 21c and
22c. While these results are quite good, some compres-
sion artifacts can be seen in the high spatial frequencies.
AWF SR after individual-frame compression using the
spatially varying SNR is shown in Figures 21d and 22d.
The results for AWF SR after difference-frame compression
using the optimum global SNR are shown in Figures 21e
and 22e. Finally, the results for SR before compression are

Figure 19 Ideal HR images used for simulation results. (a) Kodak propeller plane image. (b) Kodak lighthouse image. (c) Kodak mountain
stream image. (d) Kodak girl image.

Figure 20 An individual frame (first frame) in the original real-video sequence.
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(a) (b)

(c) (d)

(e) (f)

Figure 21 ROI-I of real data for various SR/compression methods using L = 4, ρ = 0.7, and CR = 8. (a) Uncompressed AWF SR. (b) Bicubic
interpolation on individually compressed LR frames. (c) AWF SR on the individually compressed frames using global SNR of 40. (d) AWF SR on
the individually compressed frames using spatially varying SNR. (e) AWF SR after difference-frame compression using SNR = 40. (f) Individual-frame
compression applied after AWF SR.
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shown in Figures 21f and 22f. Both of these results look
comparable to the uncompressed results in Figures 21a
and 22a.
We see in Figures 21 and 22 that the results with the

real-video data follow the same pattern seen with the
simulated data. In particular, the AWF SR before

compression is the best method among the architectures
tested. This is followed closely in performance by AWF
SR after difference-frame compression and then AWF
SR after individual-frame compression using the spatially
varying SNR. AWF SR after individual-frame compres-
sion using the optimum global SNR, while perhaps

(a) (b)

(c) (d)

(e) (f)

Figure 22 ROI-II of real data for various SR/compression methods using L = 4, ρ = 0.7, and CR = 8. (a) Uncompressed AWF SR. (b) Bicubic
interpolation on individually compressed LR frames. (c) AWF SR on the individually compressed frames using global SNR of 40. (d) AWF SR on
the individually compressed frames using spatially varying SNR. (e) AWF SR after difference-frame compression using SNR = 40. (f) Individual-frame
compression applied after AWF SR.
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inferior to the other methods, still outperforms bicubic
interpolation by a significant margin both subjectively
and quantitatively.

5 Conclusions
The results obtained suggest that SR prior to compres-
sion provides the best results when compared to other
architectures. However, this may require real-time SR
processing at the sensor or storage of full resolution
video for later processing. This may not always be feas-
ible. Furthermore, in video-to-video SR applications with
SR prior to compression, the data throughput is signifi-
cantly increased if the frame rate is the same for the LR
and SR frames (since the SR frames are upsampled by
L). Often, a more practical scenario is to apply SR after
JPEG2000 compression of the LR frames. With this ap-
proach, we have demonstrated that SR processing still
provides improvement, even for relatively high CRs, pro-
vided that the SNR in the correlation model is adjusted
to account for compression artifacts. We have proposed
a novel approach for estimating and using a spatially
varying SNR with the AWF SR method to help mitigate
spatially varying compression artifacts.
When compression is done prior to SR, we have

shown that difference-frame compression is superior to
individual-frame compression. Note that a set of frames
suitable for multiframe SR must overlap in field of view
such that accurate registration possible. With such over-
lapping frames, there will be a tendency to have a signifi-
cant inter-frame correlation. With difference-frame
compression, this redundancy between LR frames is
exploited. On the other hand, it is the differences among
the LR frames that are exploited by SR to reduce alias-
ing; it improves the performance of the system. This
provides a potentially practical and efficient approach to
combining SR and JPEG2000 compression.
In summary, AWF SR processing can be effectively

combined with JPEG2000 compression. Even at rela-
tively high CRs using simple individual-frame compres-
sion prior to SR, we see improvement over bicubic
interpolation. Difference-frame compression prior to SR
provides improved performance without increasing the
video throughput. Also, applying spatially varying SNR
proposed here can improve the performance of AWF SR
algorithm with JPEG2000 compression. One potentially
important application for this kind of SR with JPEG2000
compression is in the field of airborne imaging [19-22].
Here, multiframe SR has been shown to be highly ap-
plicable [19-22]. At the same time, the need for com-
pression is high due to the large amounts of data
typically acquired with such systems.
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